數(shù)學(xué)《不等式基本性質(zhì)》教學(xué)設(shè)計(jì)
不等式的基本性質(zhì)
教學(xué)目的
掌握不等式的基本性質(zhì),會(huì)用不等式的基本性質(zhì)進(jìn)行不等式的變形,數(shù)學(xué)教案-不等式基本性質(zhì)。
教學(xué)過程
師:我們已學(xué)過等式,不等式,現(xiàn)在我們來看兩組式子(教師出示小黑板中的兩組式子),請(qǐng)同學(xué)們觀察,哪些是等式?哪些是不等式?
第一組:1+2=3; a+b=b+a; S =ab; 4+x =7.
第二組:-7 < -5; 3+4 > 1+4; 2x ≤6, a+2 ≥0; 3≠4.
生:第一組都是等式,第二組都是不等式。
師:那么,什么叫做等式?什么叫做不等式?
生:表示相等關(guān)系的式子叫做等式;表示不等式的式子叫做不等式。
師:在數(shù)學(xué)熾,我們用等號(hào)“=”來表示相等關(guān)系,用不等式號(hào)“〈”、“〉”或“≠”表示不等關(guān)系,其中“>”和“<”表示大小關(guān)系。表示大小關(guān)系的不等式是我們中學(xué)教學(xué)所要研究的。
前面我們學(xué)過了等式,同學(xué)們還記得等式的.性質(zhì)嗎?
生:等式有這樣的性質(zhì):等式兩邊都加上,或都減去,或都乘以,或都除以( 除數(shù)不為零)同一個(gè)數(shù),所得到的仍是等式。
師:很好!當(dāng)我們開始研究不等式的時(shí)候,自然會(huì)聯(lián)想到,是否有與等式相類似的性質(zhì),也就是說,如果在不等式的兩邊都加上,或都減去,或都乘以,或都除經(jīng)(除數(shù)不為零)同一個(gè)數(shù),結(jié)果將會(huì)如何呢?讓我們先做一些試驗(yàn)練習(xí),初中數(shù)學(xué)教案《數(shù)學(xué)教案-不等式基本性質(zhì)》。
練習(xí)1 (回答)用小于號(hào)“<”或大于號(hào)“>”填空。
。1)7 ___ 4; (2)- 2____6; (3)- 3_____ -2; (4)- 4_____-6
練習(xí)2(口答)分別從練習(xí)1中四個(gè)不等式出發(fā),進(jìn)行下面的運(yùn)算。
。1)兩邊都加上(或都減去)5,結(jié)果怎樣?不等號(hào)的方向改變了嗎?
。2)兩邊都乘以(或都除以)5,結(jié)果怎樣?不等號(hào)的方向改變了嗎?
。3)兩邊都乘以(或都除以)(-5),結(jié)果怎樣?不等號(hào)的方向改變了嗎?
生:我們發(fā)現(xiàn):在練習(xí)2中,第(1)、(2)題的結(jié)果是不等號(hào)的方向不變;在第(3)題中,結(jié)果是不等號(hào)的方向改變了!
師:同學(xué)們觀察得很認(rèn)真,大家再進(jìn)一步探討一下,在什么情況下不等號(hào)的方向就會(huì)發(fā)生改變呢?
生甲:在原不等式的兩邊都乘以(或除以)一個(gè)負(fù)數(shù)的情況下,不等號(hào)的方向要改變。
師:有沒有不同的意見?大家都同意他的看法嗎?可能還有同學(xué)不放心,讓我們?cè)僮鲆恍┰囼?yàn)。
練習(xí)3(口答)分別在下面四個(gè)不等式的兩邊都以乘以(可除以)-2,看看不等號(hào)的方向是否改變:
7>4;-2<6;-3<-2;-4>-6。
師:現(xiàn)在我們可以歸納出不等式的基本性質(zhì),一般地說,不等式的基本性質(zhì)有三條:
性質(zhì)1:不等式的兩邊都加上(或都減去)同一個(gè)數(shù),不等號(hào)的方向 。
(讓同學(xué)回答。)
性質(zhì)2:不等式的兩邊都乘以(或都除以)同一個(gè)正數(shù),不等號(hào)的方向 。(讓同學(xué)回答。)
性質(zhì)3:不等式的兩邊都乘以(或都除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向 。(讓同學(xué)回答。)
現(xiàn)在請(qǐng)大家翻開課本,一起朗讀用黑體字寫的三條基本性質(zhì)。
不等式的這三條基本性質(zhì),都可以用數(shù)學(xué)語言表達(dá)出來,先請(qǐng)一位同學(xué)說一說第一條基本性質(zhì)。
生:如果a<b。那么a+c<b+c(或a-c<b-c;如果a>b,那么a+c>b+c(或a-c>b-c)。
師:對(duì)a和b有什么要求嗎?對(duì)c有什么要求?
生:沒有什么要求。