1. <rp id="zsypk"></rp>

      2. 五年級上冊《解簡易方程》教學(xué)反思

        時間:2023-06-19 03:42:21 鐘澄 教學(xué)反思 我要投稿

        人教版五年級上冊《解簡易方程》教學(xué)反思(通用18篇)

          作為一名人民教師,教學(xué)是我們的任務(wù)之一,對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,那么優(yōu)秀的教學(xué)反思是什么樣的呢?以下是小編收集整理的人教版五年級上冊《解簡易方程》教學(xué)反思,希望對大家有所幫助。

        人教版五年級上冊《解簡易方程》教學(xué)反思(通用18篇)

          五年級上冊《解簡易方程》教學(xué)反思 篇1

          新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進(jìn)行了一次新的改革。

          要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個加數(shù)=和-另一個加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個因數(shù)=積÷另一個因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡單的'還是復(fù)雜的方程都可以用這些關(guān)系式去解。

          而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時加上或減去同一個數(shù)等式不變,和等式的兩邊同時乘或除以同一個數(shù)(0除外),等式不變進(jìn)行解方程的新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來也有規(guī)律可循了。于是,我在教學(xué)時充分地利用天平實物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。

          這樣在解簡易方程時學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個數(shù)時,只要在方程的兩邊同時減(或加)同一個數(shù),未知數(shù)乘(或除)一個數(shù)時,只要在方程的兩邊同時除(或乘)同一個數(shù)即可。一般不會出現(xiàn)運算符號弄錯的現(xiàn)象了。

          五年級上冊《解簡易方程》教學(xué)反思 篇2

          長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。通教材的老師也主張用等式的基本性質(zhì)解方程。

          在我的教學(xué)過程中卻出現(xiàn)了這樣的問題,利用等式的基本性質(zhì)解形如x+a=b與x-a=b,ax=b與x÷a=b一類的方程,學(xué)生方法掌握起來比較簡單。但寫起來比較繁瑣。然而遇到a-x=b、a÷x=b的方程時,由于小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運算,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩;但是在教學(xué)過程中我們不可避免地會遇到根據(jù)現(xiàn)實情境從順向思考列出X當(dāng)作減數(shù)、當(dāng)作除數(shù)的'方程,要學(xué)生學(xué)會解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會顯得片面和狹隘。于是,我又要求學(xué)生遇到X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程時,要求學(xué)生會用減法和除法各部分之間的關(guān)系來做。但是,我發(fā)現(xiàn)這讓有些孩子無所適從。我現(xiàn)在感到很困惑,我們到底怎樣做才是合理得呢?懇請各位老師指教。

          五年級上冊《解簡易方程》教學(xué)反思 篇3

          義務(wù)教育小學(xué)階段五年級數(shù)學(xué)上冊第五單元《簡易方程》在解簡易方程呈現(xiàn)五個例題。

          其中例1以X+3=9為例,討論了X加減某一數(shù)的方程解法。教學(xué)重點是運用等式的性質(zhì)1解方程,并引入方程的解與解方程兩個概念。

          為了便于給出解方程全過程的直觀展示,例題中借助三幅天平演示圖,展現(xiàn)了解方程的完整思考過程,這一點值得稱道,對于學(xué)生來說,這樣的圖示剖析,有助于學(xué)生自我探究理解,學(xué)習(xí)解簡易方程,從而學(xué)會解簡易方程的方法。

          但問題來了。在例1當(dāng)中沒有完整的解題過程示范,只有檢驗過程的示范。如上圖所示。而完整的`示范出現(xiàn)在例3,經(jīng)歷了例1運用等式性質(zhì)1解方程,例2利用等式性質(zhì)2解方程,遞進(jìn)至例3完成方程轉(zhuǎn)化解方法(未知數(shù)位于減數(shù)、除數(shù)位置,屬逆向解方程)才有一個完整的解方程的示范。

          從學(xué)習(xí)心理學(xué)來講,學(xué)生在接觸新知識點的第一印象極為重要,第一次學(xué)習(xí)新知,是由不知到知,由不懂到懂而邁出的重要第一步。這一步的踏出對學(xué)生而言異常重要。第一次是新的,大腦對新知的接受是處于興奮狀態(tài),此時的理解記憶刻痕是最深的,無論到的是直,是斜,一旦留下,再想更改那就難上加難。作為老師一定要重視學(xué)生的第一次接觸新知,“課上損失課外補”更是事倍功半。

          學(xué)材的編排著實讓我有點撓頭,明明能夠一目了解,通過閱讀自學(xué)就能搞定的解方程規(guī)范,這樣一個基礎(chǔ)性的知識點,非要放在例3才有完整呈現(xiàn),在實際的課堂教學(xué)中有點不得勁兒,也有些不符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律。

          五年級上冊《解簡易方程》教學(xué)反思 篇4

          人教版五年級上冊《解簡易方程》這個單元中,教材是通過等式的基本性質(zhì)來解方程,這個方法雖然說使得小學(xué)的知識與初中的知識更加的接軌,讓方程的解法更加的簡單。從教材的編排上,整體難度下降,對學(xué)生以后的發(fā)展是有利的。但是教材中故意避開了減數(shù)和除數(shù)為未知數(shù)的方程,如:a-x=b或a÷x=b,要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成如x+b=a或bx=a的方程。這樣的`處理方法,有時也會無法避免地直接和方程思想發(fā)生矛盾。例如“爸爸比小明大28歲,小明Х歲,爸爸40歲!焙芏鄬W(xué)生列出了這樣的方程:40-Х=28,方程列的是沒有任何問題的,但是應(yīng)該怎么解呢?允不允許學(xué)生用四則運算各部分的關(guān)系來解方程?是否該向?qū)W生講解方法?還是讓學(xué)生把此方程改成教材要求的那樣的方程?如果要改成教材要求的方程,那就是在向?qū)W生傳達(dá)這樣的思想:這樣的列法是不被認(rèn)可的,那么以后在學(xué)習(xí)“未知數(shù)是減數(shù)和除數(shù)的方程”時,學(xué)生的思維不就又和現(xiàn)在沖突了嗎?現(xiàn)在學(xué)習(xí)的節(jié)方程中,學(xué)生很容易看見加法就減,看見減法就加,看見乘法就除,看見除法就乘,如把30÷Ⅹ=15的解法教給學(xué)生,能熟練掌握并運用的學(xué)生很少,對大部分學(xué)生來說越教越是糊涂,把本來剛建構(gòu)的解方程方法打破了。如果不安排,那么每次在出現(xiàn)的時故意回避嗎?

          在教學(xué)列方程解加減乘除解決問題第一課時,我是這樣處理的。先出示做一做的題目,這題更接近學(xué)生的實際,學(xué)生也能更好理解數(shù)量關(guān)系。小明今年身高152厘米,比去年長高了8厘米。小明去年身高多少?先讓學(xué)生讀題理解題目中有哪幾個量?引導(dǎo)學(xué)生進(jìn)行概括,去年的身高、今年的身高、相差數(shù)。追問:這三個量之間有怎樣的相等關(guān)系呢?

          去年的身高+長高的8cm=今年的身高

          今年的身高-去年的身高=長高的8cm

          今年的身高-長高的8cm=去年的身高

          你能根據(jù)這三個數(shù)量關(guān)系列出方程嗎?學(xué)生嘗試列方程。幾乎全班學(xué)生都是正確的。

          X+8=152 152-x=8 152-8=x

          追問學(xué)生你對哪個方程有想法?學(xué)生一致認(rèn)為對第三個方程有想法?生1:這個根本沒有必要寫x,因為直接可以計算了。生2:x不寫,就是一個算式,直接可以算了。我肯定到:列算式解決實際問題時,未知數(shù)始終作為一個“解決的目標(biāo)”不參加列式運算,只能用已知數(shù)和運算符號組成算式,所以這樣的x就沒有必要。接著讓學(xué)生解這兩個方程X+8=152 、152-x=8方程。學(xué)生發(fā)現(xiàn)152-x=8解出來的解是不正確的。告訴學(xué)生減數(shù)為未知數(shù)的方程我們小學(xué)階段不作要求,所以你們就無法解答了。接著,我再引導(dǎo)學(xué)生觀察這三個數(shù)量關(guān)系,他們之間有聯(lián)系嗎?其實減法是加法的逆運算,是有加法轉(zhuǎn)變過來。因此,我們在思考數(shù)量關(guān)系時,只要思考加法的數(shù)量關(guān)系,這是順向思維,解題思路更加直截了當(dāng),降低了思考的難度。接著只要把未知數(shù)以一個字母(如x)為代表和已知數(shù)一起參加列式運算x+b=a,體會列方程解決問題的優(yōu)越性。這就是我們今天學(xué)習(xí)的一種新的解決問題的方法——列方程解決問題。

          接著用同樣的教學(xué)方法探究bx=a的解決問題。

          我這樣的教學(xué)不知道是否合理?其實小學(xué)生在學(xué)習(xí)加減法、乘除法時,早就對四則運算之間的關(guān)系有所感知,并積累了比較豐富的感性經(jīng)驗。要不要運用等式的性質(zhì)對學(xué)生再加以概括呢?

          五年級上冊《解簡易方程》教學(xué)反思 篇5

          新課程的改革,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法雖然說讓方程的解法找到了本質(zhì)的東西,但是也讓我感到了許多困惑

          1、從教材的編排上,整體難度下降,有意避開了,形如:45-X=23等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)X前面是減號或除號的'方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強調(diào)學(xué)生不會列出X在后面的方程,我們更頭痛于學(xué)生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受--解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。

          2、 內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可以實際上反而是多了。教師要給他們補充X前面是除號或減號的方程的解法。要教他們列方程時怎么避免X前面是除號或減號的方程的出現(xiàn)等等。

          五年級上冊《解簡易方程》教學(xué)反思 篇6

          在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識,效果較好。

          出示例題2,小組合作學(xué)習(xí),討論:

         、倌闶窃鯓永斫鈭D意的?

         、谀闶侨绾瘟蟹匠痰模

         、勰闶歉鶕(jù)什么解方程的?④怎樣檢驗方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。

          指名回答,說說自己的'分析。你對他的分析有什么要問的嗎?

          教師總結(jié)解題關(guān)鍵。

          教學(xué)例3時,讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。

          最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識?解方程的關(guān)鍵是什么?

          充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計有趣的習(xí)題“幫小兔找家”:4x-12=20 3x=15 x+7=15 2x+3×2=16

          18-2x=2 15÷3+4x=25

          鞏固知識,激發(fā)興趣。

          五年級上冊《解簡易方程》教學(xué)反思 篇7

          《解簡易方程》教學(xué)反思數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來教學(xué)解方程,F(xiàn)將解方程的新舊方法舉例如下:

          老方法:

          x + 4 = 20

          x = 20-4

          依據(jù)運算之間的關(guān)系:一個加數(shù)等于和減另一個加數(shù)。

          新方法:

          x + 4 = 20

          x + 4-4=20-4

          依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。

          改革的原因(摘自教學(xué)參考書):

          新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運算的關(guān)系或乘除運算之間的關(guān)系,這實際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強中小學(xué)數(shù)學(xué)教學(xué)的銜接。

          從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。

          那么,小學(xué)生學(xué)這樣的方法,實際操作中會出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的.教學(xué)過程中真的出現(xiàn)了問題 。

          1.無法解如a-x=b和ax=b此類的方程

          新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結(jié)為等式兩邊同時除以(乘上)a。這就是所謂相比原來方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運算,利用等式的基本性質(zhì)解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因為其本質(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。

          我認(rèn)為為了要運用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實際問題。因為當(dāng)需要列出形如a-x=b或ax=b的方程時,總是要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時更會無法避免地直接和方程思想發(fā)生矛盾。

          如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?

          合理的做法應(yīng)是設(shè)桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因為學(xué)生現(xiàn)在不會解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成5X+0.5=2.53之類的方程。又如:課本第62頁中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學(xué)生根據(jù)爸爸比小明大28歲列出40-Х=28,可是無法求解,所以又轉(zhuǎn)成Х+28=40。

          很明顯,第二個方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問題更加直接自然。為實現(xiàn)這個目標(biāo),很重要的一點,就是列式時應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實上,如果學(xué)生能夠列成5X+0.5=2.53 Х+28=40那就說明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時,用算術(shù)方法即可,哪還有列方程來解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識方程的優(yōu)越性呢?

          我們不難看出,根據(jù)現(xiàn)實情境列方程解決問題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見、很必要的現(xiàn)象。要學(xué)生學(xué)會解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會顯得片面和狹隘。

          2.解方程的書寫過程太繁瑣

          教材要求,在學(xué)生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。

          因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了

          從這兩個方面來看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運用它來解方程,在實際操作中,也存在許多的現(xiàn)實問題。那么,如果說用算術(shù)思路解方程對初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,那我們又如何是好呢?

          五年級上冊《解簡易方程》教學(xué)反思 篇8

          學(xué)生經(jīng)歷由天平上的具體操作抽象為代數(shù)問題的過程,能用等式的性質(zhì)(天平平衡的道理)列出方程,對于解比較簡單的方程,學(xué)生并不陌生。

          比如:x+4=7學(xué)生能夠很快說出x=3,但是就方程的書寫規(guī)范來說,有必要一開始就強化訓(xùn)練,老師規(guī)范的板書,以發(fā)揮首次感知先入為主的強勢效應(yīng),促進(jìn)良好的書寫習(xí)慣的形成。對于稍復(fù)雜的方程要放手讓學(xué)生去試一試,這樣就可以使探究式課堂教學(xué)進(jìn)入一個理想的境界。

          不難看出,學(xué)生經(jīng)歷了把運算符號+看錯成了-,又自行改正的過程,在這一過程中學(xué)生體驗到了緊張、焦急、期待,成功的感覺,這時的數(shù)學(xué)學(xué)習(xí)已進(jìn)入了學(xué)生的'內(nèi)心,并成為學(xué)生生命成長的過程,真正落實了《數(shù)學(xué)課程標(biāo)準(zhǔn)》中在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗,鍛煉克服困難的意志,建立自信心的目標(biāo),在這個思維過程中,學(xué)生獲得了情感體驗和發(fā)現(xiàn)錯誤又自己解決問題的機會。老師以人為本,充分尊重學(xué)生,也體現(xiàn)在耐心的等待,熱切的期待的教學(xué)行為上,老師的教學(xué)行為充滿了人文關(guān)懷的氣息,微笑的臉龐、期待的眼神、鼓勵的話語,無時無刻不使學(xué)生感到這不僅是數(shù)學(xué)學(xué)習(xí)的過程,更是一種生命交往的過程,學(xué)生有了很安全的心理空間,不然,他怎么會對老師說老師,我太緊張了,這是學(xué)生對老師的信任和自己不安的復(fù)雜情緒的表現(xiàn)。反思我們的教學(xué)行為,如果在課堂中多一些耐心和期待,就會有更多的愛灑向更多的學(xué)生,學(xué)生的人生歷程中就會多一份信心,多一份勇氣,多一份靈氣。

          五年級上冊《解簡易方程》教學(xué)反思 篇9

          《解方程》是人教課標(biāo)版小學(xué)數(shù)學(xué)五年級上冊第四單元內(nèi)容,本節(jié)課是在學(xué)生學(xué)習(xí)了用字母表示數(shù)和方程的基礎(chǔ)上進(jìn)行教學(xué)的,新課程的解方程一改以往的由加減乘除各部分之間的關(guān)系的引入方法,運用更能讓學(xué)生明白的天平平衡的原理來引入。解題的基本原理從未改變——等式的基本性質(zhì),即:方程的兩邊同時加上或減去相同的數(shù),除以或乘以同一個不為零的數(shù),方程的兩邊仍相等。

          這節(jié)課內(nèi)容不是新內(nèi)容,但方法卻是新方法,我認(rèn)為設(shè)計教學(xué)時應(yīng)將“方程的解”和“解方程”這兩個概念放到例題1的后面引入,能使學(xué)生對概念理解更充分,印象更深刻。

          教學(xué)中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多種,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當(dāng)于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強調(diào)了一遍,我們的目標(biāo)是求一個x的多少,所以要把多余的3減去,為了不耽誤更多的時間,我沒有繼續(xù)深入探究。接下來教學(xué)例2,同樣我利用天平原理幫助學(xué)生理解,在學(xué)生說出要把天平兩端平均分成3分,得到每份是6的基礎(chǔ)上,我用課件演示了分的過程,讓學(xué)生把演示過程寫出來,從而解出方程。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的`兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。當(dāng)學(xué)生的解題方法得到了教師的肯定,讓學(xué)生明白這種解題方法的優(yōu)缺點。培養(yǎng)學(xué)生的創(chuàng)新能力和自主學(xué)習(xí)的能力讓學(xué)生成為課堂的主體,教師充分發(fā)揮主導(dǎo)作用。

          按理說,只要稍加類推,學(xué)生應(yīng)該能掌握方程的解法。但接下來的練習(xí)卻大大出人意料,除了少數(shù)成績較好的學(xué)生能按照要求完成外,大部分幾乎不會做,甚至動不了筆。問題出在哪里?經(jīng)過認(rèn)真反思總結(jié)如下:

          一是從天平過渡到方程,類推的過程學(xué)生理解不透,天平兩端同時減去3個方塊,就相當(dāng)于方程兩邊同時減去3,這個過程寫下來時,要強調(diào)左右兩邊原來狀態(tài)保持不變,要原樣寫下來,如果這樣的話就不會造成有的學(xué)生不會格式;

          二是對為什么要減去3討論不夠,雖然有學(xué)生回答上來了,我應(yīng)該能覺察出學(xué)生理解有困難,課件和天平能讓學(xué)生懂得方程兩邊要同時減去相同的數(shù),至于為什么這里要減去3卻還似懂非懂,如果當(dāng)時舉例說明也許很有效果,比如:x-3=6,我們該怎么辦呢?學(xué)生通過對比討論,就會發(fā)現(xiàn)我們要求出一個x是多少,就要根據(jù)方程的具體情況,若比x多余的就要減去,不足x的就要補足,這樣效果肯定好些。

          三是備學(xué)生環(huán)節(jié)出現(xiàn)差錯,這部分內(nèi)容應(yīng)該不難,但學(xué)生的現(xiàn)有基礎(chǔ)是確定教學(xué)方法的基礎(chǔ),從教學(xué)效果看,我明顯做的不夠。

          四是教學(xué)內(nèi)容確定不恰當(dāng),本來我是想,上公開課要有一定的容量,就把例1和例2放在一起教學(xué),既有加減,又有乘除的,只教學(xué)加法和乘法的,減法和除法的解法,讓學(xué)生通過遷移類推的方法的解決。由于我班學(xué)生是本期從各個地方轉(zhuǎn)來的,基礎(chǔ)參差不齊,而且整體水平較差,因此安排兩個例題有難度。

          五年級上冊《解簡易方程》教學(xué)反思 篇10

          在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用加減乘除各部分之間的關(guān)系來求出方程中的未知數(shù),而今的人教版教材的設(shè)計打破了傳統(tǒng)的教學(xué)方法,而是借用天平使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣就能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項解方程建立起聯(lián)系。在這節(jié)課的教學(xué)中,我從以下幾個方面入手:

          一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。

          1、在學(xué)習(xí)中,我以天平的平衡來呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來學(xué)生感覺比較抽象,我引導(dǎo)學(xué)生在反復(fù)操作中理解加、減一個數(shù)的目的和依據(jù)。

          我在天平的左側(cè)放5克砝碼,右側(cè)也放5克砝碼。(拋磚引玉)

          2、學(xué)生親自動手反復(fù)不斷的進(jìn)行操作。(學(xué)生動手操作)

          在此基礎(chǔ)上,我再做進(jìn)一步的引導(dǎo)。

          活動是獲取真知的有效途徑,通過以上的活動,學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。

          3、教師:請同學(xué)們都想一想,如果天平兩側(cè)都減去相同的質(zhì)量,天平會出現(xiàn)什么現(xiàn)象?你能列出幾個這樣的方程嗎?(學(xué)生同桌之間通過充分地交流,反饋交流結(jié)果,學(xué)生得知,如果我們把天平作為一個等式(當(dāng)天平平衡時)的話,等式的兩邊都減去同一個數(shù),等式仍然成立。通過引導(dǎo),學(xué)生能完全得出了等式的性質(zhì)。最后我們通過學(xué)生自己的整理和總結(jié),把以上發(fā)現(xiàn)的性質(zhì)合二為一。得出:等式的兩邊都加上(或減去)同一個數(shù),等式仍然成立。

          二、利用等式性質(zhì)解方程——初步感悟它的妙用

          在課堂上學(xué)生對用等式的性質(zhì)來解方程感到很陌生,在他們原有的經(jīng)驗中更喜歡用加減法各部分的關(guān)系來解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識到用等式的性質(zhì)來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來解方程的習(xí)慣。

          在整節(jié)課的教學(xué)中,其實學(xué)生是非常主動的,他們總覺得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對方程都有一種難以割舍的好奇心。

          告訴學(xué)生利用等式的性質(zhì)來解方程熟練以后特別快。同時強調(diào)書寫格式。通過教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡單的方程,但我認(rèn)為利用等式性質(zhì)解方程的方法單一化,內(nèi)容雖少問題很多。其表現(xiàn)在:

          1、從教材的編排上,整體難度下降,有意避開了形如:66—2方程=30等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的.方法來解方程之后,書本不再出現(xiàn)方程在后面的方程題了,學(xué)生在列方程解實際應(yīng)用時,我們并不能刻意地強調(diào)學(xué)生不會列出方程在后面的方程嗎?我們更頭痛于學(xué)生的實際解答能力。在實際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答方程在后面這類方程的解答方法,就是等號二邊同時加上方程,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。

          2、內(nèi)容看似少實際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可實際上反而是多了。教師要給他們補充方程在后面的方程的解法。要教他們列方程時怎么避免方程在后面這樣方程的出現(xiàn)等等。因此,我干脆就又把原來的老方法交給同學(xué)們,以便備用或請他們根據(jù)具體情況選擇適當(dāng)?shù)慕忸}方法。

          3、我個人認(rèn)為:現(xiàn)行教材的某些地方還有待于進(jìn)一步的改進(jìn)與完善。

          五年級上冊《解簡易方程》教學(xué)反思 篇11

          《簡易方程》是五年級上冊第五單元的知識,是學(xué)生在小學(xué)階段第一次系統(tǒng)接觸代數(shù)知識。這一單元學(xué)生掌握的好壞將直接影響到他們初中代數(shù)知識的學(xué)習(xí)。因此,我將其放在十分重要的地位。

          《簡易方程》是五年級上冊第五單元的知識,也是這冊內(nèi)容的重點和難點。本單元的內(nèi)容分為兩節(jié),第一節(jié)的主要內(nèi)容是用字母表示數(shù)、表示運算定律、計算公式和數(shù)量關(guān)系。第二節(jié)的主要內(nèi)容是方程的意義,等式的基本性質(zhì)和解簡易方程,以及列方程解決一些比較簡單的實際問題。很多時候,遇到稍復(fù)雜的題,列算式解決時,解題思路常常迂回曲折,很難理解,而列方程解決實際問題,解題思路往往直截了當(dāng),降低了思維難度,它讓學(xué)生從一個簡單的思路——找相等關(guān)系來解題。所以說,這個單元的知識如何教好,是至關(guān)重要的。

          第一塊,用字母表示數(shù)是學(xué)生學(xué)習(xí)代數(shù)初步知識的起步。在教學(xué)這一部分知識時,要注重學(xué)生對數(shù)量關(guān)系的理解,也就是說要加強學(xué)生用含字母的式子表示數(shù)量的訓(xùn)練。所以,在這里一定要向?qū)W生強調(diào)并反復(fù)練習(xí)用含有字母的式子表示數(shù)量,讓學(xué)生明白以往學(xué)習(xí)的所有數(shù)量關(guān)系在用含有字母的式子表示數(shù)量中都能用到。體會到含有字母的式子的數(shù)量關(guān)系和以前是一樣的,只是現(xiàn)在用符號來代替數(shù)字了。

          第二塊,解方程和列方程解決問題。要根據(jù)等式的`性質(zhì)來解方程,普通方程學(xué)生解起來問題不大,比多比少的方程,學(xué)生錯誤率還是滿多的,我要求學(xué)生圈出多、少關(guān)鍵字,誰和誰比劃出來,寫上誰大誰小。“稍復(fù)雜方程”把“寫關(guān)系式”作為教學(xué)的重點,耐心地引導(dǎo)學(xué)生理解題目的意思,根據(jù)題意寫關(guān)系式,但好幾個同學(xué)接受起來仍有困難,就算寫出了關(guān)系式,仍不會列方程,或是寫的關(guān)系式與列的方程根本是兩碼事。如何用稍復(fù)雜的方程來解決實際問題仍是本單元教學(xué)的薄弱點。

          學(xué)習(xí)是個循序漸進(jìn)的過程,尤其是解方程,所以教學(xué)要慢慢來,不用急,有些孩子慢慢來就會了。

          五年級上冊《解簡易方程》教學(xué)反思 篇12

          在教現(xiàn)行人教版九年制義務(wù)教育小學(xué)數(shù)學(xué)第九冊《簡易方程》時,發(fā)現(xiàn)現(xiàn)行教材與以往版本不同:

          以往的教法是利用“兩個加數(shù)相加,求一個加數(shù)就用和減去另一個加數(shù),即:加數(shù)=和-加數(shù);兩個因數(shù)相乘,求一個因數(shù)就用積除以另一個因數(shù),即:因數(shù)=積÷因數(shù)”;

          現(xiàn)行的教法和初中類似,即:解方程時利用方程兩邊同時加上或減去一個數(shù)或同時乘以或除以一個不為零的數(shù)方程兩邊的值不變,但具體解題中與初中不同的是不提移項與合并同類項,思想方法卻是相同的。

          在教學(xué)中發(fā)現(xiàn)小學(xué)生對這種方法掌握較困難,主要表現(xiàn)在:

          第一,用字母表示數(shù)不好接受,不易理解,也不習(xí)慣;

          第二,用代數(shù)式表示一個得數(shù)或結(jié)果不理解;

          第三,字母與數(shù),字母與字母之間的簡單運算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個數(shù)。

          我們知道算式思維與方程思維是兩種不同的思考方法,在一些復(fù)雜的`問題中用算式很難解出,用方程卻簡單的多,現(xiàn)行小學(xué)教材中有提升方程教學(xué)的意思,旨在培養(yǎng)學(xué)生的思考能力,便于與初中銜接。

          教學(xué)實踐中我們發(fā)現(xiàn)通過練習(xí)學(xué)生還是可以掌握的很好的。

          五年級上冊《解簡易方程》教學(xué)反思 篇13

          現(xiàn)行第九冊數(shù)學(xué)是新課程標(biāo)準(zhǔn)教材實施改革新內(nèi)容,其中的利弊在于:

          1、教改方向有點聚向七年級的教學(xué)方法,意圖是與七年級的教學(xué)接軌,這種設(shè)計本來是一件好事,讓小學(xué)生盡快接受初中一年級(七年級)教學(xué)方法,并為七年級打下良好的學(xué)習(xí)基礎(chǔ)。

          2、課程改革改在五年級第一學(xué)期就有點不夠恰當(dāng)了,因為五年級第一學(xué)期既沒有學(xué)約分,更沒有學(xué)六年級的倒數(shù),這樣使教師教起來非常困難,學(xué)生對這個知識的掌握也十分艱難。如:解方程:20÷2X=10如果用舊知識來解答是非常容易的,是根據(jù)“除數(shù)=被除數(shù)÷商”,就可以求出2X。再根據(jù)“一個因數(shù)=積÷另一個因數(shù)”就可以求出X了。

          而新教材的教法是方程兩邊同時×2X,先把方程左邊的2X消去,而20÷2X×2X從小學(xué)的算理上講,應(yīng)該是從左往右算,(在三至五年級學(xué)混合運算都是這樣要求學(xué)生計算的)這樣就會使學(xué)生在心理上出現(xiàn)矛盾,很難接受這種算法;即使學(xué)生接受了這種算法,方程的右邊出現(xiàn)了10×2X,這時又要在方程的兩邊同時除以10,便得到2=2X,再把2X和2調(diào)換位置,成為2X=2,然后再方程兩邊同時除以2,才求出X=1,這種算法既費時,對成績中等以下的學(xué)生又難理解,就會導(dǎo)致相當(dāng)部分學(xué)生對這部分知識落下,并對今后的學(xué)習(xí)會都產(chǎn)生厭學(xué)情緒,不利于小學(xué)生對知識的掌握,更激發(fā)不起學(xué)生學(xué)習(xí)的積極性。

          3、在稍復(fù)雜的方程的`內(nèi)容安排上也欠妥。在這一內(nèi)容上,學(xué)習(xí)解稍復(fù)雜的方程的方法和列方程解應(yīng)用題同時進(jìn)行,在同一節(jié)課要解決兩個對于小學(xué)生來說都是難點的學(xué)習(xí)內(nèi)容,至于教師是沒問題的,但對學(xué)生來說難度就大了,首先,前面所說的解方程是比較簡單的方程,相當(dāng)部分學(xué)生學(xué)得一塌糊涂,再進(jìn)行學(xué)習(xí)稍復(fù)雜的方程更難掌握。

          其次,正是有稍復(fù)雜的方程解答方法不能完全掌握,在學(xué)生的心理上就有解不開的結(jié),所以對怎樣運用好的方法去進(jìn)行列出解應(yīng)用題的方程,那就更難掌握,因此,有部分學(xué)生把這一知識采用的學(xué)習(xí)方法的放棄,這就不利于學(xué)生的學(xué)習(xí),更不能達(dá)到為七年級打好基礎(chǔ)的目的。

          以上三點是本人在教簡易方程中感受最深的淺見,不知各位同行是否有這種感受,請各位同行多提這新教材好教學(xué)方法,本人樂意接受。謝謝!

          五年級上冊《解簡易方程》教學(xué)反思 篇14

          本課為人教版第四單元教學(xué)內(nèi)容,本教材解方程方法利用了天平平衡的原理,采用了等式的性質(zhì)來教學(xué)解方程。形如x±a=b一類的方程利用等式的基本性質(zhì)一學(xué)生很容易解決,形如ax=b與x÷a=b一類的方程,利用等式的基本性質(zhì)二學(xué)生也很容易解決。但行如a-x=b和a÷x=b此類的方程,學(xué)生就無從下手了,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩。解決問題時當(dāng)需要列出形如a-x=b或a÷x=b的方程時,我就要求學(xué)生根據(jù)實際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的'方程。但我覺得回避這兩類問題不是很好的方法,否則,我們的教學(xué)就會顯得片面和狹隘。如:一共有128人平均分成Х組,每組8人,學(xué)生們都不假思索地列出了128÷x=8,但是利用等式的基本性質(zhì)學(xué)生就不會解,但你也不能說這個方程列錯了呀。

          因此我當(dāng)有學(xué)生列了a-x=b或a÷x=b的方程時,我借機教了利用算術(shù)思路解方程(被減數(shù)=差+減數(shù),被除數(shù)=商xx除數(shù))介紹老板教材的解方程的方法;A(chǔ)好的孩子就容易接受新的方法,而基礎(chǔ)差的孩子就還是無法解答此類問題。

          另外教材要求,在學(xué)生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實際操作中,帶來了書寫上的繁瑣。因為用等式基本性質(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了。

          看來教材利用等式的基本性質(zhì)來解簡易方程也是存在著一些問題,不知各位老師有什么好的方法來解決這些問題呢?請不吝賜教!

          五年級上冊《解簡易方程》教學(xué)反思 篇15

          北京是神圣的,是令人向往的,是孩子們熟悉的,也是遙遠(yuǎn)的、陌生的。北京深厚的歷史文化底蘊和它國際化、現(xiàn)代化的氣息,是缺少生活閱歷,生活在小城市的學(xué)生所難以體會的。課文的第2段介紹的`是北京的古跡——天安門,而3、4段則介紹北京的交通、綠化等比較現(xiàn)代化的東西,在教學(xué)過程中,我便把“朗讀指導(dǎo)”與“美景展示”結(jié)合起來,讓學(xué)生通過課件欣賞美麗的北京的同時,再讀相關(guān)文字,做到“圖文并茂”,使學(xué)生對北京的認(rèn)識由抽象到直觀,由表象到內(nèi)化。這樣就能更好的“讀”,更深透的“悟”。

          遵循語文教學(xué)的原則。從整體—部分—整體。在課前我先播放了一段北京的美景視頻短片,讓學(xué)生整體感知北京的美,然后再以旅游的形式引導(dǎo)學(xué)生逐步去感知天安門、柏油馬路、立交橋和其他的名勝古跡的美,最后讓學(xué)生回顧全文,感受北京的美,從心底發(fā)出贊嘆:北京真美呀!我們愛北京!我們愛祖國的首都!就這樣遵循從整體—部分—再回歸整體的教學(xué)原則,也遵循了低年級學(xué)生對事物認(rèn)識、了解的認(rèn)知規(guī)律。同時也讓學(xué)生對文本的解讀、情感的深化水到渠成。

          五年級上冊《解簡易方程》教學(xué)反思 篇16

          很多時候,我們大人都喜歡用方程來解題,這固然是因為到了中學(xué)大量學(xué)習(xí)了各種各樣的方程,一元一次,一元二次,二元一次等等,但還有一個更重要的原因就是方程對解題思路的解放,列算式解決實際問題時,解題思路常常迂回曲折,而他從根本上讓學(xué)生脫離了繁瑣的思路分析,而列方程解決實際問題,解題思路往往直截了當(dāng),降低了思維難度,它讓學(xué)生從一個簡單的思路——找等量關(guān)系來解題。所以說,這個單元的知識如何教好,從而讓學(xué)生學(xué)好是非常重要的。

          一、用字母表示數(shù)要注意對數(shù)量關(guān)系的理解

          用字母表示數(shù)是學(xué)生學(xué)習(xí)代數(shù)初步知識的起步。在算術(shù)里,人們只對一些具體的、個別的數(shù)量關(guān)系進(jìn)行研究,引入用字母表示數(shù)后,就可以表達(dá)、研究具有更普遍意義的數(shù)量關(guān)系。可以說,學(xué)習(xí)代數(shù)就是從學(xué)習(xí)用字母表示數(shù)開始的。

          對小學(xué)生來說,從具體事物的個數(shù)抽象出數(shù)是認(rèn)識上的一個飛躍,而由具體的、確定的數(shù)過渡到用字母表示抽象的、可變的數(shù),更是認(rèn)識上的一個飛躍。而且,在用字母表示未知數(shù)的基礎(chǔ)上,使學(xué)生解決實際問題的數(shù)學(xué)工具,從列出算式解發(fā)展到列出方程解,這又是數(shù)學(xué)思想方法認(rèn)識上的一次飛躍,它將使學(xué)生運用數(shù)學(xué)知識解決實際問題能力提高到一個新的水平。而在老師們的教學(xué)實踐中,由于在進(jìn)行用方程解題時格式非常重要,因此往往老師們教學(xué)時都會特別強調(diào)格式?墒菑膶W(xué)生的后續(xù)學(xué)習(xí)來看,我慢慢發(fā)現(xiàn),其實在教學(xué)這一部分知識時,老師要注重學(xué)生對數(shù)量關(guān)系的理解,也就是說要加強對學(xué)生的用含字母的式子表示數(shù)量的訓(xùn)練,也就是寫代數(shù)式的訓(xùn)練。因為這是列方程的基礎(chǔ)。所以,在這里教師一定要向?qū)W生強調(diào)并反復(fù)練習(xí)用含有字母的式子表示數(shù)量,讓學(xué)生明白以往學(xué)習(xí)的所有數(shù)量關(guān)系在用含有字母的式子表示數(shù)量中都能用到。如:原來有100元,用掉X元,一樣的要用減法求還剩下多少錢,買了3個練習(xí)本,每個A元,一樣的用乘法來求一共要多少錢。讓學(xué)生在這樣的大量的練習(xí)和強化中,知道含有字母的式子的數(shù)量關(guān)系和以前是一樣的,只是現(xiàn)在所用的符號不一樣,其實,從廣義上來講,字母是一種符號,數(shù)字也是一種符號。

          二、注重方程的意義的教學(xué)。

          方程是什么,教材中是這樣說的,含有未知數(shù)的等式叫做方程。其實,這只是從方程的表現(xiàn)形式來給方程下定義。也就是說,從表象上來說,如果一個式子是一個等式,并且含有未知數(shù),我們就說這個式子是方程。但是,從數(shù)學(xué)的本質(zhì)上來說,方程的意義是什么呢?我們每個人都能夠熟練地列方程解決問題,那么,在你列方程解決問題時,你每次抓住的核心是什么呢?是等量關(guān)系。所以,方程最本質(zhì)的教學(xué)意義應(yīng)是同一個量(或相等的量)用不同的形式去表達(dá)。但很多時候,老師們在教學(xué)方程的意義時,往往只研究了方程的表面形式,也就是書上所說的:含有未知數(shù)的等式叫方程,所以,老師們一般都是從等式入手,讓學(xué)生在認(rèn)識等式的基礎(chǔ)上引入未知數(shù),然后告訴學(xué)生,象這樣的含有未知數(shù)的等式叫方程。這樣一節(jié)課教下來,學(xué)生除了會判斷一個關(guān)系式是不是方程,還知道了什么呢?這樣的學(xué)習(xí)對于后面的列方程解決問題真的有幫助嗎?我想,每個人靜下心來想想,應(yīng)該都會有答案。

          三、解方程的'教學(xué)時不要被以前的教材編排所影響。

          新教材對于解方程的安排是變動非常大的。以前我們是根據(jù)四則運算各部分之間的關(guān)系來解方程。一開始時,還不和學(xué)生說解方程,叫求未知數(shù)X。而現(xiàn)在的教材編排時是根據(jù)等式的性質(zhì)來解,當(dāng)然,在教材上并沒有歸納出等式的性質(zhì),畢竟,在學(xué)生的小學(xué)階段,只要讓學(xué)生明白,在等式的兩邊同時加、減、乘和除以同一個數(shù),等式仍然成立,這并不是完整意義上的等式的性質(zhì)。從學(xué)生的學(xué)習(xí)上來看,我覺得學(xué)生是比較容易接受這種方法的,特別是比較簡單的方程,學(xué)生只要明白了要把誰抵消,怎么抵消,基本上問題不大。不過,到了稍微復(fù)雜的方程出現(xiàn)了一些問題,這也許是我在教學(xué)這一部分內(nèi)容時,因為總是考慮到學(xué)生不喜歡列方程(以往的學(xué)生都有這個問題,可能就是覺得方程的格式繁瑣,好像步驟也不少,學(xué)生總不喜歡),所以,我就想怎么讓學(xué)生少寫點字,所以,在具體的書寫格式和步驟上,和教材稍微有點不同,我沒有象教材那樣寫出怎樣應(yīng)用等式的性質(zhì)的那一步,而是讓學(xué)生直接寫出這一步的結(jié)果,以至于到了后面,有部分學(xué)生就出現(xiàn)了一些問題,特別是象5(X+3)=55這樣的方程,學(xué)生掌握得比較差,也可能是學(xué)生在用含有字母的式子表示數(shù)量時,還是沒有很好地建立這樣的一個式子是一個整體,表示一個數(shù)量這樣的概念,盡管也進(jìn)行了一些強調(diào)。另一個方面就是具體的步驟可能也對學(xué)生有影響,所以,我個人認(rèn)為,可能讓學(xué)生按照書上的步驟來寫盡管麻煩一點,但對于學(xué)生理清思路可能更有幫助。

          總的來說,我覺得簡易方程這個單元,只要讓學(xué)生有很好地用字母或含有字母的式子表示數(shù)的基礎(chǔ),再加上對方程的本質(zhì)意義有清晰的理解,知道怎樣解方程,其他的應(yīng)該都不是問題,畢竟,上面的這些都是為列方程解決問題打基礎(chǔ);A(chǔ)打好了,后面的問題就都能能迎刃而解了。

          五年級上冊《解簡易方程》教學(xué)反思 篇17

          本節(jié)教學(xué)由于是復(fù)習(xí)課,課前預(yù)設(shè)學(xué)生的基本知識應(yīng)該比較扎實了,于是在教學(xué)環(huán)節(jié)中注重做到以下幾點:

          1、注重審題習(xí)慣的培養(yǎng)

          在復(fù)習(xí)完內(nèi)容后,讓學(xué)生說說列方程解應(yīng)用題的一般步驟后,提問哪一步驟最重要?(審題)解決問題時使學(xué)生切身體會到審題的重要性。在今后的學(xué)習(xí)中養(yǎng)成仔細(xì)審題的好習(xí)慣。

          2、注重突出學(xué)生的主體地位

          由于是復(fù)習(xí)課,知識點學(xué)生基本已經(jīng)掌握好了。于是在講解每一題時,都先讓學(xué)生自己獨立嘗試解決,然后再指名學(xué)生講解解題方法與自己的想法,把主動權(quán)交給學(xué)生。

          3、注重知識點的比較

          復(fù)習(xí)完列方程解決實際問題后,我又設(shè)計一道,一倍數(shù)已知的問題:進(jìn)一步讓學(xué)生體會在什么情況下才需要列方程來解決實際問題。教會學(xué)生靈活根據(jù)實際情況,選擇正確的方法,我認(rèn)為這才是最重要的。

          4、注重知識的拓展

          由于是復(fù)習(xí)課,在復(fù)習(xí)掌握基本知識點的同時,又要有一點拓展提升,發(fā)展學(xué)生的.思維。所以我設(shè)計了一道“拓展練習(xí)”題,課堂上解決,進(jìn)一步體現(xiàn)用方程解決實際問題的優(yōu)越性。

          5、教學(xué)不足

          課堂氣氛不是很活躍,由于教師的語言缺乏親和力,學(xué)生發(fā)言不是很積極,這一直是我要努力改進(jìn)的地方。

          五年級上冊《解簡易方程》教學(xué)反思 篇18

          開學(xué)兩周了,經(jīng)過開學(xué)后的適應(yīng),教學(xué)工作已經(jīng)逐步進(jìn)入了正常軌道。其實說是適應(yīng),只是我的適應(yīng),孩子們并沒有表現(xiàn)出所謂的"開學(xué)綜合征",開學(xué)近兩周他們都表現(xiàn)得很棒!本來剛開學(xué),擔(dān)心孩子們收不回心來,一直布置很少的一點家庭作業(yè),甚至有時候只是布置預(yù)習(xí)而已。當(dāng)然,這樣做也許也確實讓孩子們能逐漸進(jìn)入學(xué)習(xí)狀態(tài),避免出現(xiàn)開學(xué)倦怠或反感情緒。

          在知識方面,原來擔(dān)心孩子們對方程會有不適應(yīng)或抵制情緒,結(jié)果孩子們都表現(xiàn)不錯。方程解法的繁瑣并沒有讓孩子們感到厭倦,因為雖說解方程書寫步驟較多,但規(guī)律明顯,順向思維不需要過多的思維過程,抓住關(guān)鍵詞列方程就迎刃而解了。最近主要的問題是形如12-X=5或56÷X=14這樣的`方程,用等式的性質(zhì)來解很別扭,而用傳統(tǒng)的方法又怕孩子混淆。其實這個問題教材在設(shè)計時早有考慮,原則上這種類型的方程不做要求,因此課本上并沒有出現(xiàn)這樣的題目。但孩子們在解決問題時自己會列出這樣的方程,只好臨時先提醒孩子盡量避免列出X在減數(shù)或除數(shù)位置上的方程。這樣做的目的并不是要刻意回避這種問題,而是考慮到孩子們對現(xiàn)在的方法還不夠熟練,不宜教給他們另外一種全然不同的解法,這個問題且等孩子們熟練掌握了解方程的方法后再說吧!反正教材是不要求做這種題的。

          還有個問題就是在解決問題時,算術(shù)方法與列方程的選擇。最近一直在學(xué)習(xí)列方程解應(yīng)用題,所以孩子們想當(dāng)然地每道題都列方程解答。教材上雖然有一道題目是指導(dǎo)孩子體驗理解用算術(shù)方法與方程方法解決問題的區(qū)別,能直接套用公式或順向思維列式的就直接用算術(shù)方法解決比較簡捷,用逆向思維考慮的問題可以用方程解決比較簡捷?赡苁怯捎诔鯇W(xué),或者因為沒有養(yǎng)成認(rèn)真分析數(shù)量關(guān)系的習(xí)慣,孩子們在這方面還比較困惑,需要在以后的教學(xué)中指導(dǎo)孩子們逐步理解和掌握。慢慢來,不要急。

        【五年級上冊《解簡易方程》教學(xué)反思】相關(guān)文章:

        解簡易方程教學(xué)反思12-13

        《解簡易方程》教學(xué)與反思08-15

        《解簡易方程》教學(xué)反思08-18

        解簡易方程教學(xué)反思12-13

        數(shù)學(xué)解簡易方程教學(xué)反思12-24

        數(shù)學(xué)解簡易方程教學(xué)反思12-24

        《解簡易方程》教學(xué)反思10篇09-02

        解簡易方程教學(xué)反思13篇04-07

        《解簡易方程》教學(xué)反思14篇03-10

        解簡易方程教學(xué)反思15篇12-13

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>