1. <rp id="zsypk"></rp>

      2. 《最大公因數(shù)》教學(xué)反思

        時間:2024-06-08 10:12:08 夏杰 教學(xué)反思 我要投稿

        《最大公因數(shù)》教學(xué)反思(精選19篇)

          在充滿活力,日益開放的今天,課堂教學(xué)是我們的任務(wù)之一,反思過往之事,活在當(dāng)下之時。怎樣寫反思才更能起到其作用呢?下面是小編收集整理的《最大公因數(shù)》教學(xué)反思(精選19篇),歡迎閱讀與收藏。

        《最大公因數(shù)》教學(xué)反思(精選19篇)

          《最大公因數(shù)》教學(xué)反思 1

          本節(jié)課的教學(xué)內(nèi)容是求兩個數(shù)的公因數(shù)和兩個數(shù)的最大公因數(shù)的第二課時。教學(xué)目標(biāo)是進(jìn)一步理解兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,比較熟練地求出兩個數(shù)的最大公因數(shù),包括兩種特殊情況。這節(jié)課上的非常順利,課堂氣氛活躍,師生互動和諧,取得了較好的課堂教學(xué)效果。

          上課的第一環(huán)節(jié),是復(fù)習(xí)兩個數(shù)的公因數(shù)和最大公因數(shù)的意義。在復(fù)習(xí)的過程中,我不是單純地讓學(xué)生復(fù)述兩個數(shù)的公因數(shù)和最大公因數(shù)的意義,而是讓學(xué)生舉例說明。學(xué)生說出了許多組數(shù),找出了它們的公因數(shù)和最大公因數(shù)。在學(xué)生舉例的過程中,對它們的意義有了更深的理解。我擇其四組板書在黑板上:4和5,5和6,5和7,7和9。讓學(xué)生觀察,這四組數(shù)有什么特點(diǎn)。我的本意是讓學(xué)生發(fā)現(xiàn)兩個數(shù)的.最大公因數(shù)的一種特殊情況,即兩個數(shù)的公因數(shù)只有1,那么它們的最大公因數(shù)就是1。 “我發(fā)現(xiàn)兩個數(shù)中只要有一個質(zhì)數(shù),它們的最大公因數(shù)就是1。”這是一個大膽的猜測,雖說是出乎意料,但更使課堂充滿了生機(jī)。我讓學(xué)生判斷他的觀點(diǎn)是否正確。在小組討論的過程中,有學(xué)生提出了質(zhì)疑,“這個觀點(diǎn)不對,比如2和4,2是質(zhì)數(shù),但它倆的最大公因數(shù)不是1。”又有學(xué)生提出3和6,5和10等。我接著又讓學(xué)生觀察,這幾組數(shù)又有什么特點(diǎn)。通過通論觀察,完成了本節(jié)課的另一個教學(xué)任務(wù),發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的另一種特殊情況,即兩個數(shù)是倍數(shù)關(guān)系,那么它們的最大公因數(shù)就是較小的數(shù),學(xué)生發(fā)現(xiàn)了兩個數(shù)的最大公因數(shù)的幾種情況,當(dāng)兩個數(shù)都是質(zhì)數(shù)時,它們的最大公因數(shù)是1;當(dāng)兩個數(shù)是連續(xù)的自然數(shù)時,它們的最大公因數(shù)是1;兩個數(shù)的最大公因數(shù)是1,這兩個數(shù)可以是質(zhì)數(shù),也可以是合數(shù),還可以一個是質(zhì)數(shù),一個是合數(shù),等等。

          《最大公因數(shù)》教學(xué)反思 2

          1、創(chuàng)設(shè)情境引入新知。

          我在教學(xué)時,改變教材中從單調(diào)的計(jì)算引出概念的做法,而是創(chuàng)設(shè)情景,通過生動有趣的畫面,吸引學(xué)生積極思維,其特有的感染力和表現(xiàn)力,能直觀生動地對學(xué)生心理起到催化作用,有效地激發(fā)了學(xué)生探究新知識的興趣,使教與學(xué)始終處于活化狀態(tài)。

          2、合理利用教材。

          “循環(huán)小數(shù)”是學(xué)生較難準(zhǔn)確地掌握和表述的一個概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復(fù)出現(xiàn)”等抽象說法,學(xué)生難以理解。這節(jié)課的內(nèi)容也較多,我打破教材編排順序,將教學(xué)內(nèi)容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計(jì)算400÷75讓學(xué)生計(jì)算發(fā)現(xiàn)商中重復(fù)出現(xiàn)一個相同的數(shù)字,再以王鵬喜歡游泳引出計(jì)算25÷22讓學(xué)生計(jì)算發(fā)現(xiàn)商中有兩個不斷重復(fù)出現(xiàn)的`數(shù)字。從而引導(dǎo)學(xué)生發(fā)現(xiàn)發(fā)現(xiàn)商的特點(diǎn),引出“循環(huán)小數(shù)”。這樣可以將難點(diǎn)分散,各個擊破。

          3、引導(dǎo)學(xué)生探索,讓學(xué)生成為真正的參與者。

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機(jī)會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn)!睌(shù)學(xué)學(xué)習(xí)不應(yīng)是簡單個體接受知識的過程,而是一個主體對自己感興趣的且是現(xiàn)實(shí)的生活性主題的探究與發(fā)展的過程。在新課中,我首先從生活中的現(xiàn)象入手,再引導(dǎo)學(xué)生主動探究數(shù)學(xué)中的問題,通過讓學(xué)生選擇自己感興趣的信息試算、觀察、分析、比較、討論等學(xué)習(xí)方式充分調(diào)動學(xué)生多種感官的參與,給學(xué)生提供自主合作探究的空間,讓學(xué)生全面參與新知的發(fā)生、發(fā)展和形成過程,使學(xué)生真正體驗(yàn)到探究的樂趣和做數(shù)學(xué)的價(jià)值。

          當(dāng)然,在這節(jié)課中也有很多不足之處。如我在教學(xué)中過多地注意預(yù)設(shè),使教學(xué)放不開手腳,環(huán)節(jié)安排趨于飽和,這樣壓縮了學(xué)生思維空間,在今后的教學(xué)中,特別是環(huán)節(jié)預(yù)設(shè)應(yīng)在于精、在于厚實(shí)。

          《最大公因數(shù)》教學(xué)反思 3

          本課是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點(diǎn)的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計(jì)算的`基礎(chǔ)。

          第一節(jié)課,根據(jù)教材是以鋪地磚的生活實(shí)際作為切入點(diǎn),要鋪整分米數(shù)的地磚而且要求要整數(shù)塊,引入了求兩個數(shù)的公因數(shù)的必要性。教材主要的教學(xué)方法是先分別求出兩個數(shù)的因數(shù),并按照從大到小的順序排列出來,從而找出兩個數(shù)的公有因數(shù),稱為這兩個數(shù)的公因數(shù),其中最大的數(shù)就是這兩個數(shù)的最大公因數(shù)。通過例1的教學(xué)后,我引導(dǎo)學(xué)生總結(jié)出求兩數(shù)的公因數(shù)以及最大公因數(shù)的方法。練習(xí)時發(fā)現(xiàn)部分學(xué)生還是容易在找一個數(shù)的因數(shù)的有疏漏,導(dǎo)致求出來的公因數(shù)和最大公因數(shù)出錯。

          第二節(jié)課,我引入了求最大公因數(shù)的另一種方法,分解質(zhì)因數(shù)法,介紹用短除法求兩個數(shù)的最大公因數(shù)。這種方法學(xué)生掌握起來比較容易,但也發(fā)現(xiàn)部分學(xué)生沒有除盡,最后的商不是互質(zhì)數(shù),導(dǎo)致找錯最大公因數(shù)。

          不過相對于第一鐘方法,第二種方法在書寫上更簡便,學(xué)生解題時還是比較容易理解,寫起來也比較簡潔,大部分學(xué)生在求幾個數(shù)的最大公因數(shù)時還會選擇第二種方法。當(dāng)然,我還是鼓勵學(xué)生選擇自己喜歡的方法,關(guān)鍵是能理解,懂應(yīng)用。

          《最大公因數(shù)》教學(xué)反思 4

          學(xué)生的學(xué)習(xí)過程是一種特殊的認(rèn)知過程,必須在積極主動的情況下在自己的逐步思考和探究中達(dá)到解決的目的。

          1、小組討論合作學(xué)習(xí)研究多了,獨(dú)立思考就有所忽視。從數(shù)學(xué)學(xué)習(xí)的本質(zhì)來說,獨(dú)立思考是主流,合作交流應(yīng)在獨(dú)立思考的基礎(chǔ)上進(jìn)行。只有在獨(dú)立思考的前提下,才有交流的可能。因此,在本課設(shè)計(jì)時,求兩數(shù)的最大公約數(shù)。先讓學(xué)生課前獨(dú)立探究方法,在學(xué)生有充分獨(dú)立思考的基礎(chǔ)上再交流評價(jià)。才真正實(shí)現(xiàn)每個學(xué)生潛質(zhì)的開發(fā)和學(xué)生之間真正的差異互補(bǔ)。

          2、獨(dú)特的見解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來的,在教學(xué)中應(yīng)放下架子,蹲下身子來傾聽學(xué)生,相信每個學(xué)生都會有精彩的表現(xiàn)。正如陶行知所說的:“學(xué)生能做許多你不能做的事,也能做許多你認(rèn)為他不能做的事。”不要小看了孩子,要對每位孩子充滿信心,從而使課堂頻頻發(fā)出精彩的光芒。如本課時在開放題的解答過程中,學(xué)生能在一些簡單的嘗試開始,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應(yīng)用獲得的規(guī)律來實(shí)現(xiàn)問題解決的最優(yōu)化,不得不驚奇孩子能力的`巨大。

          3、當(dāng)數(shù)學(xué)問題情境作用于思考者時就有可能展開數(shù)學(xué)思維活動,可以說,問題的設(shè)計(jì)和問題的情境的創(chuàng)設(shè)是促進(jìn)數(shù)學(xué)思考的客觀性因素。讓學(xué)生在問題情境中層層推出數(shù)學(xué)思考“還有沒有其他的方法”“他的方法你認(rèn)為怎樣”“你是怎么想的”鼓勵表揚(yáng)敢于思索的同學(xué),錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學(xué)習(xí)的學(xué)生都是一個發(fā)現(xiàn)、創(chuàng)造的大空間。

          兩個數(shù)的最大公約數(shù)的教學(xué)反思有探究就有發(fā)現(xiàn),有發(fā)現(xiàn)就是學(xué)習(xí)的成功。成功所帶來的喜悅總是進(jìn)一步學(xué)習(xí)的最大動力,自主探究的課堂,為個性不同的學(xué)生的發(fā)展留下了必要的空間,讓他們都有機(jī)會表達(dá)自己的思想,以自己獨(dú)特的方式去學(xué)習(xí)數(shù)學(xué),發(fā)展知識,各自體驗(yàn)到學(xué)習(xí)數(shù)學(xué)的成功感。

          《最大公因數(shù)》教學(xué)反思 5

          教學(xué) 例3時先用邊長6厘米和4厘米的正方形紙片,分別鋪長18厘米、寬12厘米的長方形,教師選擇正方形紙片鋪長方形的活動教學(xué)公因數(shù),是因?yàn)檫@一活動能吸引學(xué)生發(fā)現(xiàn)和提出問題,能引導(dǎo)學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個不同的長方形,面對出現(xiàn)的兩種結(jié)果,會發(fā)現(xiàn)“為什么有時正好鋪滿、有時不能”,“什么時候正好鋪滿、什么時候不能”這些有研究價(jià)值的問題。他們沿著長方形的邊鋪正方形紙片,就會想到正好鋪滿與不能正好鋪滿的原因可能和邊長有關(guān),于是產(chǎn)生進(jìn)一步研究長方形邊長和正方形邊長關(guān)系的愿望。分析長方形的長、寬和正方形邊長之間的關(guān)系,按學(xué)生的認(rèn)知規(guī)律,設(shè)計(jì)成兩個層次: 第一個層次聯(lián)系鋪的過程與結(jié)果,從長方形的長、寬除以正方形的邊長沒有余數(shù)和有余數(shù)的層面上,體會正好鋪滿與不能正好鋪滿的原因。第二個層次根據(jù)邊長6厘米的正方形正好鋪滿長18厘米、寬12厘米的長方形、而邊長4厘米的正方形不能正好鋪滿長18厘米、寬12厘米的長方形的經(jīng)驗(yàn),聯(lián)想邊長幾厘米的正方形還能正好鋪滿長18厘米、寬12厘米的長方形。先找到這些正方形,把它們邊長從小到大排列,知道這樣的正方形的個數(shù)是有限的。再用“既是12的因數(shù),又是18的因數(shù)”概括地描述這些正方形邊長的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認(rèn)識有重要的支持作用。

          反思:突出概念的內(nèi)涵、外延,讓學(xué)生準(zhǔn)確理解概念。

          我用“既是……又是……”的描述,讓學(xué)生理解“公有”的意思。例3先聯(lián)系用邊長1、2、3、6厘米的正方形正好能鋪滿長18厘米、寬12厘米的長方形紙片的現(xiàn)象,從長方形的長、寬分別除以正方形邊長都沒有余數(shù),得出正方形的邊長“既是12的因數(shù),又是18的因數(shù)”,一方面概括了這些正方形邊長的特點(diǎn),另一方面讓學(xué)生體會“既是……又是……”的`意思。然后進(jìn)一步概括 “1、2、3、6既是12的因數(shù),又是18的因數(shù),它們是12和18的公因數(shù)”,形成公因數(shù)的概念。

          由于知識的遷移,學(xué)生很容易想到用集合圖直觀形象地顯示公因數(shù)的含義。第27頁把8的因數(shù)和12的因數(shù)分別寫到兩個集合圈里,這兩個集合圈有一部分重疊,在重疊部分里寫的數(shù)既是8的因數(shù),也是12的因數(shù),是8和12的公因數(shù)。先觀察這個集合圖,再填寫第28頁的集合圖,學(xué)生能進(jìn)一步體會公因數(shù)的含義。概念的外延是指這個概念包括的一切對象。

          運(yùn)用數(shù)學(xué)概念,讓學(xué)生探索找兩個數(shù)的最大公因數(shù)的方法。

          例4教學(xué)求兩個數(shù)的最大公因數(shù),出現(xiàn)了兩種解決問題的方法。學(xué)生有的先分別寫出8和12的因數(shù),再找出它們的公因數(shù)和最大公因數(shù)。有的在8的因數(shù)里找12的因數(shù),這樣操作比較方便,但容易遺漏。我有意引導(dǎo)學(xué)生選擇第一種。練習(xí)五的第3題就是這種方法的應(yīng)用。

          充分利用教育資源,自制課件,協(xié)助教學(xué)。

          限于操作的局部性,我認(rèn)真制作了實(shí)用的課件,讓直觀、清晰的頁面直接輔助我教學(xué),學(xué)生表現(xiàn)積極,課堂氣氛比較活躍,提問、釋疑、解惑,練習(xí)的熱情很高。

          本課設(shè)計(jì)目的是使學(xué)生學(xué)習(xí)公因數(shù)、最大公因數(shù)的意義,并學(xué)會找兩個數(shù)的最大公因數(shù)的方法,從整節(jié)課學(xué)生表現(xiàn)情況和課后作業(yè)反饋來看,學(xué)生對本部分知識知識掌握較好,學(xué)習(xí)積極并具有熱情,就實(shí)效性講很令人滿意。

          《最大公因數(shù)》教學(xué)反思 6

          一、找一個數(shù)的因數(shù)

          要成對找,這在教學(xué)因數(shù)時就是一個難點(diǎn)。

          二、教學(xué)例題3時,應(yīng)先組織學(xué)生大膽猜測:“哪種紙片能正好鋪滿這個長方形?”再讓學(xué)生實(shí)踐驗(yàn)證。

          猜測、驗(yàn)證的過程是學(xué)生進(jìn)行探究活動的必要途徑。在實(shí)踐驗(yàn)證的過程中,我緊扣用邊長x厘米的正方形鋪長方形,能鋪x層,每層鋪x個。并與其中有兩種正方形不能正好鋪滿長方形的情況作比較,組織學(xué)生交流:“怎樣的正方形才能正好鋪滿這個長方形?”由于前面鋪墊充分,學(xué)生很順利地得出了結(jié)論。例題3的教學(xué), “哪種哪種紙片能正好鋪滿這個長方形?”“還有哪些邊長整厘米數(shù)的正方形能正好鋪滿這個長方形?”“任何兩個數(shù)的公因數(shù)個數(shù)都是有限的嗎?”將學(xué)生的思維一步步引向深入,就能激發(fā)學(xué)生自主探究的熱情。

          三、教學(xué)例4時,應(yīng)充分放手讓學(xué)生探索8和12的`公因數(shù)以及最大公因數(shù)。

          交流中,應(yīng)充分肯定學(xué)生的方法,學(xué)生在交流中出現(xiàn)問題時,應(yīng)讓他們自我修正,自我完善。并對四種方法進(jìn)行比較“看哪種方法更便捷”。最大公因數(shù)的概念也要通過練習(xí),讓學(xué)生自己談對最大公因數(shù)的感悟。

          《最大公因數(shù)》教學(xué)反思 7

          日本著名數(shù)學(xué)教育家米山國藏指出:“作為知識的數(shù)學(xué)出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學(xué)的精神,數(shù)學(xué)的思想、研究的方法和著眼點(diǎn)等,這些隨時隨地發(fā)生作用,使他們終身受益!睆倪@個教學(xué)的設(shè)計(jì)中我們可以看到,教學(xué)中不只是讓學(xué)生接受一個概念知識或一種求最大公約數(shù)的方法;不只是注重?cái)?shù)學(xué)形式層面的教學(xué),而是更重視數(shù)學(xué)發(fā)現(xiàn)層面的教學(xué),即讓學(xué)生在經(jīng)歷“數(shù)學(xué)家”解決問題的過程中去理解、去感受一種數(shù)學(xué)的思想和觀念──數(shù)學(xué)化思想。學(xué)生先是感知地板磚中隱含的數(shù)學(xué),會用約數(shù)、倍數(shù)知識解釋簡單的生活現(xiàn)象,進(jìn)而思考并嘗試解決畫廊內(nèi)裝飾畫的設(shè)計(jì),學(xué)生自然會聯(lián)想到地板磚中數(shù)學(xué)知識。但是,從解釋到應(yīng)用設(shè)計(jì),在沒有學(xué)習(xí)公約數(shù)的情況下會存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學(xué)的空間。讓他們在設(shè)計(jì)正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的'數(shù)學(xué)模型。再反思與總結(jié),引導(dǎo)學(xué)生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。

          數(shù)學(xué)化思想觀念是指用數(shù)學(xué)眼光去認(rèn)識和處理周圍事物或數(shù)學(xué)問題,可以培養(yǎng)學(xué)生良好的“用數(shù)學(xué)”意識,使數(shù)學(xué)關(guān)系成為學(xué)生的一種思維模式。而我們的課堂中,大多還是圍繞知識就事論事,沒有從形成學(xué)生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學(xué)思想,去隱含重要的數(shù)學(xué)方法,這樣,學(xué)生學(xué)到的只是知識的堆砌,沒有自主的發(fā)展和對數(shù)學(xué)本質(zhì)的領(lǐng)悟。

          《最大公因數(shù)》教學(xué)反思 8

          本課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行教學(xué),通過找公因數(shù)的過程,讓學(xué)生懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進(jìn)一步引導(dǎo)學(xué)生觀察分析、討論,讓學(xué)生明確找兩個數(shù)公因數(shù)的方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗(yàn)。在此過程中要注意鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的`語言表述自己的發(fā)現(xiàn),但不要?dú)w納成固定的模式讓學(xué)生記憶。對于找公因數(shù)有困難的學(xué)生,教師要從方法上作進(jìn)一步指導(dǎo)!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計(jì)成為學(xué)生探索問題,解決問題的過程,這樣設(shè)計(jì)各個環(huán)節(jié)的教學(xué)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗(yàn)證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮,課堂成了學(xué)習(xí)的天地。

          《最大公因數(shù)》教學(xué)反思 9

          分析基礎(chǔ)知識:本單元是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點(diǎn)的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計(jì)算的基礎(chǔ)。教材分兩段安排教學(xué)內(nèi)容:第一段,認(rèn)識公倍數(shù)、最小公倍數(shù),探索找兩個數(shù)的最小公倍數(shù)的方法;第二段,認(rèn)識公因數(shù)、最大公因數(shù),探索找兩個數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實(shí)踐與綜合應(yīng)用《數(shù)字與信息》。

          一、借助操作活動,經(jīng)歷概念的形成過程。

          以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的操作活動,讓學(xué)生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過程。這樣安排有兩點(diǎn)好處:一是學(xué)生通過操作活動,能體會公倍數(shù)和公因數(shù)的實(shí)際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在這節(jié)課上,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發(fā)現(xiàn)結(jié)果的同時,還引導(dǎo)學(xué)生聯(lián)系除法算式進(jìn)行思考,對直觀操作活動的初步抽象。再把初步發(fā)現(xiàn)的'結(jié)論進(jìn)行類推,發(fā)現(xiàn)用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、3、6這些數(shù)和18、12有什么關(guān)系。這時揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合圖顯示公因數(shù)的意義。實(shí)實(shí)在在讓學(xué)生經(jīng)歷了概念的形成過程,效果較好。

          二、預(yù)設(shè)探究過程,增強(qiáng)學(xué)生主體意識。

          例3中,教師宣布游戲規(guī)則后,放手讓學(xué)生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學(xué)生探究廣闊的平臺,教師拋出問題后,讓學(xué)生獨(dú)立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗(yàn)、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識,也充分體現(xiàn)了教師駕馭教材,調(diào)控學(xué)生的能力。

          三、重視方法和策略的滲透,提高學(xué)生學(xué)習(xí)能力。

          課程標(biāo)準(zhǔn)只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學(xué)用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:

          一是通過列舉出兩個數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對公倍數(shù)和公因數(shù)意義的理解;

          二是學(xué)生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。

          所以在教學(xué)找公倍數(shù)或公因數(shù)時,應(yīng)提倡思考方法多樣化。例4教學(xué)中,學(xué)生得出了三種方法來尋找12和18的公因數(shù)和最大公因數(shù)。(當(dāng)然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優(yōu)化的過程,哪一種方法會更簡單?通過對比,大多數(shù)學(xué)生贊同方法二。通過討論,引導(dǎo)學(xué)生以后解決此類問題時可以多運(yùn)用較好的方法二。在這中間教師注意到了引導(dǎo)、小結(jié)、鼓勵,師生共同得出結(jié)論。

          復(fù)習(xí)題中回顧了四年級知識基礎(chǔ)、列舉法和標(biāo)記法,在例3中,學(xué)生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎(chǔ)。例4中,學(xué)生也知道用列舉法和標(biāo)記法來解決問題。

          特別是用集合圖來表示因數(shù)和公因數(shù)的教學(xué)值得一提。有趣的游戲,預(yù)料中的爭執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學(xué)生如何填更有效,也更不易遺忘。練習(xí)五,第一題在填完集合圖后對公有因數(shù)和獨(dú)有因數(shù)意義的的提升,為下面的學(xué)習(xí)作了伏筆。體會初步的集合思想。

          練一練,并沒有局限于畫畫△、○,找找公因數(shù)和最大公因數(shù),而是進(jìn)一步指導(dǎo)學(xué)生觀察,發(fā)現(xiàn)公因數(shù)都比小的數(shù)小(18和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。

          所以請老師們在平時的教學(xué)中也去分析、思考,把握例題和練習(xí)中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實(shí)這套教材。

          《最大公因數(shù)》教學(xué)反思 10

          一、我認(rèn)為,這節(jié)課的閃光點(diǎn)有以下幾個方面:

          1、在復(fù)習(xí)的過程中,引導(dǎo)學(xué)生復(fù)習(xí)用多種方法找每個數(shù)的因數(shù),豐富學(xué)生解決問題的多樣性。

          2、通過復(fù)習(xí)、發(fā)現(xiàn)、總結(jié),什么是公因數(shù)及最大公因數(shù),在研究的過程中交流、總結(jié)自己的發(fā)現(xiàn)。

          3、通過填寫集合圖,使學(xué)生了解集合的思想,并進(jìn)一步體會公因數(shù)和最大公因數(shù)的關(guān)系。

          4、通過練一練活動,引導(dǎo)學(xué)生獨(dú)立發(fā)現(xiàn)并總結(jié)出:

         。1)倍數(shù)關(guān)系的兩個數(shù),最大的數(shù)就是這兩個數(shù)的最大公因數(shù);

          (2)公因數(shù)只有“1”的兩個數(shù)(互質(zhì)數(shù)),它們的最大公因數(shù)就是這兩個數(shù)的乘積。

          5、在進(jìn)一步的練習(xí)中,在學(xué)生獨(dú)立解決問題的基礎(chǔ)上,讓學(xué)生說出自己的思考方法,進(jìn)行集體交流,相互學(xué)習(xí),豐富學(xué)生解決問題的策略。

          二、這節(jié)課的不足,有以下幾方面:

          1、教學(xué)過程中,缺少對學(xué)生學(xué)習(xí)情況的評價(jià) 特別是鼓勵性的評價(jià)。

          2、教學(xué)思想“由一般到抽象”的.過程體現(xiàn)的不夠明了。

          3、 對于教材的拓展不夠深入。

          三、改進(jìn)措施:

          1、加強(qiáng)和提高對學(xué)生評價(jià)的意識,重視評價(jià)的功能。

          2、在備課時,要清楚把握教學(xué)內(nèi)容的梯度,使教學(xué)思想融入教學(xué)過程之中。

          3、加強(qiáng)對教材的拓展,切實(shí)做到以教材為載體,以教學(xué)內(nèi)容為導(dǎo)向,發(fā)展學(xué)生的數(shù)學(xué)能力。

          《最大公因數(shù)》教學(xué)反思 11

          “公因數(shù)和最大公因數(shù)”是第三單元第三課時的內(nèi)容,在此之前,已經(jīng)學(xué)過了公倍數(shù)和最小公倍數(shù),掌握了公倍數(shù)和最小公倍數(shù)的概念和求法,這節(jié)課的教學(xué)過程與公倍數(shù)的教學(xué)非常相似,吸取了公倍數(shù)教學(xué)時的教訓(xùn),本節(jié)課教學(xué)公因數(shù)概念的時候,我先讓學(xué)生讀題,說清題意,再進(jìn)行操作,這樣以來學(xué)生是帶著問題去操作的,不像公倍數(shù)時部分學(xué)生題目都理解不了就開始動手操作,不能完全達(dá)到本題操作的目的。在教學(xué)求公因數(shù)方法的時候,我也讓學(xué)生與公倍數(shù)求法進(jìn)行了比較,通過比較學(xué)生發(fā)現(xiàn)了公倍數(shù)是無限的,沒有給定范圍時要寫省略號,而公因數(shù)是有限個的,要寫好句號,表示書寫完成;還發(fā)現(xiàn)找公倍數(shù)時是找最小公倍數(shù),而找公因數(shù)是最大公因數(shù);還發(fā)現(xiàn)求公因數(shù)的方法中是先找小數(shù)的因數(shù)再從其中找大數(shù)的因數(shù),而求公倍數(shù)卻是利用大數(shù)翻倍法,找出來的是大數(shù)的'倍數(shù),再從其中找出小數(shù)的倍數(shù)。不僅兩個例題的教學(xué)過程相似,連練習(xí)的設(shè)計(jì)也是相似的,所以學(xué)生在完成練習(xí)的時候,已經(jīng)對練習(xí)的形式較為熟悉,練習(xí)完成的較好。正因?yàn)閮晒?jié)課太相似,所以小部分學(xué)生已經(jīng)有些混淆了,分不清怎么求公倍數(shù),怎么求公因數(shù),這個是在以后教學(xué)中要避免的。

          這節(jié)課的作業(yè)也能反映一些本節(jié)課上的問題,在教學(xué)公倍數(shù)的時候,我沒有強(qiáng)調(diào)集合中元素的互異性,作業(yè)中不少學(xué)生在公倍數(shù)一欄填寫的數(shù)字,同時出現(xiàn)在左右部分的集合中,在這節(jié)課練習(xí)時,我特意強(qiáng)調(diào)了這一點(diǎn),希望學(xué)生們能記住,在完成練習(xí)五的時候還發(fā)現(xiàn),部分學(xué)生對于2、3、的倍數(shù)的特征記得不清楚了,所以在判斷是不是它們的倍數(shù)的時候還有一些人用大數(shù)去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學(xué)生回憶2、3、5的倍數(shù)的特征,想必他們會節(jié)省更多的時間。

          《最大公因數(shù)》教學(xué)反思 12

          《兩三位數(shù)除以一位數(shù)》商是兩位數(shù)是在學(xué)生學(xué)習(xí)了商是三位數(shù)和有余數(shù)除法的基礎(chǔ)上進(jìn)行的,它是學(xué)習(xí)除數(shù)是多位數(shù)除法的基礎(chǔ)。因此要在引導(dǎo)學(xué)生解決具體問題的過程中,切實(shí)理解算理,掌握計(jì)算方法。

          1、聯(lián)系舊知,激發(fā)興趣

          本節(jié)課我有意識的在一開始設(shè)計(jì)了搶答環(huán)節(jié),讓學(xué)生判斷大屏幕上幾道題目的商的位數(shù),進(jìn)而發(fā)現(xiàn)不同,激發(fā)興趣,引入本節(jié)課的學(xué)習(xí)。從效果上看,學(xué)生在判斷的過程中比較感興趣,并能初步感受與舊知的聯(lián)系與不同,達(dá)到了預(yù)期的目的。

          2、放手學(xué)生,設(shè)置大問題

          本節(jié)課我在這方面做的不好。在擺小棒理解算理環(huán)節(jié),我領(lǐng)的比較多,學(xué)生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學(xué)生最后也弄明白了該如何分小棒,但學(xué)生的能力沒有得到提高。在于老師的建議下,在重建設(shè)計(jì)中,我會注意放手,設(shè)置大問題。比如:“請同學(xué)們看著大屏幕上的小棒,想一想應(yīng)該怎樣分呢?先自己想一想,然后同桌交流一下。”讓學(xué)生帶著問題思考,在思考中考慮擺小棒的.全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當(dāng)引領(lǐng)點(diǎn)撥,但這和我之前的設(shè)計(jì)感覺就不一樣了,后者更能體現(xiàn)學(xué)生主體地位。在這方面,我今后還應(yīng)提高意識,不斷實(shí)踐。

          3、設(shè)計(jì)新穎的練習(xí)題,增多練習(xí)內(nèi)容。

          計(jì)算教學(xué),單純的讓學(xué)生計(jì)算勢必會使學(xué)生產(chǎn)生厭倦。我聯(lián)系學(xué)生實(shí)際和生活實(shí)際,設(shè)計(jì)出多種多樣的練習(xí)題,比如:計(jì)算之后讓學(xué)生思考問題“想一想:三位數(shù)除以一位數(shù),什么時候商是三位數(shù),什么時候商是兩位數(shù)?”或讓學(xué)生“火眼金睛”辨別對錯,或讓學(xué)生在解決實(shí)際問題中說一說先算什么再算什么,感受解決實(shí)際問題的一般環(huán)節(jié),將思路滲透到日常教學(xué)中,或在最后讓學(xué)生根據(jù)所學(xué)再來一組比賽等,結(jié)合學(xué)生不同的計(jì)算階段提出不同的要求和練習(xí)形式,使單調(diào)枯燥的計(jì)算練習(xí)變得生動有趣,達(dá)到了較好的教學(xué)效果。

          我將以本次講課為契機(jī),在今后的教學(xué)中應(yīng)用本次活動學(xué)到的知識,加以實(shí)踐,不斷提高自身的教學(xué)水平。

          《最大公因數(shù)》教學(xué)反思 13

          “因數(shù)和倍數(shù)”的知識,向來是小學(xué)數(shù)學(xué)教學(xué)的難點(diǎn)!白畲蠊驍(shù)”這節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進(jìn)行的,通過這節(jié)課的學(xué)習(xí),學(xué)生會說出兩個數(shù)的公因數(shù)和最大公因數(shù),會求兩個數(shù)的.最大公因數(shù),并為后面學(xué)習(xí)分?jǐn)?shù)的約分打好基礎(chǔ)。反思這節(jié)課我認(rèn)為有以下幾點(diǎn):

          一、精心設(shè)計(jì)數(shù)學(xué)活動,讓學(xué)生大膽探究。

          1、通過找8和12的因數(shù),引出公因數(shù)的概念。

          教師引導(dǎo)學(xué)生先寫出8和12的因數(shù),再觀察發(fā)現(xiàn)8和12有公有的因數(shù),自然引出了公因數(shù)的概念。然后通過集合圈的形式,直觀呈現(xiàn)什么是公因數(shù),什么又是最大公因數(shù)。促進(jìn)學(xué)生建立”公因數(shù)和最大公因數(shù)”的概念。

          2、通過找18和27的最大公因數(shù),掌握找最大公因數(shù)的方法。

          掌握了公因數(shù)的概念之后,教師放手給予學(xué)生足夠的時間,讓學(xué)生自主探究找最大公因數(shù)的方法。交流反饋時,考慮到中下水平的學(xué)生,教師只匯報(bào)了書本中的三種基本方法,并沒有提到短除法。

          二、思路清晰,環(huán)環(huán)相扣。

          本節(jié)課,教師從認(rèn)識公因數(shù)——理解最大公因數(shù)——探究找最大公因數(shù)的方法——相應(yīng)的練習(xí)鞏固這幾個環(huán)節(jié)入手,每個環(huán)節(jié)都是層層遞進(jìn),環(huán)環(huán)相扣,促進(jìn)了學(xué)生對概念的理解。

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計(jì)成為學(xué)生探索問題,解決問題的過程,各個環(huán)節(jié)的學(xué)習(xí)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗(yàn)證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮。

          《最大公因數(shù)》教學(xué)反思 14

          教材共提供了三種不同的方式求兩個數(shù)的最大公因數(shù),方法一:分別寫出兩個數(shù)的因數(shù),再找最大公因數(shù);方法二:先找出一個數(shù)的所有因數(shù),再看哪些因數(shù)是另一個數(shù)的因數(shù),最后從中找出最大的;方法三:用分解質(zhì)因數(shù)的方法找兩個數(shù)的最大公因數(shù)。我還給學(xué)生補(bǔ)充了用短除法求最大公因數(shù)。這么多方法,教師應(yīng)該向?qū)W生重點(diǎn)推薦哪種呢?教材中補(bǔ)充拓展的.分解質(zhì)因數(shù)方法學(xué)生是否都應(yīng)掌握呢?短除法是否都應(yīng)掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學(xué)中許多學(xué)生暗暗地就選擇了它。方法二與方法三相比,在數(shù)據(jù)偏大且因數(shù)較多時,如果用分解質(zhì)因數(shù)的方法來求最大公因數(shù)不僅正確率高,而且速度也會大幅提高。但是用分解質(zhì)因數(shù)的方法來求最大公因數(shù)對一些學(xué)生來說又有相當(dāng)?shù)碾y度,至于為什么要把兩個數(shù)全部公有的質(zhì)因數(shù)相乘,一些學(xué)生還不太明白。

          在教學(xué)中,我認(rèn)為教師不能僅僅只是介紹,還有必要讓學(xué)生們掌握這種方法技能。用短除法求最大公因數(shù)我感覺比較簡單,學(xué)生好接受,好理解。但是短除法求最大公因數(shù)一直要除到所得的商是互質(zhì)數(shù)時為止。如果用此法,學(xué)生必須首先認(rèn)識“互質(zhì)數(shù)”,并能正確判斷。雖然有關(guān)“互質(zhì)數(shù)”的內(nèi)容教材83頁“你知道嗎”中有所涉及,相應(yīng)知識的考查在練習(xí)十五第6題中也有所體現(xiàn)。至于學(xué)生選用哪種策略找兩個數(shù)的最大公因數(shù),我并不強(qiáng)求。從作業(yè)反饋情況來看,多數(shù)學(xué)生更喜歡方法一,但是我們要提醒學(xué)生養(yǎng)成先觀察數(shù)據(jù)特點(diǎn),然后再動筆的習(xí)慣。如兩個數(shù)正好成倍數(shù)關(guān)系或互質(zhì)數(shù)關(guān)系時,許多學(xué)生仍舊按部就班地采用一般策略來解決,全班只有少數(shù)的學(xué)生能夠根據(jù)“當(dāng)兩個數(shù)成倍數(shù)關(guān)系時,較小數(shù)就是它們的最大公因數(shù)”的規(guī)律快速找到最大公因數(shù)。在這一方面,教師在教學(xué)中要率先垂范,做好榜樣。在鞏固練習(xí)過程中,也應(yīng)加強(qiáng)訓(xùn)練,每次動筆練習(xí)之前補(bǔ)充一個環(huán)節(jié)——觀察與思考。使學(xué)生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。

          這節(jié)課本來想把教材練習(xí)十五的習(xí)題講解完,但是時間不夠用了,只好下節(jié)課再講。

          《最大公因數(shù)》教學(xué)反思 15

          《標(biāo)準(zhǔn)》指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者!边@一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個方面。一是要引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗(yàn)之間的關(guān)聯(lián);二是要提供把學(xué)生置于問題情景之中的機(jī)會;三是要營造一個激勵探索和理解的氣氛,為學(xué)生提供有啟發(fā)性的討論模式;四是要鼓勵學(xué)生表達(dá),并且在加深理解的基礎(chǔ)上,對不同的答案開展討論;五是要引導(dǎo)學(xué)生分享彼此的思想和結(jié)果,并重新審視自己的想法。

          對照《課標(biāo)》的理念,我對《公因數(shù)與最大公因數(shù)》的教學(xué)作了一點(diǎn)嘗試。

          一、引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗(yàn)之間的關(guān)聯(lián)。

          《公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學(xué)習(xí)的一個內(nèi)容。如果我們對本課內(nèi)容作一分析的'話,會發(fā)現(xiàn)這兩部分內(nèi)容無論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處。基于這一認(rèn)識,在課的開始我作了如下的設(shè)計(jì):

          “今天我們學(xué)習(xí)公因數(shù)與最大公因數(shù)。對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”

          學(xué)生已經(jīng)學(xué)過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學(xué)生自由猜測,學(xué)生通過對已有認(rèn)知的檢索,必定會催生出自己的一些想法,從課的實(shí)施情況來看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學(xué)生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設(shè)計(jì)貼近學(xué)生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎(chǔ)。

          二、提供把學(xué)生置于問題情景之中的機(jī)會,營造一個激勵探索和理解的氣氛

          “對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”這一問題的包容性較大,不同的學(xué)生面對這一問題都能說出自己不同的猜測,學(xué)生的差異與個性得到了較好的尊重,真正體現(xiàn)了面向全體的思想。不同學(xué)生在思考這一問題時都有了自己的見解,在相互補(bǔ)充與想互啟發(fā)中生成了本課教學(xué)的內(nèi)容,使學(xué)生充分體會了合作的魅力,構(gòu)建了一個和諧的課堂生活。在這一過程中學(xué)生深深地體會到數(shù)學(xué)知識并不是那么高深莫測、可敬而不可親。數(shù)學(xué)并不可怕,它其實(shí)滋生于原有的知識,植根于生活經(jīng)驗(yàn)之中。這樣的教學(xué)無疑有利于培養(yǎng)學(xué)生的自信心,而自信心的培養(yǎng)不就是教育最有意義而又最根本的內(nèi)容嗎?

          三、讓學(xué)生進(jìn)行獨(dú)立思考和自主探索

          通過學(xué)生的猜測,我把學(xué)生的提出的問題進(jìn)行了整理:

         。1) 什么是公因數(shù)與最大公因數(shù)?

         。2) 怎樣找公因數(shù)與最大公因數(shù)?

         。3) 為什么是最大公因數(shù)而不是最小公因數(shù)?

         。4) 這一部分知識到底有什么作用?

          我先讓學(xué)生獨(dú)立思考?然后組織交流,最后讓學(xué)生自學(xué)課本

          這樣的設(shè)計(jì)對學(xué)生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學(xué)生的主體性。在這一過程中學(xué)生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標(biāo)準(zhǔn)》中倡導(dǎo)給學(xué)生提供探索與交流的時間和空間的應(yīng)有之意吧。

          《最大公因數(shù)》教學(xué)反思 16

          《最大公因數(shù)》這部分內(nèi)容是在學(xué)生掌握了因數(shù)概念的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為學(xué)習(xí)約分做準(zhǔn)備。《最大公因數(shù)》被安排在分?jǐn)?shù)的意義這一單元內(nèi),與以前的老教材有很大的區(qū)別。

          一、借助操作活動,經(jīng)歷數(shù)學(xué)概念的形成過程

          以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)哪些因數(shù)是兩個自然數(shù)公有的,從而去揭示公因數(shù)和最大公因數(shù)的概念。而新教材注意以直觀的操作活動為主,主題圖中出現(xiàn)的是一幅鋪地磚的畫面,從而去創(chuàng)設(shè)給貯藏室地面鋪地磚的情境。

          這樣安排有兩點(diǎn)好處:一是學(xué)生通過操作活動,能體會公倍數(shù)和公因數(shù)的實(shí)際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在這節(jié)課上,讓學(xué)生按要求自主操作,通過小組合作,去鋪格子圖,發(fā)現(xiàn)用邊長1厘米、2厘米、4厘米的正方形正好鋪滿長16厘米,寬12厘米的長方形,但是用邊長3厘米的正方形能把寬12厘米鋪完,但是不能正好鋪完長16厘米,在此基礎(chǔ)上,引導(dǎo)學(xué)生思考正方形的邊長既要是長方形長的因數(shù),也要是寬的因數(shù)。這時揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,通過數(shù)字卡的游戲,借助直觀的集合圖顯示公因數(shù)的意義。實(shí)實(shí)在在讓學(xué)生經(jīng)歷了概念的形成過程,效果較好。

          二、找兩個數(shù)的公因數(shù),提倡思考方法的多樣化。

          以前的教材中安排的是利用短除法找最大公因數(shù),現(xiàn)在的教材則是采用列舉法,所以我在教學(xué)這部分知識時,把重點(diǎn)放在找兩個數(shù)的公因數(shù)的方法上來,鼓勵學(xué)生找最大公因數(shù)方法的多樣化。從教材的'練習(xí)設(shè)計(jì)出發(fā),讓學(xué)生尋找其中的規(guī)律,特殊情況下找兩個數(shù)的最大公因數(shù)是有規(guī)律的:

         。1)當(dāng)兩個數(shù)是倍數(shù)的關(guān)系時,小的數(shù)就是這兩個數(shù)的最大公因數(shù)。

         。2)當(dāng)兩個數(shù)是互質(zhì)數(shù)時,這兩個數(shù)的最大公因數(shù)是1。

          不是特殊的情況時,如教學(xué)“找18和27的最大公因數(shù)”時,學(xué)生運(yùn)用最普遍的方法是分別列舉出18和27的因數(shù),再在因數(shù)中圈出它們的公因數(shù);這時適時引導(dǎo)你還有更簡單的方法嗎?引導(dǎo)學(xué)生去發(fā)現(xiàn)可以在18的因數(shù)中直接圈出27的因數(shù),也可以直接運(yùn)用短除法去發(fā)現(xiàn)。再在學(xué)生感悟、理解的基礎(chǔ)上,進(jìn)行方法的優(yōu)化。一開始的時候,老師們商量還是遵循教材的意圖,既然新教材沒有講到短除法,我們只是介紹,不重點(diǎn)掌握,但是作業(yè)出來后,老師們發(fā)現(xiàn),有的學(xué)生首先連因數(shù)都找不全,既是找全了,也沒有找出最大的公因數(shù),在這種情況下,看來教學(xué)短除法還是非常有必要的!

          三、課后反思:

          這節(jié)數(shù)學(xué)課我的感受很深:

          第一、新教材的優(yōu)勢,有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。例1的引入概念與原教材不同例題前創(chuàng)設(shè)了鋪地磚的問題情境,由實(shí)際生活抽象出概念而不是利用直觀教具和學(xué)具引入概念。這樣處理的好處是便于揭示數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系、有利于學(xué)生理解公因數(shù)、最大公因數(shù)概念的現(xiàn)實(shí)意義、有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。

          第二、相信學(xué)生是最棒的!

          第三、小組學(xué)習(xí)要給學(xué)生充分的交流與研究的時間。

          第四、教師要引導(dǎo)學(xué)生自己去探索、去發(fā)現(xiàn),精心設(shè)計(jì)情境和問題,使學(xué)生充分展開思維活動空間,在問題的發(fā)現(xiàn)過程,方法的總結(jié)過程發(fā)展思維能力。

          《最大公因數(shù)》教學(xué)反思 17

          公因數(shù)與最大公因數(shù)這一課教材設(shè)計(jì)了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學(xué)生在解決實(shí)際問題中探索公因數(shù)的認(rèn)識。因此,在教學(xué)中要重視通過嘗試解決問題讓學(xué)生聯(lián)系已有的知識來引入公因數(shù)的'認(rèn)識。使學(xué)生初步體會學(xué)習(xí)公因數(shù)在解決實(shí)際問題中有著重要作用。

          這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點(diǎn)也都注意到了,但是通過學(xué)生作業(yè)反饋情況來看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進(jìn)去,這一情況在預(yù)設(shè)時我雖然想到了學(xué)生會錯,也在課堂上進(jìn)行了說明,但是少數(shù)學(xué)生還是出現(xiàn)了錯誤。

          用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時,有些學(xué)生運(yùn)用了一些比較獨(dú)特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進(jìn)行對比,體會哪種方法更好,更適合自己,進(jìn)而對自己的算法進(jìn)行優(yōu)化。

          《最大公因數(shù)》教學(xué)反思 18

          《公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1~100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時積累了“密鋪”的活動經(jīng)驗(yàn)開展教學(xué)的。對于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點(diǎn)我認(rèn)為就是對“公”字意義的理解,也就是如何體驗(yàn)這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點(diǎn)、突破教學(xué)難點(diǎn),結(jié)合我們本學(xué)期的教研主題“如何設(shè)計(jì)有效的教學(xué)活動,達(dá)成教學(xué)目標(biāo)”,我主要從以下幾方面入手來嘗試教學(xué):

          一、重視活動體驗(yàn),讓學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程。

          第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗(yàn)證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。

          第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗(yàn)證,在活動體驗(yàn)和交流中進(jìn)一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。

          第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的`正方形呢?學(xué)生繼續(xù)操作驗(yàn)證。這時學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗(yàn),這些活動經(jīng)驗(yàn)可以支撐他們?nèi)ネ评怼⑾胂,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。

          然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細(xì)想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。

          通過創(chuàng)設(shè)以上教學(xué)活動,讓學(xué)生在活動中實(shí)實(shí)在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗(yàn),充分體驗(yàn)公因數(shù)的意義。

          二、借助幾何直觀,增進(jìn)學(xué)生對概念意義的理解。

          通過上面的操作體驗(yàn)和思考認(rèn)知,學(xué)生認(rèn)識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說!币龑(dǎo)學(xué)生進(jìn)一步地思考。這時學(xué)生交流:“‘因數(shù)’是一個數(shù)的,而‘公因數(shù)’是兩個或兩個以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個,而且是‘公因數(shù)’中最大的一個!备鶕(jù)學(xué)生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進(jìn)了學(xué)生對概念意義的理解。

          三、通過實(shí)際問題,溝通數(shù)學(xué)概念與現(xiàn)實(shí)世界的聯(lián)系。

          在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導(dǎo)學(xué)生改編成一個用公因數(shù)來解決的問題,學(xué)生首先想到了

          少需要兩個數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學(xué)生思考的過程,既是在進(jìn)一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實(shí)意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。

          一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實(shí)踐探索中,他們的認(rèn)識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。

          當(dāng)然,仔細(xì)琢磨,這節(jié)課還有很多可圈可點(diǎn)之處,如:

          1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點(diǎn)。

          2、因?yàn)椴僮鞲兄獣r間較長,在本節(jié)課的第二個知識目標(biāo)——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。

          帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實(shí)踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點(diǎn)與批評!

          《最大公因數(shù)》教學(xué)反思 19

          本課是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點(diǎn)的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進(jìn)一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計(jì)算的基礎(chǔ)。

          第一節(jié)課,根據(jù)教材是以鋪地磚的生活實(shí)際作為切入點(diǎn),要鋪整分米數(shù)的地磚而且要求要整數(shù)塊,引入了求兩個數(shù)的公因數(shù)的必要性。教材主要的教學(xué)方法是先分別求出兩個數(shù)的因數(shù),并按照從大到小的順序排列出來,從而找出兩個數(shù)的公有因數(shù),稱為這兩個數(shù)的公因數(shù),其中最大的數(shù)就是這兩個數(shù)的最大公因數(shù)。通過例1的教學(xué)后,我引導(dǎo)學(xué)生總結(jié)出求兩數(shù)的公因數(shù)以及最大公因數(shù)的方法。練習(xí)時發(fā)現(xiàn)部分學(xué)生還是容易在找一個數(shù)的因數(shù)的`有疏漏,導(dǎo)致求出來的公因數(shù)和最大公因數(shù)出錯。

          第二節(jié)課,我引入了求最大公因數(shù)的另一種方法,分解質(zhì)因數(shù)法,介紹用短除法求兩個數(shù)的最大公因數(shù)。這種方法學(xué)生掌握起來比較容易,但也發(fā)現(xiàn)部分學(xué)生沒有除盡,最后的商不是互質(zhì)數(shù),導(dǎo)致找錯最大公因數(shù)。

          不過相對于第一鐘方法,第二種方法在書寫上更簡便,學(xué)生解題時還是比較容易理解,寫起來也比較簡潔,大部分學(xué)生在求幾個數(shù)的最大公因數(shù)時還會選擇第二種方法。當(dāng)然,我還是鼓勵學(xué)生選擇自己喜歡的方法,關(guān)鍵是能理解,懂應(yīng)用。

        【《最大公因數(shù)》教學(xué)反思】相關(guān)文章:

        最大公因數(shù)教學(xué)反思03-06

        《最大公因數(shù)》教學(xué)反思01-15

        最大公因數(shù)教學(xué)反思03-06

        公因數(shù)和最大公因數(shù)的教學(xué)反思06-19

        《公因數(shù)和最大公因數(shù)》的教學(xué)反思07-16

        《公因數(shù)和最大公因數(shù)》教學(xué)反思范本07-09

        《找最大公因數(shù)》教學(xué)反思03-22

        找最大公因數(shù)的教學(xué)反思03-03

        最大公因數(shù)的教學(xué)反思范文03-13

        《公因數(shù)和最大公因數(shù)》教學(xué)反思(精選9篇)06-17

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>