高二數(shù)學教學工作計劃集合5篇
日子如同白駒過隙,不經(jīng)意間,我們的工作又進入新的階段,為了在工作中有更好的成長,現(xiàn)在就讓我們制定一份計劃,好好地規(guī)劃一下吧。想學習擬定計劃卻不知道該請教誰?以下是小編為大家整理的高二數(shù)學教學工作計劃5篇,希望對大家有所幫助。
高二數(shù)學教學工作計劃 篇1
一、學生基本情況
261班共有學生75人,268班共有學生72人。268班學習數(shù)學的氣氛較濃,但由于高一函數(shù)部分基礎特別差,對高二乃至整個高中的數(shù)學學習有很大的影響,數(shù)學成績尖子生多或少,但若能雜實復習好函數(shù)部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養(yǎng)他們的學習興趣,
二、教學要求
(一)情意目標
(1)經(jīng)過分析問題的方法的教學、經(jīng)過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。
(3)在探究不等式的性質、圓錐曲線的性質,體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
(6)讓學生體驗發(fā)現(xiàn)挫折矛盾頓悟新的發(fā)現(xiàn)這一科學發(fā)現(xiàn)歷程的幻妙多姿
(二)能力要求
1、培養(yǎng)學生記憶能力。
(1)在對不等式的性質、平均不等式及思維方法與邏輯模式的學習中,進一步培養(yǎng)記憶能力。做到記憶準確、持久,用時再現(xiàn)得迅速、正確。
(2)經(jīng)過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數(shù)學本質問題的背景事實及具體數(shù)據(jù)的記憶。
(3)經(jīng)過揭示解析幾何有關概念、公式和圖形直觀值見的對應關系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)經(jīng)過解不等式及不等式組的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)經(jīng)過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)經(jīng)過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結合,另辟蹊徑,提高學生運算能力。
3、培養(yǎng)學生的思維能力。
(1)經(jīng)過含參不等式的求解,培養(yǎng)學生思維的周密性及思維的邏輯性。
(2)經(jīng)過解析幾何與不等式的一題多解、多題一解、經(jīng)過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
(3)經(jīng)過不等式引伸、推廣,培養(yǎng)學生的創(chuàng)造性思維。
(4)加強知識的橫向聯(lián)系,培養(yǎng)學生的數(shù)形結合的能力。
(5)經(jīng)過解析幾何的概念教學,培養(yǎng)學生的正向思維與逆向思維的能力。
(6)經(jīng)過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉化思想方法。
4、培養(yǎng)學生的觀察能力。
(1)在比較鑒別中,提高觀察的準確性和完整性。
(2)經(jīng)過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質及證明不等式的方法,不等式的解法;
2、經(jīng)過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質。
三、教材簡要分析
1、不等式的主要內(nèi)容是:不等式性質、不等式證明、不等式解法。不等式性質是基礎,不等式證明是在其基礎上進行的;不等式的解法是在這一基礎上、依據(jù)不等式的性及同解變形來完成的。不等式在整個高中數(shù)學中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學習圓錐曲線、導數(shù)和微分等知識的的基礎。,是直線方程的一個直接應用。主要內(nèi)容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數(shù)形結合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質,以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并經(jīng)過分析標準方程研究它們的性質。
四、重點與難點
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導,簡單線性規(guī)劃的問題的解法。
3、用坐標法研究幾何問題,求曲線方程的一般方法。
五、教學措施
1、教學中要傳授知識與培育能力相結合,充分調動學生學習的主動性,培育學生的概括能力,是學生掌握數(shù)學基本方法、基本技能。
2、持之以恒與高三聯(lián)系,切實面向高考,以五大數(shù)學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
3、加強教育教學研究,持之以恒學生主體性原則,持之以恒循序漸進原則,持之以恒啟發(fā)性原則。研究并采用以發(fā)現(xiàn)式教學模式為主的教學方法,全面提高教學質量。
4、積極參加與組織集體備課,共同研究,努力提高授課質量
5、持之以恒向同行聽課,取人所長,補己之短。相互研究,共同進步。
6、持之以恒學法研討,加強個別輔導(差生與優(yōu)生),提高全體學生的整體數(shù)學水平,培育尖子學生。 7、加強數(shù)學研究課的教學研究指導,培養(yǎng)學識的動手能力。
六、課時安排
本學期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
4、研究課18課時
高二數(shù)學教學工作計劃 篇2
一、教材依據(jù)
本節(jié)課是湘教版數(shù)學(必修三)第二章《解析幾何初步》第二節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。
二、教材分析
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題——求直線方程問題。在引入,過程中要讓學生弄清直線與方程的一一對應關系,理解研究直線可以從研究方程和方程的特征入手。
在推導直線方程的點斜式時,根據(jù)直線這一結論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。
三、教學目標
知識與技能:(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數(shù)的關系。
過程與方法:在已知直角坐標系內(nèi)確定一條直線的幾何要素——直線上的一點和直線的傾斜角的基礎上,通過師生探討,得出直線的點斜式方程;學生通過對比理解“截距”與“距離”的區(qū)別。
情態(tài)與價值觀:通過讓學生體會直線的斜截式方程與一次函數(shù)的關系,進一步培養(yǎng)學生數(shù)形結合的思想,滲透數(shù)學中普遍存在相互聯(lián)系、相互轉化等觀點,使學生能用聯(lián)系的觀點看問題。
四、教學重點
重點:直線的點斜式方程和斜截式方程。
五、教學難點
難點:直線的點斜式方程和斜截式方程的應用。
要點:運用數(shù)形結合的思想方法,幫助學生分析描述幾何圖形。
六、教學準備
1.教學方法的選擇:啟發(fā)、引導、討論.
創(chuàng)設問題情境,采用啟發(fā)誘導式的教學模式引導學生探索討論,學生主動參與提出問題、探索問題和解決問題的過程,突出以學生為主體的探究性學習活動。
2.通過讓學生觀察、討論、辨析、畫圖,親身實踐,調動多感官去體驗數(shù)學建模的思想;學生要學會用“數(shù)形結合”的方法建立起代數(shù)問題與幾何問題間的密切聯(lián)系。為使學生積極參與課堂學習,我主要指導了以下的學習方法:
①.讓學生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結,自己評析解題對錯,從而提高學生的參與意識和數(shù)學表達能力。
、.分組討論。
七、教學過程
問 題
師生活動
設計意圖
1、在直線坐標系內(nèi)確定一條直線,應知道哪些條件?
學生回顧,并回答。然后教師指出,直線的方程,就是直線上任意一點的坐標 滿足的關系式。
使學生在已有知識和經(jīng)驗的基礎上,探索新知。
2、直線 經(jīng)過點 ,且斜率為 。設點 是直線 上的任意一點,請建立 與 之間的關系。
學生根據(jù)斜率公式,可以得到,當 時, ,即
(1)
教師對基礎薄弱的學生給予關注、引導,使每個學生都能推導出這個方程。
培養(yǎng)學生自主探索的能力,并體會直線的方程,就是直線上任意一點的坐標 滿足的關系式,從而掌握根據(jù)條件求直線方程的方法。
3、(1)過點 ,斜率是 的直線 上的點,其坐標都滿足方程(1)嗎?
學生驗證,教師引導。
使學生了解方程為直線方程必須滿兩個條件。
(2)坐標滿足方程(1)的點都在經(jīng)過 ,斜率為 的直線 上嗎?
學生驗證,教師引導。然后教師指出方程(1)由直線上一定點及其斜率確定,所以叫做直線的點斜式方程,簡稱點斜式.
使學生了解方程為直線方程必須滿兩個條件。
4、直線的點斜式方程能否表示坐標平面上的所有直線呢?
學生分組互相討論,然后說明理由。
使學生理解直線的點斜式方程的適用范圍。
5、(1) 軸所在直線的方程是什么? 軸所在直線的方程是什么?
(2)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
(3)經(jīng)過點 且平行于 軸(即垂直于 軸)的直線方程是什么?
教師學生引導通過畫圖分析,求得問題的解決。
進一步使學生理解直線的.點斜式方程的適用范圍,掌握特殊直線方程的表示形式。
6、例2、例4的教學。
教師引導學生分析要用點斜式求直線方程應已知那些條件?題目那些條件已經(jīng)直接給予,那些條件還有待已去求。在坐標平面內(nèi),要畫一條直線可以怎樣去畫。
學會運用點斜式方程解決問題,清楚用點斜式公式求直線方程必須具備的兩個條件:(1)一個定點;(2)有斜率。同時掌握已知直線方程畫直線的方法。
7、例3的教學。
求經(jīng)過點 ,斜率為 的直線 的方程。
學生獨立求出直線 的方程:
(2)
在此基礎上,教師給出截距的概念,引導學生分析方程(2)由哪兩個條件確定,讓學生理解斜截式方程概念的內(nèi)涵。
引入斜截式方程,讓學生懂得斜截式方程源于點斜式方程,是點斜式方程的一種特殊情形。
8、觀察方程 ,它的形式具有什么特點?
學生討論,教師及時給予評價。
深入理解和掌握斜截式方程的特點?
9、直線 在 軸上的截距是什么?
學生思考回答,教師評價。
使學生理解“截距”與“距離”兩個概念的區(qū)別。
10、你如何從直線方程的角度認識一次函數(shù) ?一次函數(shù)中 和 的幾何意義是什么?你能說出一次函數(shù) 圖象的特點嗎?
學生思考、討論,教師評價、歸納概括。
體會直線的斜截式方程與一次函數(shù)的關系.
11、課堂練習第65頁練習第1,2,3題。
學生獨立完成,教師檢查反饋。
鞏固本節(jié)課所學過的知識。
12、小結
教師引導學生概括:(1)本節(jié)課我們學過那些知識點;(2)直線方程的點斜式、斜截式的形式特點和適用范圍是什么?(3)求一條直線的方程,要知道多少個條件?
使學生對本節(jié)課所學的知識有一個整體性的認識,了解知識的來龍去脈。
13、布置作業(yè):第77頁第5題
學生課后獨立完成。
鞏固深化
八、教學反思
直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。
本節(jié)課的基本題形:
1、已知直線上一點及直線的傾斜角,求直線的方程并作圖;
2、已知直線上兩點,求直線的方程并作圖。教學時應注意讓學生明確直線的傾斜角與斜率的關系,掌握過兩點的直線的斜率公式,訓練學生求直線方程的書寫格式及直線的規(guī)范作圖。
高二數(shù)學教學工作計劃 篇3
一、教學目標要求
1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心, 具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,
二、教材分析
1.選取與內(nèi)容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2.通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3.在教學中強調類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
三、學生情況分析
我班學生對整體來說數(shù)學比較重視,學習數(shù)學的風氣比其他學科要好一些,上課該活躍時能活躍,能討論,該安靜時能安靜。平時訓練題都是有難度的,學生喜歡做難題,鉆研討論很熱烈,但整體來說,成績不穩(wěn)定。
上學期第一次月考平均分跌到年級居中上,我們的差距在填空和選擇,我們上了一周空間向量課,其他班沒上,會考和期末考試同時都要復習考試時,我們堅持兩頭兼顧同時抓,我們落后在基本知識,而且試題難度雖然不高相反中等同學這次的成績倒超過了上面的同學,尤其是很多學生都考出了好成績,。
我是這個班的班主任,所以我關注的不僅僅是數(shù)學課,在課間或者其他時間接觸的過程中發(fā)現(xiàn)我們班有好幾個男同學特別活躍,精力非常充沛,課間經(jīng)常追趕奔跑吵鬧,這樣的學生有利于活躍班級氣氛,但自控能力差,他們都很聰明,但成績都不太理想,如果長期不改正的話,最后不僅影響他們自己的成長,也必將影響到整個班級。
一學期下來,已經(jīng)有了很大改觀,所以我還將更多地關注這類學生,幫助他們糾正不良習慣,將精力集中到學習上來,從而改變整個班級的風貌。
四、提高教學質量的具體措施。
1、認真落實,搞好集體備課。每周至少進行一次集體備課。各組老師根據(jù)自已承擔的任務,提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發(fā)言人,對本周的教材內(nèi)容作分析,然后大家研究討論其中的重點、難點、教學方法等。
2、詳細計劃,保證練習質量。教學中用配備資料,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內(nèi)容滾動式編兩份練習試卷,做后老師要收齊批改,存在的普遍性問題要安排時間講評。
3、抓好課堂,穩(wěn)定數(shù)學優(yōu)生,培養(yǎng)數(shù)學能力興趣。要培育好本班的優(yōu)生,注意激發(fā)學生的學習興趣,隨時注意學生學習方法的指導。
4、加強輔導工作。對已經(jīng)出現(xiàn)數(shù)學學習困難的學生,教師的課余輔導十分重要。教學中,要盡快掌握班上學生的數(shù)學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優(yōu)生,更不能忽視班上的學困生。
五、教學進度表
日期周次節(jié)/周教學內(nèi)容(課時)
3月1日~3月7日15/一元二次不等式(組)與簡單的線性規(guī)劃(5)
8日~14日26/基本不等式(3)測試與講評(3)
15日~21日36/命題及其關系(3),充分條件與必要條件(2),簡單邏輯連接詞(1)
22日~28日/簡單邏輯連接詞(2),全稱量詞與存在量詞(2),復習(2)
29日~4月5日56/曲線與方程(2),橢圓(4)
6日~12日66/橢圓(2),雙曲線(4)
13日~19日76/拋物線(4),復習(2)
20日~26日86/空間向量及其運算(5),立體幾何中的向量方法(1)
27日~5月2日96/立體幾何中的向量方法(4),小結與復習(2)
3日~9日106/期中考試
10日~16日116/段考講評(2),變化率與導數(shù)(4)
17日~23日126/導數(shù)的計算(2)導數(shù)在研究函數(shù)中的應用(4)
24日~30日136/生活中的優(yōu)化問題舉例(4),定積分的概念(2)
6月1日~7日146/定積分的概念(2),微積分基本定理(2)、定積分的簡單應用(2)
8日~14日156/復習與測試(4),合情推理與演繹推理(2)
15日~21日166/合情推理與演繹推理(2)、直接證明與間接證明(4)
22日~28日176/數(shù)學歸納法(3),復習(3)
29日~7月4日186/數(shù)系的擴充和復數(shù)的概念(3)、復數(shù)代數(shù)形式的四則運算(3)
5日~11日196期末復習(6)
12日~13日206期末考試
高二數(shù)學教學工作計劃 篇4
一、教材分析
1.算法章節(jié):
新課標中算法內(nèi)容的引入,是適應信息技術高速發(fā)展的需要,算法體現(xiàn)了通用化、機械化、程序化等特點,在算法教學中的幾點建議如下:
(1)同時走好算法表示的三條路,即自然語言、程序框圖、算法語句.在教學中,可以結合具體的算法實例,分析用自然語言表示算法的步驟,繪制相應算法的程序框圖,并編寫相應框圖的算法程序.注意三條途徑的目的都是體會其中的算法思想.
(2)剖析清楚教材中的幾例典型算法實例.例如解一元二次方程、二元一次方程組,質數(shù)的判定,按大小順序輸出三個數(shù),1~100的累加,二分法求方程近似解,分段函數(shù)的求值等.
(3)學習程序框圖時,先結合一個流程圖的實例,認知基本的程序框及功能,并分析出其中的邏輯結構.各種邏輯結構(順序結構、條件結構、當循環(huán)結構、直到循環(huán)結構)的學習,都應當配合一個具體的例子來逐步分析,特別是循環(huán)結構,要一次次循環(huán)進行分析,讓學生徹底理解框圖的功能,提高邏輯思維能力.
(4)可以根據(jù)實際情況調整教材中框圖的實例.我們在教學中,感覺必修③第5頁的框圖引例的理解有一定難度,從而結合前面所練的自然語言表示的算法,用框圖表示出來,讓學生認知框圖符號與邏輯結構.參考的算法實例如下:
例1任意給定一個正實數(shù),設計一個算法求以這個數(shù)為半徑的圓的面積;(教材P4)
例2任意給定一個正整數(shù)n,試設計一個算法判斷n是否為偶數(shù);(教材P3例1改編)
例3設計一個計算1+2+…+100的值的算法.(教材P9例5提前)
(5)大膽試驗,程序框圖與算法語句同步教學.我們在分析順序結構的框圖時,講授算法語句中的輸入語句INPUT、輸出語句PRINT和賦值語句.在分析條件結構框圖時,講授條件語句,即IF-THEN語句.在分析兩種循環(huán)結構的框圖時,講授兩類循環(huán)語句,即WHILE語句與UNTIL語句.每種類型的語句,都配以相應的程序框圖進行流程分析,強調語句的格式及功能,結合幾個典型實例進行算法分析、框圖設計、程序編寫等,三者的配合訓練,才能更好地加強、鞏固算法知識.
(6)典型算法案例(輾轉相除法與更相減損術、秦久韶算法、進位制)的學習,都必須奠基在其歷史背景之上,講清楚具體的解題步驟,剖析如此解題的原理,在熟練解題的基礎上,再結合框圖或語句,從算法思維的角度進行分析.
2.統(tǒng)計章節(jié):
統(tǒng)計是研究如何收集、整理、分析數(shù)據(jù)的科學.必修③第二章的學習過程,實質就是學習如何逐步解決一個實際問題,我們先認識隨機抽樣的重要性,并掌握隨機抽樣的三種類型,通過科學的抽樣得到樣本,進一步研究如何用樣本的頻率分布去估計總體分布,又如何用樣本的數(shù)字特征估計總體的數(shù)字特征.在樣本數(shù)據(jù)的分析過程中,發(fā)現(xiàn)一些變量之間有一定的規(guī)律,例如兩個變量的線性相關等.
統(tǒng)計部分的教學,我們需遵循以上認知規(guī)律,密切聯(lián)系現(xiàn)實生活來滲透統(tǒng)計方法與思想,強化抽樣方法的步驟及區(qū)別、頻率分布直方圖的五步曲(極差→組距→分組→列表→畫圖)、數(shù)字特征(眾數(shù)、中位數(shù)、平均數(shù)、標準差、方差)的計算、線性回歸中的數(shù)形結合思想及計算器的配合使用.教學中重點訓練的一些題型是:關于分層抽樣的數(shù)字客觀題、頻率分布直方圖的研究、標準差與方差的實際應用、線性回歸模型的求解等.
3.概率章節(jié):
概率是研究隨機現(xiàn)象規(guī)律性的科學.對比大綱教材,課標教材在概率部分有較大的區(qū)別.在必修③概率一章中,利用隨機事件的頻率給出概率的定義,并學習概率的基本性質及兩個概率模型(古典概型、幾何概型).我們在教學中需注意如下幾個方面:
(1)堅決不補充排列與組合.必修③概率的計算,不是建立在排列組合的計數(shù)基礎上,而是通過逐一列舉來進行計數(shù),或者由簡單的分類加法計數(shù)方法及分步乘法計數(shù)方法來進行計數(shù),兩種計數(shù)方法也不必上升到計數(shù)原理的學習,結合簡單的實例滲透計數(shù)方法的學習即可.補充排列與組合,違背了課標的精神,淡化了概率思想,也加重了學生的學習負擔.排列與組合只是選修2-3的內(nèi)容,以后選修文科的學生根本不學,概率的學習只是要求達到必修③概率一章的水平.
(2)強調概率意義的理解.教材中呈現(xiàn)了廣泛的實例,例如購彩票中獎的可能性、游戲的公平性、決策中的概率思想、天氣預報的概率解釋、生物試驗中的發(fā)現(xiàn)、遺傳機理中的統(tǒng)計規(guī)律等,通過這些實例闡述了概率的意義,這部分內(nèi)容往往卻被教師輕描淡寫的一帶而過.我們在教學中,應當認真剖析這些實例,讓概率的意義在學生腦海中根深蒂固,從而激發(fā)學生進一步學習概率知識的欲望.
(3)在古典概型的基礎上,類比學習幾何概型.可以從模型特征的共同點與不同點,計算公式及求解步驟等方面進行比較.特別注意古典概型的計算是以簡單計數(shù)為基礎,幾何概型的計算則需運用數(shù)形結合思想.
本章教學中,重點訓練的一些題型是:由概率性質進行概率計算、古典概型的概率計算、幾何概型的概率計算.常常融合的實際背景是拋擲硬幣、摸球、質檢、會面等,滲透的數(shù)學思想則以分類討論思想、數(shù)形結合思想為主.
二、任教班級學情分析
12班雖是理科重點班,但數(shù)學成績?nèi)院懿睿职鄶?shù)學成績僅86分(滿分150)
全班48人,男生31人,女生17.
三、教學工作目標
盡力提高學生的數(shù)學學習能力
四、教學進度安排
本期教學任務:理科:必修三、選修2—1;
高二數(shù)學教學工作計劃 篇5
一、教材分析
1.教材所處的地位和作用
在學習了隨機事件、頻率、概率的意義和性質及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現(xiàn)信息技術的優(yōu)越性而新增的內(nèi)容。
2.教學的重點和難點
重點:正確理解隨機數(shù)的概念,并能應用計算器或計算機產(chǎn)生隨機數(shù)。
難點:建立概率模型,應用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現(xiàn)實問題。
二、教學目標分析
1、知識與技能 :
(1)了解隨機數(shù)的概念;
(2)利用計算機產(chǎn)生隨機數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。
2、過程與方法:
(1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應用數(shù)學解決問題的方法,體會數(shù)學知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;
(2)通過模擬試驗,感知應用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習慣
3、情感態(tài)度與價值觀:
通過數(shù)學與探究活動,體會理論來源于實踐并應用于實踐的辯證唯物主義觀點.
三、教學方法與手段分析
1、教學方法:本節(jié)課我主要采用啟發(fā)探究式的教學模式。
2、教學手段:利用多媒體技術優(yōu)化課堂教學
四、教學過程分析
布置練習:
課本練習 3、4
「設計意圖」課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度,并促使學生進一步鞏固和掌握所學內(nèi)容。
五、板書設計
3.2.2(整數(shù)值)隨機數(shù)的產(chǎn)生
問題解答: 課堂檢測:
【高二數(shù)學教學工作計劃集合5篇】相關文章:
高二數(shù)學教學工作計劃集合7篇05-10
高二數(shù)學教學計劃05-10
高二數(shù)學教學工作計劃四篇04-21
高二數(shù)學教學工作計劃八篇04-18
精選高二數(shù)學教學工作計劃4篇05-10
高二數(shù)學教學工作計劃合集五篇05-19
高二數(shù)學教學工作計劃合集八篇05-11
高二數(shù)學教學工作計劃匯編八篇05-11
高二數(shù)學教學工作計劃范文6篇05-09
精選高二數(shù)學教學工作計劃3篇05-20