1. <rp id="zsypk"></rp>

      2. 弦切角的教案設(shè)計(jì)

        時(shí)間:2021-07-04 13:40:19 教案 我要投稿

        弦切角的教案設(shè)計(jì)

          1、教材分析

        弦切角的教案設(shè)計(jì)

          (1)知識(shí)結(jié)構(gòu)

          (2)重點(diǎn)、難點(diǎn)分析

          重點(diǎn):定理是本節(jié)的重點(diǎn)也是本章的重點(diǎn)內(nèi)容之一,它在證明角相等、線段相等、線段成比例等問(wèn)題時(shí),有重要的作用;它與圓心角和圓周角以及直線形角的性質(zhì)構(gòu)成了完美的角的體系,屬于工具知識(shí)之一.

          難點(diǎn):定理的證明.因?yàn)樵谧C明過(guò)程中包含了由“一般到特殊”的數(shù)學(xué)思想方法和完全歸納法的數(shù)學(xué)思想,雖然在圓周角定理的證明中應(yīng)用過(guò),但對(duì)學(xué)生來(lái)說(shuō)是生疏的,因此它是教學(xué)中的難點(diǎn).

          2、教學(xué)建議

          (1)教師在教學(xué)過(guò)程中,主要是設(shè)置學(xué)習(xí)情境,組織或引導(dǎo)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、研究問(wèn)題和歸納結(jié)論,應(yīng)用知識(shí)培養(yǎng)學(xué)生的數(shù)學(xué)能力;在學(xué)生主體參與的學(xué)習(xí)過(guò)程中,讓學(xué)生學(xué)會(huì)學(xué)習(xí),并獲得新知識(shí);

          (2)學(xué)習(xí)時(shí)應(yīng)注意:(Ⅰ)的識(shí)別由三要素構(gòu)成:①頂點(diǎn)為切點(diǎn),②一邊為切線,③一邊為過(guò)切點(diǎn)的弦;(Ⅱ)在使用定理時(shí),首先要根據(jù)圖形準(zhǔn)確找到和它們所夾弧上的圓周角;(Ⅲ)要注意定理的證明,體現(xiàn)了從特殊到一般的證明思路.

          教學(xué)目標(biāo):

          1、理解的概念;

          2、掌握定理及推論,并會(huì)運(yùn)用它們解決有關(guān)問(wèn)題;

          3、進(jìn)一步理解化歸和分類討論的數(shù)學(xué)思想方法以及完全歸納的證明方法.

          教學(xué)重點(diǎn):定理及其應(yīng)用是重點(diǎn).

          教學(xué)難點(diǎn):定理的證明是難點(diǎn).

          教學(xué)活動(dòng)設(shè)計(jì):

          (一)創(chuàng)設(shè)情境,以舊探新

          1、復(fù)習(xí):什么樣的角是圓周角?

          2、的概念:

          電腦顯示:圓周角∠CAB,讓射線AC繞點(diǎn)A旋轉(zhuǎn),產(chǎn)生無(wú)數(shù)個(gè)圓周角,當(dāng)AC繞點(diǎn)A旋轉(zhuǎn)至與圓相切時(shí),得∠BAE.

          引導(dǎo)學(xué)生共同觀察、分析∠BAE的特點(diǎn):

          (1)頂點(diǎn)在圓周上;(2)一邊與圓相交;(3)一邊與圓相切.

          的定義:

          頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做。

          3、用反例圖形剖析定義,揭示概念本質(zhì)屬性:

          判斷下列各圖形中的角是不是,并說(shuō)明理由:

          以下各圖中的角都不是.

          圖(1)中,缺少“頂點(diǎn)在圓上”的條件;

          圖(2)中,缺少“一邊和圓相交”的條件;

          圖(3)中,缺少“一邊和圓相切”的條件;

          圖(4)中,缺少“頂點(diǎn)在圓上”和“一邊和圓相切”兩個(gè)條件.

          通過(guò)以上分析,使全體學(xué)生明確:定義中的三個(gè)條件缺一不可。

          (二)觀察、猜想

          1、觀察:(電腦動(dòng)畫(huà),使C點(diǎn)變動(dòng))

          觀察∠P與∠BAC的關(guān)系.

          2、猜想:∠P=∠BAC

          (三)類比聯(lián)想、論證

          1、首先讓學(xué)生回憶聯(lián)想:

          (1)圓周角定理的證明采用了什么方法?

          (2)既然可由圓周角演變而來(lái),那么上述猜想是否可用類似的方法來(lái)證明呢?

          2、分類:教師引導(dǎo)學(xué)生觀察圖形,當(dāng)固定切線,讓過(guò)切點(diǎn)的弦運(yùn)動(dòng),可發(fā)現(xiàn)一個(gè)圓的有無(wú)數(shù)個(gè).

          如圖.由此發(fā)現(xiàn),可分為三類:

          (1)圓心在角的外部;

          (2)圓心在角的一邊上;

          (3)圓心在角的內(nèi)部.

          3、遷移圓周角定理的證明方法

          先證明了特殊情況,在考慮圓心在的外部和內(nèi)部?jī)煞N情況.

          組織學(xué)生討論:怎樣將一般情況的證明轉(zhuǎn)化為特殊情況.

          如圖(1),圓心O在∠CAB外,作⊙O的直徑AQ,連結(jié)PQ,則∠BAC=∠BAQ-∠l=∠APQ-∠2=∠APC.

          如圖(2),圓心O在∠CAB內(nèi),作⊙O的直徑AQ.連結(jié)PQ,則∠BAC=∠QAB十∠1=∠QPA十∠2=∠APC,

          (在此基礎(chǔ)上,給出證明,寫(xiě)出完整的證明過(guò)程)

          回顧證明方法:將情形圖都化歸至情形圖1,利用角的合成、對(duì)三種情況進(jìn)行完全歸納、從而證明了上述猜想是正確的,得:

          定理:等于它所夾的弧對(duì)的圓周角.

          4.深化結(jié)論.

          練習(xí)1直線AB和圓相切于點(diǎn)P,PC,PD為弦,指出圖中所有的以及它們所夾的弧.

          練習(xí)2如圖,DE切⊙O于A,AB,AC是⊙O的弦,若=,那么∠DAB和∠EAC是否相等?為什么?

          分析:由于和分別是兩個(gè)∠OAB和∠EAC所夾的弧.而=.連結(jié)B,C,易證∠B=∠C.于是得到∠DAB=∠EAC.

          由此得出:

          推論:若兩所夾的`弧相等,則這兩個(gè)也相等.

          (四)應(yīng)用

          例1如圖,已知AB是⊙O的直徑,AC是弦,直線CE和⊙O切于點(diǎn)C,AD⊥CE,垂足為D

          求證:AC平分∠BAD.

          思路一:要證∠BAC=∠CAD,可證這兩角所在的直角三角形相似,于是連結(jié)BC,得Rt△ACB,只需證∠ACD=∠B.

          證明:(學(xué)生板書(shū))

          組織學(xué)生積極思考.可否用前邊學(xué)過(guò)的知識(shí)證明此題?由學(xué)生回答,教師小結(jié).

          思路二,連結(jié)OC,由切線性質(zhì),可得OC∥AD,于是有∠l=∠3,又由于∠1=∠2,可證得結(jié)論。

          思路三,過(guò)C作CF⊥AB,交⊙O于P,連結(jié)AF.由垂徑定理可知∠1=∠3,又根據(jù)定理有∠2=∠1,于是∠2=∠3,進(jìn)而可證明結(jié)論成立.

          練習(xí)題

          1、如圖,AB為⊙O的直徑,直線EF切⊙O于C,若∠BAC=56°,則∠ECA=______度.

          2、AB切⊙O于A點(diǎn),圓周被AC所分成的優(yōu)弧與劣弧之比為3:1,則夾劣弧的∠BAC=________

          3、如圖,經(jīng)過(guò)⊙O上的點(diǎn)T的切線和弦AB的延長(zhǎng)線相交于點(diǎn)C.

          求證:∠ATC=∠TBC.

          (此題為課本的練習(xí)題,證明方法較多,組織學(xué)生討論,歸納證法.)

          (五)歸納小結(jié)

          教師組織學(xué)生歸納:

          (1)這節(jié)課我們主要學(xué)習(xí)的知識(shí);

          (2)在學(xué)習(xí)過(guò)程中應(yīng)用哪些重要的數(shù)學(xué)思想方法?

          (六)作業(yè):教材P13l習(xí)題7.4A組l(2),5,6,7題.

          探究活動(dòng)

          一個(gè)角的頂點(diǎn)在圓上,它的度數(shù)等于它所夾的弧對(duì)的圓周角的度數(shù),試探討該角是否圓周角?若不是,請(qǐng)舉出反例;若是圓周角,請(qǐng)給出證明.

          提示:是圓周角(它是定理的逆命題).分三種情況證明(證明略).

        【弦切角的教案設(shè)計(jì)】相關(guān)文章:

        關(guān)于弦切角的教案設(shè)計(jì)10-12

        弦切角數(shù)學(xué)教案設(shè)計(jì)07-16

        弦切角的數(shù)學(xué)教案08-09

        教案設(shè)計(jì)精選11-16

        《過(guò)秦論》 教案設(shè)計(jì)07-30

        狼教案設(shè)計(jì)07-29

        《林海》教案設(shè)計(jì)12-06

        《水調(diào)歌頭》教案設(shè)計(jì)12-06

        背影教案設(shè)計(jì)07-29

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>