倍數(shù)與因數(shù)教學(xué)設(shè)計(jì)范文(精選3篇)
作為一名為他人授業(yè)解惑的教育工作者,通常需要準(zhǔn)備好一份教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以促進(jìn)我們快速成長,使教學(xué)工作更加科學(xué)化。那么優(yōu)秀的教學(xué)設(shè)計(jì)是什么樣的呢?以下是小編收集整理的倍數(shù)與因數(shù)教學(xué)設(shè)計(jì)范文(精選3篇),歡迎閱讀與收藏。
倍數(shù)與因數(shù)教學(xué)設(shè)計(jì)1
教學(xué)內(nèi)容:
《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(五年級下冊)》第12~13頁。
教學(xué)目標(biāo):
1.從操作活動中理解因數(shù)和倍數(shù)的意義,會判斷一個數(shù)是不是另一個數(shù)的因數(shù)或倍數(shù)。
2.培養(yǎng)學(xué)生抽象、概括的能力,滲透事物之間相互聯(lián)系、相互依存的辯證唯物主義的觀點(diǎn)。
3.培養(yǎng)學(xué)生的合作意識、探索意識,以及熱愛數(shù)學(xué)學(xué)習(xí)的情感。
教學(xué)重點(diǎn):
理解因數(shù)和倍數(shù)的含義。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
師:人與人之間存在著許多種關(guān)系,你們和爸爸(媽媽)的關(guān)系是……
生:父子(父母、母子、母女)關(guān)系。
師:我和你們的關(guān)系是……
生:師生關(guān)系。
師:對,我是你們的老師,你們是我的學(xué)生,我們的關(guān)系是師生關(guān)系。在數(shù)學(xué)中,數(shù)與數(shù)之間也存在著多種關(guān)系,這一節(jié)課,我們一起探討兩數(shù)之間的因數(shù)與倍數(shù)關(guān)系。(板書課題:因數(shù)與倍數(shù))
二、認(rèn)識因數(shù)與倍數(shù)
師:我們已經(jīng)認(rèn)識了哪幾類數(shù)?
生:自然數(shù),小數(shù),分?jǐn)?shù)。
師:現(xiàn)在我們來研究自然數(shù)中數(shù)與數(shù)之間的關(guān)系。請你們用12個小正方形擺成不同的長方形,并根據(jù)擺成的不同情況寫出乘、除算式。
根據(jù)學(xué)生的匯報(bào)板書:
1x12=12 2x6=12 3x4=12
12x1=12 6x2=12 4x3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
師:在這3組乘、除法算式中,都有什么共同點(diǎn)?
生:第①組每個式子都有1、12這兩個數(shù)。
生:第②組每個式子都有2、6、12這三個數(shù)。
生:第③組每個式子都有3、4、12這三個數(shù)。
師:(指著第②組)像這樣的乘、除法式子中的三個數(shù)之間的關(guān)系還有一種說法,你們想知道嗎?請看課本P12。
師:2和6與12的關(guān)系還可以怎樣說呢?
生:2和6是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。
師:也就是說,2和12、6的關(guān)系是因數(shù)和倍數(shù)的關(guān)系,這幾組算式中,誰和誰還有因數(shù)和倍數(shù)的關(guān)系?
生:3、4和12有因數(shù)和倍數(shù)關(guān)系,3和4是12的因數(shù),12是3和4的倍數(shù)。
生:我認(rèn)為1和12也有因數(shù)和倍數(shù)關(guān)系。1是12的因數(shù),12是1的倍數(shù)。
生:可以說12是12的因數(shù)嗎?
生:我認(rèn)為可以,12x1=12,1和12都是12的因數(shù)。
師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數(shù)。
師出示:11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?
生:我認(rèn)為不是,因?yàn)?1除以2有余數(shù)。
師:你能舉一個算式,并說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?
生:2x4=8,2和4是8的因數(shù),8是2和4的倍數(shù)。
生:40÷2=20,40是2和20的倍數(shù),2和20是40的因數(shù)。
師出示:0x3
0x10
0÷3
0÷10
通過剛才的計(jì)算,你有什么發(fā)現(xiàn)?
生:我發(fā)現(xiàn)0和任何數(shù)相乘,都等于0。
生:0除以任何數(shù)都等于0。
生:我補(bǔ)充,0不能作為除數(shù)。
師:所以在研究因數(shù)和倍數(shù)時(shí),我們所說的數(shù)一般指整數(shù),不包括0。
師生小結(jié):這節(jié)課,你們都學(xué)會了哪些知識?還有什么不明白的地方?
生:我有一個疑問,在2x6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系,這兩種說法一樣嗎?
師:這個問題提得好!誰能回答他的問題?
生:我覺得好像不一樣,但不知道為什么?
生:我認(rèn)為不一樣,在2x6=12中,2叫因數(shù)是指在算式中它的名稱,而2是12的因數(shù)指的是2和12的關(guān)系。
師:說的真好。這節(jié)課我們研究因數(shù)與倍數(shù)的關(guān)系中所說的因數(shù)不是以前乘法算式中各部分名稱中的“因數(shù)”,兩者可不能搞混哦!
三、課堂練習(xí)
1.下面每一組數(shù)中,誰是誰的倍數(shù),誰是誰的因數(shù)。
16和2
4和24
72和8
20和5
2.下面的說法對嗎?說出理由。
(1)48是6的倍數(shù)。
(2)在13÷4=3……1中,13是4的倍數(shù)。
(3)因?yàn)?x6=18,所以18是倍數(shù),3和6是因數(shù)。
師:第(3)題有兩種不同的意見,請反對意見的同學(xué)說說理由。
生:因?yàn)闆]有說明18是誰的倍數(shù),所以不對。
師:你認(rèn)為怎樣說才正確呢?
生:我認(rèn)為應(yīng)該這么說:18是3和6的倍數(shù),3和6是18的因數(shù)。
師:在說倍數(shù)(或因數(shù))時(shí),必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨(dú)說誰是倍數(shù)(或因數(shù)),也就是說:因數(shù)和倍數(shù)不能單獨(dú)存在。
3.在36、4、9、12、3、0這些數(shù)中,誰和誰有因數(shù)和倍數(shù)關(guān)系。
4.游戲。請生任意寫一個60以內(nèi)的自然數(shù)(0除外),聽老師說要求,所寫的數(shù)符合要求的請舉手,同桌互相檢查。
①()是4的倍數(shù)
。ǎ┦60的因數(shù)
()是5的倍數(shù)
。ǎ┦36的因數(shù)
②請一名學(xué)生模仿剛才老師的要求,繼續(xù)練習(xí)。
、巯胍幌耄瑧(yīng)該提什么要求,讓全班同學(xué)都能舉手?
生:()是1的倍數(shù)。
師:嘩,全班都舉手了,誰能總結(jié)剛才的說法。
生:任何不包括0的自然數(shù)都是1的倍數(shù)。
倍數(shù)與因數(shù)教學(xué)設(shè)計(jì)2
【教學(xué)內(nèi)容】
人教版數(shù)學(xué)五年級下冊P12一14,練習(xí)二。
【教學(xué)過程】
一、操作空間,初步感知。
1.同桌用12塊完全一樣的小正方形拼成一個長方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.學(xué)生動手操作,并與同桌交流擺法。
3.請用算式表達(dá)你的擺法。
匯報(bào):1x12=12,2x6=12,3x4=12。
【評析】通過讓學(xué)生動手操作、想象、表達(dá)等環(huán)節(jié),既為新知探索提供材料,又孕育求一個數(shù)的因數(shù)的思考方法。
二、探索空間,理解新知。
1.理解因數(shù)和倍數(shù)。
。1)觀察3x4=12,你能從數(shù)學(xué)的角度說說它們之間的關(guān)系嗎?師根據(jù)學(xué)生的表達(dá)完成以下板書:3是12的因數(shù)12是3的倍數(shù)4是12的因數(shù)12是4的倍數(shù)3和4是12的因數(shù)12是3和4的倍數(shù)
。2)用因數(shù)和倍數(shù)說說算式1x12=12,2x6=12的關(guān)系。
(3)觀察因數(shù)和倍數(shù)的相互關(guān)系。揭示:研究因數(shù)和倍數(shù)時(shí),所指的數(shù)是整數(shù)(一般不包括O)。
2.求一個數(shù)的因數(shù)。
。1)出示2,5,12,15,36。從這些數(shù)中找一找誰是誰的因數(shù)。學(xué)生匯報(bào)。
師:2和12是36的因數(shù),找1個、2個不難,難就難在把36所有的因數(shù)全部找出來,請同學(xué)們找出36的所有因數(shù)。
出示要求:
①可獨(dú)立完成,也可同桌合作。
、诳山柚鷦偛耪页12的所有因數(shù)的方法。
、蹖懗36的所有因數(shù)。
、芟胍幌,怎樣找才能保證既不重復(fù),又不遺漏。教師巡視,展示學(xué)生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
。2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復(fù)又不遺漏。(按順序一對一對找,一直找到兩個因數(shù)相差很小或相等為止)
師:有序思考更能準(zhǔn)確找出一個數(shù)的所有因數(shù)。完成板書:描述式、集合式。
。3)30的因數(shù)有哪些?
【評析】學(xué)生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。
3.求一個數(shù)的倍數(shù)。
。1)3的倍數(shù)有:——,怎樣
有序地找,有多少個?
找一個數(shù)的倍數(shù),用1,2,3,4?分別乘這個數(shù)。(2)練一練:6的倍數(shù)有:,40以內(nèi)6的倍數(shù)有:一o
【評析】
由于有了有序思考的基礎(chǔ),求一個數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。
4.發(fā)現(xiàn)規(guī)律。
觀察上面幾個數(shù)的因數(shù)和倍數(shù)的例子,你對它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)?根據(jù)學(xué)生匯報(bào),歸納:一個數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。
【評析】
通過觀察板書上幾個數(shù)的因數(shù)和倍數(shù),放手讓學(xué)生發(fā)現(xiàn)規(guī)律,既突出了學(xué)生的主體地位,又培養(yǎng)了學(xué)生觀察、歸納的能力。三、歸納空間,內(nèi)化新知。
師生共同總結(jié):
。1)因數(shù)和倍數(shù)是相互的,不能單獨(dú)存在。
。2)找一個數(shù)的因數(shù)和倍數(shù),應(yīng)有序思考。
四、拓展空間,應(yīng)用新知。
1、15的因數(shù)有:——,15的倍數(shù)有:——。
2.判斷。
。1)6是因數(shù),24是倍數(shù)。()
。2)3.6÷4=0.9,所以3.6是4的`因數(shù)。()
(3)1是1,2,3,4?的因數(shù)。()
。4)一個數(shù)的最小倍數(shù)是21,這個數(shù)的因數(shù)有1,5,25。()
3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識說一句話。
4、舉座位號起立游戲。
(1)5的倍數(shù)。
。2)48的因數(shù)。
。3)既是9的倍數(shù),又是36的因數(shù)。
。4)怎樣說一句話讓還坐著的同學(xué)全部起立。
【評析】
本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過“說一句話”和“起立游戲”,展現(xiàn)了學(xué)生的個性思維,體現(xiàn)了知識的應(yīng)用價(jià)值。
【反思】
本課教學(xué)設(shè)計(jì)重在讓學(xué)生通過自主探索,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法,體驗(yàn)有序思考的重要性。體現(xiàn)了以下兩個特點(diǎn):一、留足空間,讓探索有質(zhì)量。
留足思維空間,才能充分調(diào)動多種感官參與學(xué)習(xí),充分發(fā)揮知識經(jīng)驗(yàn)和生活經(jīng)驗(yàn),使探索成為知識不斷提升、思維不斷發(fā)展、情感不斷豐富的過程。第一,把教材中的飛機(jī)圖改為拼長方形,讓同桌同學(xué)借助12塊完全一樣的正方形拼成一個長方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個同學(xué)找出36的所有因數(shù),由于個人經(jīng)驗(yàn)和思
維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。第三:通過觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。第四:讓學(xué)生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識說一句話”。不拘形式的說話空間,不僅體現(xiàn)了差異性教學(xué),更是體現(xiàn)了不同的人在數(shù)學(xué)上的不同發(fā)展。二、適度引導(dǎo),讓探索有方向。
引導(dǎo)與探索并不矛盾,探索前的適度引導(dǎo)正是讓探索走得更遠(yuǎn)。探索12塊完全一樣的正方形拼成一個長方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導(dǎo),是尊重學(xué)生不同思維的有效引導(dǎo)。
在找36的所有因數(shù)時(shí),教師出示4條要求,既是引導(dǎo)學(xué)生思考的方向,又是提醒學(xué)生探索的任務(wù)。在讓學(xué)生觀察幾個數(shù)的因數(shù)和倍數(shù)時(shí),引導(dǎo)學(xué)生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導(dǎo),避免了學(xué)生的盲目觀察?梢,適度的引導(dǎo),保證了自主探索思維的方向性和順暢性。
整堂課,學(xué)生想象豐富、思維活躍、思考有序。整個認(rèn)知過程是體驗(yàn)不斷豐富、概念不斷形成、知識不斷建構(gòu)的過程。
倍數(shù)與因數(shù)教學(xué)設(shè)計(jì)3
教材分析:
這部分教材首先以例題的形式介紹因數(shù)和倍數(shù)的概念,然后在例1和例2中分別介紹了求一個數(shù)的因數(shù)和倍數(shù)的方法,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背,向?qū)W生滲透從具體到一般的抽象歸納的思想方法。
了解學(xué)生:
學(xué)生已經(jīng)學(xué)習(xí)了四年的數(shù)學(xué),有了四年整數(shù)知識的基礎(chǔ),本課利用實(shí)物圖引出乘法算式,然后引出因數(shù)和倍數(shù)的含義,培養(yǎng)了學(xué)生的抽象概括能力。
教學(xué)目標(biāo):
1、知識技能:(1)理解和掌握因數(shù)、倍數(shù)的概念,認(rèn)識它們之間的聯(lián)系和區(qū)別。(2)學(xué)會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練地求出一個數(shù)的因數(shù)或倍數(shù)。(3)知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
2、過程方法:經(jīng)歷因數(shù)和倍數(shù)的認(rèn)識以及求一個數(shù)的因數(shù)或倍數(shù)的過程,體驗(yàn)類推、列舉和歸納總結(jié)等學(xué)習(xí)方法。
3、情感態(tài)度:在學(xué)習(xí)活動中,感受數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,體驗(yàn)發(fā)現(xiàn)知識的樂趣。
教學(xué)重點(diǎn):學(xué)會求一個數(shù)的因數(shù)或倍數(shù)的方法。
教學(xué)難點(diǎn):理解和掌握因數(shù)和倍數(shù)的概念。
教學(xué)準(zhǔn)備:課件、作業(yè)紙。
教學(xué)過程:
一、創(chuàng)設(shè)情境——找朋友
1、唱一唱:你們聽過“找朋友”這首歌嗎?誰愿意大聲的唱給大家聽?(一名學(xué)生唱,師評價(jià):老師很喜歡你的聲音,你敢于表現(xiàn)自己,老師很愿意和你成為好朋友)
2、說一說:誰能具體的說一說“誰是誰的好朋友”?(鼓勵:老師希望能聽到更多人的聲音)
學(xué)生完整敘述:“xx是李老師的朋友,李老師是xx的朋友”。
3、引入新課:同學(xué)們說的很好,那能不能說老師是朋友,xx是朋友?看來,朋友是相互依存的,一個人不會是朋友。今天我們就來認(rèn)識數(shù)學(xué)中的一對朋友“因數(shù)和倍數(shù)”(板書課題)
二、探究新知
1、提出問題:現(xiàn)在有12名同學(xué)參加訓(xùn)練,要排成整齊的隊(duì)伍,可以怎樣排?用一個簡單的乘法算式表示出排列的方法。
學(xué)生可能得到:每排6人,排成2排,2x6=12;
每排4人,排成3排,4x3=12;
每排12人,排成1排,1x12=12。
課件出示相應(yīng)的圖和算式。
2、揭示概念:以2x6=12為例。
邊說邊板書:()是12的因數(shù),()是12的因數(shù);
12是()的倍數(shù),12是()的倍數(shù)。
學(xué)生同桌互相說,指名兩名同學(xué)說。(評價(jià):這么短的時(shí)間內(nèi),同學(xué)們就能準(zhǔn)確、完整的表述它們之間的因倍關(guān)系,真了不起。)
突出強(qiáng)調(diào):能不能說12是倍數(shù),2是因數(shù)?(學(xué)生回答,揭示并板書:相互依存)
3、強(qiáng)化概念:另外兩道乘法算式,你也能像這樣準(zhǔn)確地寫出它們之間的關(guān)系嗎?分組比賽,在作業(yè)紙上完成,看哪個組能完全做對。
學(xué)生在作業(yè)紙上完成,同時(shí)課件出示:(指名兩名學(xué)生在白板上利用普通筆標(biāo)注答案)
【倍數(shù)與因數(shù)教學(xué)設(shè)計(jì)范文(精選3篇)】相關(guān)文章:
《倍數(shù)與因數(shù)》教學(xué)反思(精選14篇)05-12
因數(shù)倍數(shù)復(fù)習(xí)課教學(xué)反思04-17
有關(guān)因數(shù)和倍數(shù)的教學(xué)反思3篇03-15
關(guān)于因數(shù)與倍數(shù)的單元測試題08-14
《找因數(shù)》教學(xué)設(shè)計(jì)02-25