《二次函數(shù)的應(yīng)用》教案(精選5篇)
作為一名默默奉獻(xiàn)的教育工作者,就難以避免地要準(zhǔn)備教案,借助教案可以更好地組織教學(xué)活動(dòng)。那么問題來了,教案應(yīng)該怎么寫?下面是小編為大家整理的《二次函數(shù)的應(yīng)用》教案,僅供參考,希望能夠幫助到大家。
《二次函數(shù)的應(yīng)用》教案 1
教學(xué)設(shè)計(jì)思想:
本節(jié)主要研究的是與二次函數(shù)有關(guān)的實(shí)際問題,重點(diǎn)是實(shí)際應(yīng)用題,在教學(xué)過程中讓學(xué)生運(yùn)用二次函數(shù)的知識(shí)分析問題、解決問題,在運(yùn)用中體會(huì)二次函數(shù)的實(shí)際意義。二次函數(shù)與一元二次方程、一元二次不等式有密切聯(lián)系,在學(xué)習(xí)過程中應(yīng)把二次函數(shù)與之有關(guān)知識(shí)聯(lián)系起來,融會(huì)貫通,使學(xué)生的認(rèn)識(shí)更加深刻。另外,在利用圖像法解方程時(shí),圖像應(yīng)畫得準(zhǔn)確一些,使求得的解更準(zhǔn)確,在求解過程中體會(huì)數(shù)形結(jié)合的思想。
教學(xué)目標(biāo):
1.知識(shí)與技能
會(huì)運(yùn)用二次函數(shù)計(jì)其圖像的知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問題。
2.過程與方法
通過本節(jié)內(nèi)容的學(xué)習(xí),提高自主探索、團(tuán)結(jié)合作的能力,在運(yùn)用知識(shí)解決問題中體會(huì)二次函數(shù)的應(yīng)用意義及數(shù)學(xué)轉(zhuǎn)化思想。
3.情感、態(tài)度與價(jià)值觀
通過學(xué)生之間的討論、交流和探索,建立合作意識(shí)和提高探索能力,激發(fā)學(xué)習(xí)的興趣和欲望。
教學(xué)重點(diǎn):解決與二次函數(shù)有關(guān)的實(shí)際應(yīng)用題。
教學(xué)難點(diǎn):二次函數(shù)的應(yīng)用。
教學(xué)媒體:幻燈片,計(jì)算器。
教學(xué)安排:3課時(shí)。
教學(xué)方法:小組討論,探究式。
教學(xué)過程:
第一課時(shí):
、.情景導(dǎo)入:
師:由二次函數(shù)的一般形式y(tǒng)= (a0),你會(huì)有什么聯(lián)想?
生:老師,我想到了一元二次方程的一般形式 (a0)。
師:不錯(cuò),正因?yàn)槿绱,有時(shí)我們就將二次函數(shù)的有關(guān)問題轉(zhuǎn)化為一元二次方程的問題來解決。
現(xiàn)在大家來做下面這兩道題:(幻燈片顯示)
1.解方程 。
2.畫出二次函數(shù)y= 的圖像。
教師找兩個(gè)學(xué)生解答,作為板書。
、.新課講授
同學(xué)們思考下面的問題,可以共同討論:
1.二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)是什么?它與方程 的根有什么關(guān)系?
2.如果方程 (a0)有實(shí)數(shù)根,那么它的根和二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)有什么關(guān)系?
生甲:老師,由畫出的圖像可以看出與x軸交點(diǎn)的橫坐標(biāo)是-1、2;方程的兩個(gè)根是-1、2,我們發(fā)現(xiàn)方程的兩個(gè)解正好是圖像與x軸交點(diǎn)的橫坐標(biāo)。
生乙:我們經(jīng)過討論,認(rèn)為如果方程 (a0)有實(shí)數(shù)根,那么它的根等于二次函數(shù)y= 的圖像與x軸交點(diǎn)的橫坐標(biāo)。
師:說的很好;
教師總結(jié):一般地,如果二次函數(shù)y= 的圖像與x軸相交,那么交點(diǎn)的橫坐標(biāo)就是一元二次方程 =0的根。
師:我們知道方程的兩個(gè)解正好是二次函數(shù)圖像與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),那么二次函數(shù)圖像與x軸的交點(diǎn)問題可以轉(zhuǎn)化為一元二次方程的根的問題,我們共同研究下面問題。
[學(xué)法]:通過實(shí)例,體會(huì)二次函數(shù)與一元二次方程的關(guān)系,解一元二次方程實(shí)質(zhì)上就是求二次函數(shù)為0的自變量x的取值,反映在圖像上就是求拋物線與x軸交點(diǎn)的橫坐標(biāo)。
問題:已知二次函數(shù)y= 。
(1)觀察這個(gè)函數(shù)的圖像(圖34-9),一元二次方程 =0的兩個(gè)根分別在哪兩個(gè)整數(shù)之間?
(2)①由在0至1范圍內(nèi)的x值所對(duì)應(yīng)的y值(見下表),你能說出一元二次方程 =0精確到十分位的正根嗎?
x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1
②由在0.6至0.7范圍內(nèi)的x值所對(duì)應(yīng)的y值(見下表),你能說出一元二次方程 =0精確到百分位的正根嗎?
x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70
y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190
(3)請(qǐng)仿照上面的方法,求出一元二次方程 =0的另一個(gè)精確到十分位的根。
(4)請(qǐng)利用一元二次方程的求根公式解方程 =0,并檢驗(yàn)上面求出的近似解。
第一問很簡(jiǎn)單,可以請(qǐng)一名同學(xué)來回答這個(gè)問題。
生:一個(gè)根在(-2,-1)之間,另一個(gè)在(0,1)之間;根據(jù)上面我們得出的結(jié)論。
師:回答的很正確;我們知道圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程的根,所以我們可以通過觀看圖象就能說出方程的兩個(gè)根。現(xiàn)在我們共同解答第(2)問。
教師分析:我們知道方程的一個(gè)根在(0,1)之間,那么我們觀看(0,1)這個(gè)區(qū)間的圖像,y值是隨著x值的增大而不斷增大的,y值也是從負(fù)數(shù)過渡到正數(shù),而當(dāng)y=0時(shí)所對(duì)應(yīng)的x值就是方程的根。現(xiàn)在我們要求的是方程的近似解,那么同學(xué)們想一想,答案是什么呢?
生:通過列表可以看出,在(0.6,0.7)范圍內(nèi),y值有-0.04至0.19,如果方程精確到十分位的正根,x應(yīng)該是0.6。
類似的,我們得出方程精確到百分位的正根是0.62。
對(duì)于第三問,教師可以讓學(xué)生自己動(dòng)手解答,教師在下面巡視,觀察其中發(fā)現(xiàn)的問題。
最后師生共同利用求根公式,驗(yàn)證求出的近似解。
教師總結(jié):我們發(fā)現(xiàn),當(dāng)二次函數(shù) (a0)的圖像與x軸有交點(diǎn)時(shí),根據(jù)圖像與x軸的交點(diǎn),就可以確定一元二次方程 的根在哪兩個(gè)連續(xù)整數(shù)之間。為了得到更精確的近似解,對(duì)在這兩個(gè)連續(xù)整數(shù)之間的x的值進(jìn)行細(xì)分,并求出相應(yīng)得y值,列出表格,這樣就可以得到一元二次方程 所要求的精確度的近似解。
Ⅲ.練習(xí)
已知一個(gè)矩形的長(zhǎng)比寬多3m,面積為6 。求這個(gè)矩形的長(zhǎng)(精確到十分位)。
板書設(shè)計(jì):
二次函數(shù)的應(yīng)用(1)
一、導(dǎo)入 總結(jié):
二、新課講授 三、練習(xí)
第二課時(shí):
師:在我們的實(shí)際生活中你還遇到過哪些運(yùn)用二次函數(shù)的實(shí)例?
生:老師,我見過好多。如周長(zhǎng)固定時(shí)長(zhǎng)方形的面積與它的長(zhǎng)之間的關(guān)系:圓的面積與它的直徑之間的'關(guān)系等。
師:好,看這樣一個(gè)問題你能否解決:
活動(dòng)1:如圖34-10,張伯伯準(zhǔn)備利用現(xiàn)有的一面墻和40m長(zhǎng)的籬笆,把墻外的空地圍成四個(gè)相連且面積相等的矩形養(yǎng)兔場(chǎng)。
回答下面的問題:
1.設(shè)每個(gè)小矩形一邊的長(zhǎng)為xm,試用x表示小矩形的另一邊的長(zhǎng)。
2.設(shè)四個(gè)小矩形的總面積為y ,請(qǐng)寫出用x表示y的函數(shù)表達(dá)式。
3.你能利用公式求出所得函數(shù)的圖像的頂點(diǎn)坐標(biāo),并說出y的最大值嗎?
4.你能畫出這個(gè)函數(shù)的圖像,并借助圖像說出y的最大值嗎?
學(xué)生思考,并小組討論。
解:已知周長(zhǎng)為40m,一邊長(zhǎng)為xm,看圖知,另一邊長(zhǎng)為 m。
由面積公式得 y= (x )
化簡(jiǎn)得 y=
代入頂點(diǎn)坐標(biāo)公式,得頂點(diǎn)坐標(biāo)x=4,y=5。y的最大值為5。
畫函數(shù)圖像:
通過圖像,我們知道y的最大值為5。
師:通過上面這個(gè)例題,我們能總結(jié)出幾種求y的最值得方法呢?
生:兩種;一種是畫函數(shù)圖像,觀察最高(低)點(diǎn),可以得到函數(shù)的最值;另外一種可以利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算最值。
師:這位同學(xué)回答的很好,看來同學(xué)們是都理解了,也知道如何求函數(shù)的最值。
總結(jié):由此可以看出,在利用二次函數(shù)的圖像和性質(zhì)解決實(shí)際問題時(shí),常常需要根據(jù)條件建立二次函數(shù)的表達(dá)式,在求最大(或最小)值時(shí),可以采取如下的方法:
(1)畫出函數(shù)的圖像,觀察圖像的最高(或最低)點(diǎn),就可以得到函數(shù)的最大(或最小)值。
(2)依照二次函數(shù)的性質(zhì),判斷該二次函數(shù)的開口方向,進(jìn)而確定它有最大值還是最小值;再利用頂點(diǎn)坐標(biāo)公式,直接計(jì)算出函數(shù)的最大(或最小)值。
師:現(xiàn)在利用我們前面所學(xué)的知識(shí),解決實(shí)際問題。
活動(dòng)2:如圖34-11,已知AB=2,C是AB上一點(diǎn),四邊形ACDE和四邊形CBFG,都是正方形,設(shè)BC=x,
(1)AC=______;
(2)設(shè)正方形ACDE和四邊形CBFG的總面積為S,用x表示S的函數(shù)表達(dá)式為S=_____.
(3)總面積S有最大值還是最小值?這個(gè)最大值或最小值是多少?
(4)總面積S取最大值或最小值時(shí),點(diǎn)C在AB的什么位置?
教師講解:二次函數(shù) 進(jìn)行配方為y= ,當(dāng)a0時(shí),拋物線開口向上,此時(shí)當(dāng)x= 時(shí), ;當(dāng)a0時(shí),拋物線開口向下,此時(shí)當(dāng)x= 時(shí), 。對(duì)于本題來說,自變量x的最值范圍受實(shí)際條件的制約,應(yīng)為02。此時(shí)y相應(yīng)的就有最大值和最小值了。通過畫出圖像,可以清楚地看到y(tǒng)的最大值和最小值以及此時(shí)x的取值情況。在作圖像時(shí)一定要準(zhǔn)確認(rèn)真,同時(shí)還要考慮到x的取值范圍。
解答過程(板書)
解:(1)當(dāng)BC=x時(shí),AC=2-x(02)。
(2)S△CDE= ,S△BFG= ,
因此,S= + =2 -4x+4=2 +2,
畫出函數(shù)S= +2(02)的圖像,如圖34-4-3。
(3)由圖像可知:當(dāng)x=1時(shí), ;當(dāng)x=0或x=2時(shí), 。
(4)當(dāng)x=1時(shí),C點(diǎn)恰好在AB的中點(diǎn)上。
當(dāng)x=0時(shí),C點(diǎn)恰好在B處。
當(dāng)x=2時(shí),C點(diǎn)恰好在A處。
[教法]:在利用函數(shù)求極值問題,一定要考慮本題的實(shí)際意義,弄明白自變量的取值范圍。在畫圖像時(shí),在自變量允許取得范圍內(nèi)畫。
練習(xí):
如圖,正方形ABCD的邊長(zhǎng)為4,P是邊BC上一點(diǎn),QPAP,并且交DC與點(diǎn)Q。
(1)Rt△ABP與Rt△PCQ相似嗎?為什么?
(2)當(dāng)點(diǎn)P在什么位置時(shí),Rt△ADQ的面積最小?最小面積是多少?
小結(jié):利用二次函數(shù)的增減性,結(jié)合自變量的取值范圍,則可求某些實(shí)際問題中的極值,求極值時(shí)可把 配方為y= 的形式。
板書設(shè)計(jì):
二次函數(shù)的應(yīng)用(2)
活動(dòng)1: 總結(jié)方法:
活動(dòng)2: 練習(xí):
小結(jié):
第三課時(shí):
我們這部分學(xué)習(xí)的是二次函數(shù)的應(yīng)用,在解決實(shí)際問題時(shí),常常需要把二次函數(shù)問題轉(zhuǎn)化為方程的問題。
師:在日常生活中,有哪些量之間的關(guān)系是二次函數(shù)關(guān)系?大家觀看下面的圖片。
(幻燈片顯示交通事故、緊急剎車)
師:你知道兩輛車在行駛時(shí)為什么要保持一定的距離嗎?
學(xué)生思考,討論。
師:汽車在行駛中,由于慣性作用,剎車后還要向前滑行一段距離才能停住,這段距離叫做剎車距離。剎車距離是分析、處理道路交通事故的一個(gè)重要原因。
請(qǐng)看下面一個(gè)道路交通事故案例:
甲、乙兩車在限速為40km/h的濕滑彎道上相向而行,待望見對(duì)方。同時(shí)剎車時(shí)已經(jīng)晚了,兩車還是相撞了。事后經(jīng)現(xiàn)場(chǎng)勘查,測(cè)得甲車的剎車距離是12m,乙車的剎車距離超過10m,但小于12m。根據(jù)有關(guān)資料,在這樣的濕滑路面上,甲車的剎車距離S甲(m)與車速x(km/h)之間的關(guān)系為S甲=0.1x+0.01x2,乙車的剎車距離S乙(m)與車速x(km/h)之間的關(guān)系為S乙= 。
教師提問:1.你知道甲車剎車前的行駛速度嗎?甲車是否違章超速?
2.你知道乙車剎車前的行駛速度在什么范圍內(nèi)嗎?乙車是否違章超速?
學(xué)生思考!教師引導(dǎo)。
對(duì)于二次函數(shù)S甲=0.1x+0.01x2:
(1)當(dāng)S甲=12時(shí),我們得到一元二次方程0.1x+0.01x2=12。請(qǐng)談?wù)勥@個(gè)一元二次方程這個(gè)一元二次方程的實(shí)際意義。
(2)當(dāng)S甲=11時(shí),不經(jīng)過計(jì)算,你能說明兩車相撞的主要責(zé)任者是誰嗎?
(3)由乙車的剎車距離比甲車的剎車距離短,就一定能說明事故責(zé)任者是甲車嗎?為什么?
生甲:我們能知道甲車剎車前的行駛速度,知道甲車的剎車距離,又知道剎車距離與車速的關(guān)系式,所以車速很容易求出,求得x=30km,小于限速40km/h,故甲車沒有違章超速。
生乙:同樣,知道乙車剎車前的行駛速度,知道乙車的剎車距離的取值范圍,又知道剎車距離與車速的關(guān)系式,求得x在40km/h與48km/h(不包含40km/h)之間?梢娨臆囘`章超速了。
同學(xué)們,從這個(gè)事例當(dāng)中我們可以體會(huì)到,如果二次函數(shù)y= (a0)的某一函數(shù)值y=M。就可利用一元二次方程 =M,確定它所對(duì)應(yīng)得x值,這樣,就把二次函數(shù)與一元二次方程緊密地聯(lián)系起來了。
下面看下面的這道例題:
當(dāng)路況良好時(shí),在干燥的路面上,汽車的剎車距離s與車速v之間的關(guān)系如下表所示:
v/(km/h) 40 60 80 100 120
s/m 2 4.2 7.2 11 15.6
(1)在平面直角坐標(biāo)系中描出每對(duì)(v,s)所對(duì)應(yīng)的點(diǎn),并用光滑的曲線順次連結(jié)各點(diǎn)。
(2)利用圖像驗(yàn)證剎車距離s(m)與車速v(km/h)是否有如下關(guān)系:
(3)求當(dāng)s=9m時(shí)的車速v。
學(xué)生思考,親自動(dòng)手,提高學(xué)生自主學(xué)習(xí)的能力。
教師提問,學(xué)生回答正確答案,教師再進(jìn)行講解。
課上練習(xí):
某產(chǎn)品的成本是20元/件,在試銷階段,當(dāng)產(chǎn)品的售價(jià)為x元/件時(shí),日銷量為(200-x)件。
(1)寫出用售價(jià)x(元/件)表示每日的銷售利潤(rùn)y(元)的表達(dá)式。
(2)當(dāng)日銷量利潤(rùn)是1500元時(shí),產(chǎn)品的售價(jià)是多少?日銷量是多少件?
(3)當(dāng)售價(jià)定為多少時(shí),日銷量利潤(rùn)最大?最大日銷量利潤(rùn)是多少?
課堂小結(jié):本節(jié)課主要是利用函數(shù)求極值的問題,解決此類問題時(shí),一定要考慮到本題的實(shí)際意義,弄明白自變量的取值范圍。在畫圖像時(shí),在自變量允許取的范圍內(nèi)畫。
板書設(shè)計(jì):
二次函數(shù)的應(yīng)用(3)
一、案例 二、例題
分析: 練習(xí):
總結(jié):
數(shù)學(xué)網(wǎng)
《二次函數(shù)的應(yīng)用》教案 2
一、教材分析:
《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問題,這三個(gè)問題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問題的聯(lián)系。
本節(jié)教學(xué)時(shí)間安排1課時(shí)
二、教學(xué)目標(biāo):
知識(shí)技能:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.
2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的.實(shí)數(shù)和沒有實(shí)根.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
數(shù)學(xué)思考:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).
3.通過觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
解決問題:
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
2.通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
情感態(tài)度:
1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
1.體會(huì)方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
教學(xué)難點(diǎn):
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
四、教學(xué)方法:
啟發(fā)引導(dǎo) 合作交流
五、教具、學(xué)具:
課件
六、教學(xué)過程:
[活動(dòng)1] 檢查預(yù)習(xí) 引出課題
預(yù)習(xí)作業(yè):
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。
設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。
[活動(dòng)2] 創(chuàng)設(shè)情境 探究新知
問題
1. 課本P94 問題.
2. 結(jié)合圖形指出,為什么有兩個(gè)時(shí)間球的高度是15m或0m?為什么只在一個(gè)時(shí)間球的高度是20m?
3. 結(jié)合預(yù)習(xí)題1,完成課本P94 觀察中的題目。
師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個(gè)問題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
教師重點(diǎn)關(guān)注:
1.學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;
2.學(xué)生在思考問題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;
3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
[活動(dòng)3] 例題學(xué)習(xí) 鞏固提高
問題
例 利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1)
師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
教師關(guān)注:
(1)學(xué)生在解題過程中格式是否規(guī)范;
(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
[活動(dòng)4] 練習(xí)反饋 鞏固新知
《二次函數(shù)的應(yīng)用》教案 3
目標(biāo)設(shè)計(jì)
1.知識(shí)與技能:通過本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點(diǎn)與最值的關(guān)系,會(huì)用頂點(diǎn)的性質(zhì)求解最值問題。
能力訓(xùn)練要求
1、能夠分析實(shí)際問題中變量之間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識(shí)求出實(shí)際問題的最大(。┲蛋l(fā)展學(xué)生解決問題的能力, 學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。
2、通過觀察圖象,理解頂點(diǎn)的特殊性,會(huì)把實(shí)際問題中的最值轉(zhuǎn)化為二次函數(shù)的最值問題,通過動(dòng)手動(dòng)腦,提高分析解決問題的能力,并體會(huì)一般與特殊的關(guān)系,培養(yǎng)數(shù)形結(jié)合思想,函數(shù)思想。
情感與價(jià)值觀要求
1、在進(jìn)行探索的活動(dòng)過程中發(fā)展學(xué)生的探究意識(shí),逐步養(yǎng)成合作交流的習(xí)慣。
2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會(huì)體會(huì)數(shù)學(xué)在生活中廣泛的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強(qiáng)自信心。
方法設(shè)計(jì)
由于本節(jié)課是應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學(xué)活動(dòng),解決問題以學(xué)生動(dòng)手動(dòng)腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。
教學(xué)過程
導(dǎo)學(xué)提綱
設(shè)計(jì)思路:最值問題又是生活中利用二次函數(shù)知識(shí)解決最常見、最有實(shí)際應(yīng)用價(jià)值的問題之一,它生活背景豐富 ,學(xué)生比較感興趣,對(duì)九年級(jí)學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過兩個(gè)的實(shí)際問題中,還不能熟練地應(yīng)用知識(shí)解決問題,而面積問題學(xué)生易于理解和接受 ,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。目的在于讓學(xué)生通過掌握求面積最大這一類題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。
。ㄒ唬┣扒榛仡櫍
1.復(fù)習(xí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點(diǎn)坐標(biāo)、對(duì)稱軸和最值
2.(1)求函數(shù)y=x2+ 2x-3的最值。
。2)求函數(shù)y=x2+2x-3的最值。(0≤x ≤ 3)
3、拋物線在什么位置取最值?
(二)適當(dāng)點(diǎn)撥,自主探究
1、在創(chuàng)設(shè)情境中發(fā)現(xiàn)問題
請(qǐng)你畫一個(gè)周長(zhǎng)為40厘米的矩形,算算它的面積是多少?再和同學(xué)比比,發(fā)現(xiàn)了什么?誰的面積最大?
2、在解決問題中找出方法
某工廠為了存放材料,需要圍一個(gè)周長(zhǎng)40米的矩形場(chǎng)地,問矩形的長(zhǎng)和寬各取多少米,才能使存放場(chǎng)地的面積最大?
(問題設(shè)計(jì)思路:把前面矩形的周長(zhǎng)40厘米改為40米,變成一個(gè)實(shí)際問題, 目的在于讓學(xué)生體會(huì)其應(yīng)用價(jià)值?我們要學(xué)有用的數(shù)學(xué)知識(shí)。學(xué)生在前面探究問題時(shí),已經(jīng)發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理 論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時(shí)學(xué)生可能會(huì)有困難,這時(shí)教師要引導(dǎo)學(xué)生關(guān)注哪兩個(gè)變量,就把其中的一個(gè)主要變量設(shè)為x,另一個(gè)設(shè)為y,其它變量用含x的代數(shù)式表示,找等量關(guān)系,建立函數(shù)模型,實(shí)際問題還要考慮定義域,畫圖象觀察最值點(diǎn),這樣一步步突破難點(diǎn),從而讓學(xué)生在不斷探究中悟出利用函數(shù)知識(shí)解決問題的一套思路和方法,而不是為了做題而做題,為以后的學(xué)習(xí)奠定思想方法基礎(chǔ)。)
3、在鞏固與應(yīng)用中提高技能
例1:小明的家門前有一塊空地,空地外有一面長(zhǎng)10米的圍墻,為了美化生活環(huán)境,小明的爸爸準(zhǔn)備靠墻修建一個(gè)矩形花圃 ,他買回了32米長(zhǎng)的不銹鋼管準(zhǔn)備作為花圃的圍欄(如圖所示),花圃的寬AD究竟應(yīng)為多少米才能使花圃的面積最大?
。ㄔO(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門口的生活背景,從知識(shí)的角度來看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過畫函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與形的完美結(jié)合,通過此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問題奠定了堅(jiān)實(shí)的基礎(chǔ)。)
解:設(shè)垂直于墻的邊AD=x米,則AB=(32-2x) 米,設(shè)矩形面積為y米2,得到:
Y=x(32-2x)= -2x2+32x
[錯(cuò)解]由頂點(diǎn)公式得:
x=8米時(shí),y最大=128米2
而實(shí)際上定義域?yàn)?1≤x ?16,由圖象或增減性可知x=11米時(shí), y最大=110米2
。ㄔO(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門口的生活背景,從知識(shí)的角度來看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長(zhǎng)10米來限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會(huì)在頂點(diǎn)處找最值,導(dǎo)致錯(cuò) 解,此時(shí)教師再提醒學(xué)生通過畫函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會(huì)頂點(diǎn)與端點(diǎn)的不同作用,加深對(duì)知識(shí)的理解,做到數(shù)與 形的完美結(jié)合,通過此題的有意訓(xùn)練,學(xué)生必然會(huì)對(duì)定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識(shí)解決問題奠定了堅(jiān)實(shí)的基礎(chǔ)。)
(三)總結(jié)交流:
。1)同學(xué)們經(jīng)歷剛才的探究過程,想想解決此類問題的思路是什么?
引導(dǎo)學(xué)生分析解題循環(huán)圖:
(2)在探究發(fā)現(xiàn)這些判定方法的過程中運(yùn)用了什么樣的數(shù)學(xué)方法?
。ㄋ模┱莆諔(yīng)用:
圖中窗戶邊框的 上半部分是由四個(gè)全等扇形組成的半圓,下部分是矩形。如果制作一個(gè)窗戶邊框的'材料總長(zhǎng)為15米,那么如何設(shè)計(jì)這個(gè)窗戶邊框的尺寸,使透光面積最大(結(jié)果精確到0.01m2)?(設(shè)計(jì)思路:先出示如圖圖形,然后引伸到課本中的圖形,讓學(xué)生有一個(gè)思考遞進(jìn)的空間。)
(五)我來試一試:
如圖在Rt△ABC中,點(diǎn)P在斜邊AB上移動(dòng),PM⊥BC,PN⊥AC,M,N分別為垂足,已知AC=1,AB=2,求:
。1)何時(shí)矩形PMCN的面積最大,把最大面積是多少?
。2)當(dāng)AM平分∠CAB時(shí),矩形PMCN的面積.
。┲橇﹃J關(guān):
如圖,用長(zhǎng)20cm的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎樣圍才能使園子的面積最大?最 大面積是多少?
作業(yè):課本隨堂練習(xí) 、習(xí)題1,2,3
板書設(shè)計(jì)
二次函數(shù)的應(yīng)用??面積最大問題
課后反思
二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過對(duì)實(shí)際問題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖象的性質(zhì)解決簡(jiǎn)單的實(shí)際問題。 本節(jié)課充分運(yùn)用導(dǎo)學(xué)提綱,教師提前通過一系列問題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過對(duì)一系列問題串的解決與交流, 讓學(xué)生通過掌握 求面積最大這一類題,學(xué)會(huì)用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。
教材中設(shè)計(jì)先探索最大利潤(rùn)問題,對(duì)九年級(jí)學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對(duì)函數(shù)的思想已有初步認(rèn)識(shí),對(duì)分析問題的方法已會(huì)初步模仿,能識(shí)別圖象的增減性和最值,但在變量超過兩個(gè)的實(shí)際問題中,還不能熟練地應(yīng)用知識(shí)解決問題,而面積問題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤(rùn)等問題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識(shí)構(gòu)建數(shù)學(xué)模型,解決實(shí)際問題的能力,這也符合新課標(biāo)中知識(shí)與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當(dāng)?shù)慕档土颂荻,讓學(xué)生思維有一個(gè)拓展的空間,也有收獲快樂 和成就感。在訓(xùn)練的過程中,通過學(xué)生的獨(dú)立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達(dá)能力及思維能力都得到訓(xùn)練和提高。同時(shí)也注重對(duì)解題方法與解題 模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。
《二次函數(shù)的應(yīng)用》教案 4
教學(xué)目標(biāo):
利用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題。
利用已有二次函數(shù)的知識(shí)經(jīng)驗(yàn),自主進(jìn)行探究和合作學(xué)習(xí),解決情境中的數(shù)學(xué)問題,初步形成數(shù)學(xué)建模能力,解決一些簡(jiǎn)單的實(shí)際問題。
在探索中體驗(yàn)數(shù)學(xué)來源于生活并運(yùn)用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,通過合作學(xué)習(xí)獲得成功,樹立自信心。
教學(xué)重點(diǎn)和難點(diǎn):
運(yùn)用數(shù)形結(jié)合的思想方法進(jìn)行解二次函數(shù),這是重點(diǎn)也是難點(diǎn)。
教學(xué)過程:
(一)引入:
分組復(fù)習(xí)舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標(biāo)系中的圖象中,你能得到哪些信息?
可引導(dǎo)學(xué)生從幾個(gè)方面進(jìn)行討論:
。1)如何畫圖
。2)頂點(diǎn)、圖象與坐標(biāo)軸的交點(diǎn)
(3)所形成的三角形以及四邊形的面積
。4)對(duì)稱軸
從上面的問題導(dǎo)入今天的課題二次函數(shù)中的圖象與性質(zhì)。
。ǘ┬率冢
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點(diǎn),使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點(diǎn)為點(diǎn)A,且與x軸交于點(diǎn)B、C;在拋物線上求一點(diǎn)E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點(diǎn)M,使BOM與ABC相似。
2、讓同學(xué)討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點(diǎn)坐標(biāo)是C(2,1)且與x軸交于點(diǎn)A、點(diǎn)B,已知SABC=3,求拋物線的解析式。
。ㄈ┨岣呔毩(xí)
根據(jù)我們學(xué)校人人皆知的船模特色項(xiàng)目設(shè)計(jì)了這樣一個(gè)情境:
讓班級(jí)中的上科院小院士來簡(jiǎn)要介紹學(xué)校船模組的情況以及在繪制船模圖紙時(shí)也常用到拋物線的知識(shí)的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長(zhǎng)度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學(xué)生在練習(xí)中體會(huì)二次函數(shù)的圖象與性質(zhì)在解題中的作用。
(四)讓學(xué)生討論小結(jié)(略)
。ㄎ澹┳鳂I(yè)布置
1、在直角坐標(biāo)平面內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點(diǎn)A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
(1)求二次函數(shù)的'解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個(gè)單位,設(shè)平移后的圖象與y軸的交點(diǎn)為C,頂點(diǎn)為P,求 POC的面積。
2、如圖,一個(gè)二次函數(shù)的圖象與直線y= x—1的交點(diǎn)A、B分別在x、y軸上,點(diǎn)C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個(gè)二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0.9cm,線段DE表示大橋拱內(nèi)橋長(zhǎng),DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對(duì)稱軸為y軸,以1cm作為數(shù)軸的單位長(zhǎng)度,建立平面直角坐標(biāo)系。
。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
(2)如果DE與AB的距離OM=0.45cm,求盧浦大橋拱內(nèi)實(shí)際橋長(zhǎng)(備用數(shù)據(jù): ,計(jì)算結(jié)果精確到1米)
《二次函數(shù)的應(yīng)用》教案 5
一、教材分析
1、教材的地位及作用
函數(shù)是一種重要的數(shù)學(xué)思想,是實(shí)際生活中數(shù)學(xué)建模的重要工具,二次函數(shù)的教學(xué)在初中數(shù)學(xué)教學(xué)中有著重要的地位。本節(jié)內(nèi)容的教學(xué),在函數(shù)的教學(xué)中有著承上啟下的作用。它既是對(duì)已學(xué)一次函數(shù)及反比例函數(shù)的復(fù)習(xí),又是對(duì)二次函數(shù)知識(shí)的延續(xù)和深化,為將來二次函數(shù)一般情形的教學(xué)乃至高中階段函數(shù)的教學(xué)打下基礎(chǔ),做好鋪墊。
2.教學(xué)目標(biāo)
(1) 掌握二此函數(shù)的概念并能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣。[知識(shí)與技能目標(biāo)]
(2)讓學(xué)生經(jīng)歷觀察、比較、歸納、應(yīng)用,以及猜想、驗(yàn)證的學(xué)習(xí)過程,使學(xué)生掌握類比、轉(zhuǎn)化等學(xué)習(xí)數(shù)學(xué)的方法,養(yǎng)成既能自主探索,又能合作探究的良好學(xué)習(xí)習(xí)慣。[過程與方法目標(biāo)]
(3) 讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)會(huì)與人相處,感受探索與創(chuàng)造,體驗(yàn)成功的喜悅,[情感、態(tài)度、價(jià)值觀目標(biāo)]
3、教學(xué)的重、難點(diǎn)
重點(diǎn):二次函數(shù)的概念和解析式
難點(diǎn):本節(jié)“合作學(xué)習(xí)”涉及的實(shí)際問題有的較為復(fù)雜,要求學(xué)生有較強(qiáng)的概括能力
4、 學(xué)情分析
、賹W(xué)生已掌握一次函數(shù),反比例函數(shù)的概念,圖象的畫法,以及它們圖象的性質(zhì)。 ②學(xué)生個(gè)性活潑,積極性高,初步具有對(duì)數(shù)學(xué)問題進(jìn)行合作探究的意識(shí)與 能力。
、鄢跞龑W(xué)生程度參差不齊,兩極分化已形成。
二、教法學(xué)法分析
1、教法(關(guān)鍵詞:情境、探究、分層)
基于本節(jié)課內(nèi)容的特點(diǎn)和初三學(xué)生的年齡特征,我以“探究式”體驗(yàn)教學(xué)法和“啟發(fā)式”教學(xué)法 為主進(jìn)行教學(xué)。讓學(xué)生在開放的情境中,在教師的 引導(dǎo)啟發(fā)下,同學(xué)的合作幫助下,通過探究發(fā)現(xiàn),讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成和應(yīng)用過程,加深對(duì)數(shù)學(xué)知識(shí)的理解。教師著眼于引導(dǎo),學(xué)生著眼于探索,側(cè)重于學(xué)生能力的提高、思維的訓(xùn)練。同時(shí)考慮到學(xué)生的個(gè)體差異,在教學(xué)的各個(gè)環(huán)節(jié)中進(jìn)行分層施教。
2、學(xué)法(關(guān)鍵詞:類比、自主、合作)
根據(jù)學(xué)生的思維特點(diǎn)、認(rèn)知水平,遵循“教必須以學(xué)為立足點(diǎn)”的教育理念,讓每一個(gè)學(xué)生自主參與整堂課的知識(shí)構(gòu)建。在各個(gè)環(huán)節(jié)中引導(dǎo)學(xué)生類比遷移,對(duì)照學(xué)習(xí)。以自主探索為主,學(xué)會(huì)合作交流,在師生互動(dòng)、生生互動(dòng)中讓每個(gè)學(xué)生動(dòng)口,動(dòng)手,動(dòng)腦,培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,使學(xué)生由“學(xué)會(huì)”變“會(huì)學(xué)”和“樂學(xué)”。
3、教學(xué)手段
采用多媒體教學(xué),直觀呈現(xiàn)拋物線和諧、對(duì)稱的美,激發(fā)學(xué)生的學(xué)習(xí) 興趣,參與熱情,增大教學(xué)容量,提高教學(xué)效率。
三、教學(xué)過程
完整的數(shù)學(xué)學(xué)習(xí)過程是一個(gè)不斷探索、發(fā)現(xiàn)、驗(yàn)證的過程,根據(jù)新課標(biāo)要求,根據(jù)“以人為本,以學(xué)定教”的教學(xué)理念,結(jié)合學(xué)生實(shí)際,制訂以下教學(xué)流程:
(一).創(chuàng)設(shè)情境 溫故引新
以提問的形式復(fù)習(xí)一元二次方程的一般形式,一次函數(shù),反比例函數(shù)的定義,然后讓學(xué)生欣賞一組優(yōu)美的有關(guān)拋物線的圖案,創(chuàng)設(shè)情境:
(1)你們喜歡打籃球嗎?
(2)你們知道:投籃時(shí),籃球運(yùn)動(dòng)的路線是什么曲線?怎樣計(jì)算籃球達(dá)到最高點(diǎn)時(shí)的高度?
從而引出課題〈〈二次函數(shù)〉〉,導(dǎo)入新課
(二).合作學(xué)習(xí),探索新知
為了更貼近生活,我先設(shè)計(jì)了兩個(gè)和實(shí)際生活有關(guān)的練習(xí)題。鼓勵(lì)學(xué)生積極發(fā)言,充分調(diào)動(dòng)學(xué)生的主動(dòng)性。然后出示課本上的兩個(gè)問題,在這個(gè)環(huán)節(jié)中,我讓學(xué)生在教師的引導(dǎo)下,先獨(dú)立思考,再以小組為單位交流成果,以培養(yǎng)學(xué)生自主探索、合作探究的能力。四個(gè)解析式都列出來后。讓學(xué)生通過觀察與思考,這些解析式有什么共同特征,啟發(fā)學(xué)生用自己的語言總結(jié),從而得出二次函數(shù)的概念,并且提高了學(xué)生的語言表達(dá)能力。
學(xué)生在學(xué)習(xí)二次函數(shù)的概念時(shí)要求學(xué)生既要知道表示二次函數(shù)的解析式中字母的意義,還要能根據(jù)給出的函數(shù)解析式判斷一個(gè)函數(shù)是不是二次函數(shù)
(三)當(dāng)堂訓(xùn)練 鞏固提高
由于學(xué)生層次不一,練習(xí)的設(shè)計(jì)充分考慮到學(xué)生的個(gè)體差異,滿足不同層次學(xué)生的學(xué)習(xí)需求,實(shí)現(xiàn)有“差異的”發(fā)展。讓每一個(gè)學(xué)生都感受成功的喜悅。我設(shè)計(jì)了3道練習(xí)題,其難易程度逐步提高,第一道題面對(duì)所有的學(xué)生,學(xué)生可以根據(jù)二次函數(shù)的概念直接判斷,但需要強(qiáng)調(diào)該化簡(jiǎn)的必須化簡(jiǎn)后才可以判斷。第二道題讓學(xué)生逆向思維,根據(jù)條件自己寫二次函數(shù),從而加深了對(duì)二次函數(shù)概念的理解。最后一道題綜合性較強(qiáng),可以提高他們的綜合素質(zhì)。
(四).小結(jié)歸納 拓展轉(zhuǎn)化
讓學(xué)生用自己的語言談?wù)勛约旱?收獲,可以將這一節(jié)的知識(shí)條理化,進(jìn)一步掌握二次函數(shù)的概念。
(五)布置作業(yè) 學(xué)以致用
作業(yè)分必做題、選做題,體現(xiàn)分層思想,通過作業(yè),內(nèi)化知識(shí),檢驗(yàn)學(xué)生掌握知識(shí)的情況,發(fā)現(xiàn)和彌補(bǔ)教與學(xué)中遺漏與不足。同時(shí),選做題具有總結(jié)性,可引導(dǎo)學(xué)生研究二次函數(shù),一次函數(shù),正比例函數(shù)的聯(lián)系.
四、評(píng)價(jià)分析
本節(jié)課的教學(xué)從學(xué)生已有的認(rèn)知基礎(chǔ)出發(fā),以學(xué)生自主探索、合作交流為主線,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過程,加深對(duì)所學(xué)知識(shí)的理解,從而突破重難點(diǎn)。整節(jié)課注重學(xué)生能力的培養(yǎng)和習(xí)慣的養(yǎng)成。由于學(xué)生的層次不一,我全程關(guān)注每一個(gè)學(xué)生的學(xué)習(xí)狀態(tài),進(jìn)行分層施教,因勢(shì)利導(dǎo),隨機(jī)應(yīng)變,適時(shí)調(diào)整教學(xué)環(huán)節(jié),實(shí)現(xiàn)評(píng)價(jià)主體和形式的多樣化,把握評(píng)價(jià)的時(shí)機(jī)與尺度,激發(fā)學(xué)生的學(xué)習(xí)興趣,激活課堂氣氛,使課堂教學(xué)達(dá)到最佳狀態(tài)。
五、教學(xué)反思
1.本節(jié)課通過學(xué)生合作交流,自己列出不同問題中的解析式,并通過觀察他們的共同特征,成功得出了二次函數(shù)的概念。
2.本節(jié)課設(shè)計(jì)的以問題為主線,培養(yǎng)學(xué)生有條理思考問題的習(xí)慣和歸納概括能力,并重視培養(yǎng)學(xué)生的語言表達(dá)能力。同時(shí)不斷激發(fā)學(xué)生的探索精神,提高了學(xué)生分析和解決問題的能力。使學(xué)生有成功體驗(yàn)。
【《二次函數(shù)的應(yīng)用》教案】相關(guān)文章:
《二次函數(shù)的應(yīng)用》教學(xué)反思10-11
二次函數(shù)應(yīng)用的教學(xué)反思(通用16篇)06-29
關(guān)于IRR函數(shù)及應(yīng)用教案分析09-23
《二次函數(shù)的應(yīng)用》九年級(jí)上冊(cè)導(dǎo)學(xué)案08-23
建立二次函數(shù)模型數(shù)學(xué)教案10-16
《二次函數(shù)復(fù)習(xí)》教學(xué)反思08-02