1. <rp id="zsypk"></rp>

      2. 上海高一數(shù)學(xué)教案

        時間:2022-04-20 14:47:10 教案 我要投稿
        • 相關(guān)推薦

        上海高一數(shù)學(xué)教案

          作為一位杰出的老師,常常需要準備教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。來參考自己需要的教案吧!下面是小編為大家收集的上海高一數(shù)學(xué)教案,歡迎閱讀與收藏。

        上海高一數(shù)學(xué)教案

        上海高一數(shù)學(xué)教案1

          教學(xué)目標:

          (1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關(guān)系、集合中元素的三個特性,識記數(shù)學(xué)中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。

          (2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的'概念,舉例剖析集合中元素的三個特性,探討元素與集合的關(guān)系,比較用自然語言、列舉法和描述法表示集合。

          (3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。

          教學(xué)重難點:

          (1)重點:了解集合的含義與表示、集合中元素的特性。

          (2)難點:區(qū)別集合與元素的概念及其相應(yīng)的符號,理解集合與元素的關(guān)系,表示具體的集合時,如何從列舉法與描述法中做出選擇。

          教學(xué)過程:

          【問題1】在初中我們已經(jīng)學(xué)習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?

          [設(shè)計意圖]引出“集合”一詞。

          【問題2】同學(xué)們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。

          [設(shè)計意圖]探討并形成集合的含義。

          【問題3】請同學(xué)們舉出認為是集合的例子。

          [設(shè)計意圖]點評學(xué)生舉出的例子,剖析并強調(diào)集合中元素的三大特性:確定性、互異性、無序性。

          【問題4】同學(xué)們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關(guān)系?

          [設(shè)計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關(guān)系。

          【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實數(shù)根”組成的集

          [設(shè)計意圖]引出并介紹列舉法。

          【問題6】例1的講解。同學(xué)們能用列舉法表示不等式x-7<3的解集嗎?

          【問題7】例2的講解。請同學(xué)們思考課本第6頁的思考題。

          [設(shè)計意圖]幫助學(xué)生在表示具體的集合時,如何從列舉法與描述法中做出選擇。

          【問題8】請同學(xué)們總結(jié)這節(jié)課我們主要學(xué)習了那些內(nèi)容?有什么學(xué)習體會?

          [設(shè)計意圖]學(xué)習小結(jié)。對本節(jié)課所學(xué)知識進行回顧。

          布置作業(yè)。

        上海高一數(shù)學(xué)教案2

          一、教材

          《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點內(nèi)容之一。從知識體系上看,它既是點與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運用運動變化的觀點揭示了知識的發(fā)生過程以及相關(guān)知識間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

          二、學(xué)情

          學(xué)生初中已經(jīng)接觸過直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習過程中掌握了點的坐標、直線的方程、圓的方程以及點到直線的距離公式;掌握利用方程組的方法來求直線的交點;具有用坐標法研究點與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

          三、教學(xué)目標

          (一)知識與技能目標

          能夠準確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點到直線的距離的方法簡單判斷出直線與圓的關(guān)系。

          (二)過程與方法目標

          經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的`判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

          (三)情感態(tài)度價值觀目標

          激發(fā)求知欲和學(xué)習興趣,鍛煉積極探索、發(fā)現(xiàn)新知識、總結(jié)規(guī)律的能力,解題時養(yǎng)成歸納總結(jié)的良好習慣。

          四、教學(xué)重難點

          (一)重點

          用解析法研究直線與圓的位置關(guān)系。

          (二)難點

          體會用解析法解決問題的數(shù)學(xué)思想。

          五、教學(xué)方法

          根據(jù)本節(jié)課教材內(nèi)容的特點,為了更直觀、形象地突出重點,突破難點,借助信息技術(shù)工具,以幾何畫板為平臺,通過圖形的動態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習的方式,這樣可以為不同認知基礎(chǔ)的學(xué)生提供學(xué)習機會,同時有利于發(fā)揮各層次學(xué)生的作用,教師始終堅持啟發(fā)式教學(xué)原則,設(shè)計一系列問題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動。

          六、教學(xué)過程

          (一)導(dǎo)入新課

          教師借助多媒體創(chuàng)設(shè)泰坦尼克號的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問,輪船如何航行能夠避免撞到冰山呢?如何行駛便又會撞到冰山呢?

          教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡圖,即相交、相切、相離。

          設(shè)計意圖:在已有的知識基礎(chǔ)上,提出新的問題,有利于保持學(xué)生知識結(jié)構(gòu)的連續(xù)性,同時開闊視野,激發(fā)學(xué)生的學(xué)習興趣。

          (二)新課教學(xué)——探究新知

          教師提問如何判斷直線與圓的位置關(guān)系,學(xué)生先獨立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個交流討論中,教師既要有對正確認識的贊賞,又要有對錯誤見解的分析及對該學(xué)生的鼓勵。

          判斷方法:

          (1)定義法:看直線與圓公共點個數(shù)

          即研究方程組解的個數(shù),具體做法是聯(lián)立兩個方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

          (2)比較法:圓心到直線的距離d與圓的半徑r做比較,

          (三)合作探究——深化新知

          教師進一步拋出疑問,對比兩種方法,由學(xué)生觀察實踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

          已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

          讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

          當已知了直線與圓的方程之后,圓心坐標和半徑r易得到,問題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點到直線的距離,便可以直接利用點到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點的方法,聯(lián)立直線與圓的方程,組成方程組,通過方程組解得個數(shù)確定直線與圓的交點個數(shù),進一步確定他們的位置關(guān)系。最后明確解題步驟。

          (四)歸納總結(jié)——鞏固新知

          為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

          可由方程組的解的不同情況來判斷:

          當方程組有兩組實數(shù)解時,直線l與圓C相交;

          當方程組有一組實數(shù)解時,直線l與圓C相切;

          當方程組沒有實數(shù)解時,直線l與圓C相離。

          活動:我將抽取兩位同學(xué)在黑板上扮演,并在巡視過程中對部分學(xué)生加以指導(dǎo)。最后對黑板上的兩名學(xué)生的解題過程加以分析完善。通過對基礎(chǔ)題的練習,鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個學(xué)生獲得后續(xù)學(xué)習的信心。

          (五)小結(jié)作業(yè)

          在小結(jié)環(huán)節(jié),我會以口頭提問的方式:

          (1)這節(jié)課學(xué)習的主要內(nèi)容是什么?

          (2)在數(shù)學(xué)問題的解決過程中運用了哪些數(shù)學(xué)思想?

          設(shè)計意圖:啟發(fā)式的課堂小結(jié)方式能讓學(xué)生主動回顧本節(jié)課所學(xué)的知識點。也促使學(xué)生對知識網(wǎng)絡(luò)進行主動建構(gòu)。

          作業(yè):在學(xué)生回顧本堂學(xué)習內(nèi)容明確兩種解題思路后,教師讓學(xué)生對比兩種解法,那種更簡捷,明確本節(jié)課主要用比較d與r的關(guān)系來解決這類問題,對用方程組解的個數(shù)的判斷方法,要求學(xué)生課外做進一步的探究,下一節(jié)課匯報。

          七、板書設(shè)計

          我的板書本著簡介、直觀、清晰的原則,這就是我的板書設(shè)計。

        上海高一數(shù)學(xué)教案3

          1.教材(教學(xué)內(nèi)容)

          本課時主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時的內(nèi)容具有承前啟后的重要作用:承前是因為可以用函數(shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進一步研究三角函數(shù)的性質(zhì)及圖象特征,并體會三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用.

          2.設(shè)計理念

          本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運動等具周期性規(guī)律運動可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認知結(jié)構(gòu),并運用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習,將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認識結(jié)構(gòu),從而達成教學(xué)目標.

          3.教學(xué)目標

          知識與技能目標:形成并掌握任意角三角函數(shù)的定義,并學(xué)會運用這一定義,解決相關(guān)問題.

          過程與方法目標:體會數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用.

          情感態(tài)度與價值觀目標:引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美.

          4.重點難點

          重點:任意角三角函數(shù)的定義.

          難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透.

          5.學(xué)情分析

          學(xué)生已有的認知結(jié)構(gòu):函數(shù)的概念、平面直角坐標系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念.在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認知結(jié)構(gòu).

          6.教法分析

          “問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動學(xué)生的思維和學(xué)習活動,并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的`思維過程,最后在解決問題的過程中形成新的認知結(jié)構(gòu).這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用.

          7.學(xué)法分析

          本課時先通過“閱讀”學(xué)習法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標.

          8.教學(xué)設(shè)計(過程)

          一、引入

          問題1:我們已經(jīng)學(xué)過了任意角和弧度制,你對“角”這一概念印象最深的是什么?

          問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?

          問題3:當角clip_image002的終邊在繞頂點O轉(zhuǎn)動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數(shù)量?圓周運動的這些量之間的關(guān)系能用一個函數(shù)模型來刻畫嗎?

          二、原有認知結(jié)構(gòu)的改造和重構(gòu)

          問題4:當角clip_image002[1]是銳角時,clip_image004,線段OP的長度clip_image006這幾個量之間有何關(guān)系?

          學(xué)生回答,分析結(jié)論,指出這種關(guān)系就是我們在初中學(xué)習過的銳角三角函數(shù)

          學(xué)生閱讀教材,并思考:

          問題5:銳角三角函數(shù)是我們高中意義上的函數(shù)嗎?如何利用函數(shù)的定義來理解它?

          學(xué)生討論并回答

          三、新概念的形成

          問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數(shù)的定義嗎?

          學(xué)生回答,并閱讀教材,得到任意角三角函數(shù)的定義.并思考:

          問題7:任意角三角函數(shù)的定義符合我們高中所學(xué)的函數(shù)定義嗎?

          展示任意角三角函數(shù)的定義,并指出它是如何刻劃圓周運動的

          并類比函數(shù)的研究方法,得出任意角三角函數(shù)的定義域和值域。

          四、概念的運用

          1.基礎(chǔ)練習

         、倏谒鉩lip_image008的值.

         、诜謩e求clip_image010的值

          小結(jié):ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>