- 相關(guān)推薦
大學(xué)數(shù)學(xué)建模方法教學(xué)策略在中學(xué)的有效應(yīng)用論文
【論文關(guān)鍵詞】數(shù)學(xué)建模 教學(xué)策略 應(yīng)用
【論文摘要】目前在很多高校都已經(jīng)開設(shè)了“數(shù)學(xué)建!闭n程,大學(xué)數(shù)學(xué)建模方法教學(xué)策略也逐漸成熟,那么在中學(xué)可設(shè)“數(shù)學(xué)建!闭n程或進(jìn)行教學(xué)也成為了新課改下的熱門話題,但如何把大學(xué)數(shù)學(xué)建模方法教學(xué)策略應(yīng)用到中學(xué)教學(xué)中,還需要加以研究。
數(shù)學(xué)建模是指根據(jù)需要針對(duì)實(shí)際問題組建數(shù)學(xué)模型的過程,也就是對(duì)某一實(shí)際問題,經(jīng)過抽象、簡(jiǎn)化、明確變量和參數(shù),并依據(jù)某種“規(guī)律”建立變量和參數(shù)間的一個(gè)明確的數(shù)學(xué)關(guān)系(即數(shù)學(xué)模型),然后求解該數(shù)學(xué)問題,并對(duì)此結(jié)果進(jìn)行解釋和驗(yàn)證,若通過,則可投入使用,否則將返回去,重新對(duì)問題的假設(shè)進(jìn)行改進(jìn),所以,數(shù)學(xué)建模是一個(gè)多次循環(huán)執(zhí)行的過程。鑒于目前很多高校都開設(shè)了“數(shù)學(xué)建!闭n程,數(shù)學(xué)建模課程的開設(shè)對(duì)高校教育改革起到了很大的作用,在新課改的背景下,數(shù)學(xué)建模也將被引入到中學(xué)教育之中。研究大學(xué)數(shù)學(xué)建模方法教學(xué)策略并探討其在中學(xué)教學(xué)中的應(yīng)用很有必要。
1.大學(xué)與中學(xué)在數(shù)學(xué)建模教學(xué)上的聯(lián)系
大學(xué)教育面對(duì)的是成年學(xué)生,而中學(xué)教育面對(duì)的多是未成年學(xué)生,在年齡上,兩者有著區(qū)別;大學(xué)生是已經(jīng)受過中學(xué)教育的學(xué)生,而中學(xué)生尚未完成中學(xué)教育,所以在受教育程度上兩者有很大差別,但盡管如此,兩者都是在校學(xué)生,都還處在教育系統(tǒng)之中,所以兩者及兩種教育環(huán)境仍然具有一些相同之處。
1.1兩者教學(xué)環(huán)境大同小異
無論是大學(xué)教育,還是中學(xué)教育,采取的教學(xué)方式都是課堂授課教學(xué),都有固定的場(chǎng)所,特定的老師和相配套的課本教材等等,在這一點(diǎn)上來講,兩者區(qū)別并不大,都處在相同的教育系統(tǒng)中,只是兩種環(huán)境中的老師水平不同,學(xué)生受教育的程度以及教學(xué)深度不同罷了。
1.2數(shù)學(xué)建模模式相同
數(shù)學(xué)建模,本身內(nèi)涵已經(jīng)固定,既適合在大學(xué)教育中設(shè)立此類課程,也適合中學(xué)生進(jìn)行學(xué)習(xí),其目的都是一樣,都是要解決實(shí)際的現(xiàn)實(shí)問題,都具備數(shù)學(xué)建模的實(shí)用化特征,但由于所用數(shù)學(xué)知識(shí)有所差別,解決的實(shí)際問題大小有差異,但都是解決問題。
1.3中學(xué)生和大學(xué)生都具備接受知識(shí)的能力
數(shù)學(xué)課程在小學(xué)就已經(jīng)開始設(shè)立,到中學(xué)教育程度時(shí),相比小學(xué)生,中學(xué)生的數(shù)學(xué)能力有大幅度提高,已經(jīng)能夠進(jìn)行很好的知識(shí)理解,雖然并沒有大學(xué)生的理解力那么高,但學(xué)習(xí)簡(jiǎn)單的數(shù)學(xué)建模的能力已經(jīng)具備。
1.4中學(xué)數(shù)學(xué)建模學(xué)習(xí)能為以后更深的學(xué)習(xí)打下基礎(chǔ)
在中學(xué)開設(shè)數(shù)學(xué)建模課程教學(xué),能為以后高層次的數(shù)學(xué)建模培養(yǎng)人才,從早就打下良好的數(shù)學(xué)基礎(chǔ),能夠減少將來遇到的各種問題。
2.可應(yīng)用于中學(xué)數(shù)學(xué)建模中的大學(xué)教學(xué)策略
數(shù)學(xué)建模,是提高學(xué)生的數(shù)學(xué)素質(zhì)和創(chuàng)新能力的重要途徑,是提高教師的教學(xué)和科研水平的有效手段。從以上的介紹可知,大學(xué)數(shù)學(xué)建模方法教學(xué)策略可以很好的應(yīng)用于中學(xué)數(shù)學(xué)建模教學(xué)過程中。目前,大學(xué)課程中開展數(shù)學(xué)建模教學(xué)的途徑與方法很多,其中,能夠很好的.應(yīng)用到中學(xué)數(shù)學(xué)建模課程中的也有很多,下面著重?cái)⑹霰容^常用且很奏效的主要途徑和方法:
2.1充分利用教材,對(duì)教材進(jìn)行深度把握
教師在課堂教學(xué)過程中要充分利用手中的教材工具,對(duì)教材進(jìn)行深度把握,提高教材利用的效率。教材是專家學(xué)者在對(duì)理論深層地把握的基礎(chǔ)上結(jié)合生活中的實(shí)際經(jīng)驗(yàn)總結(jié)研究出來的,教材內(nèi)容既是理論的實(shí)踐化,又是生活的理論化,其中要講授和闡明的問題都是非常具有代表性的,因此教材具有很高的利用價(jià)值,要懂得充分利用。但教材中并沒有告訴教師具體的教學(xué)方法,只是安排了需要進(jìn)行教授的課程,因此在教學(xué)過程中,教師要使用合理的教學(xué)方式進(jìn)行授課,如在對(duì)教材內(nèi)容講解后可以考慮把教材中的問題換一種方式進(jìn)行重新提問和思考,變換問題的條件,更改提出問題的方式,對(duì)因果進(jìn)行互換,結(jié)合新的問題進(jìn)行重新提問。數(shù)學(xué)本身就是生活的提煉,是對(duì)生活中的實(shí)際問題的一種簡(jiǎn)化,通過反芻的方式,把數(shù)學(xué)模型重新應(yīng)用到實(shí)際問題中,對(duì)理解數(shù)學(xué)模型的構(gòu)建和內(nèi)涵都具有很大的作用。 2.2利用案例教學(xué),設(shè)計(jì)精良的案例
所謂案例教學(xué)法,是指教師在課堂教學(xué)中用具體而生動(dòng)的例子來說明問題,已達(dá)到最終目的的一種教學(xué)方式。而數(shù)學(xué)建模教學(xué)中的案例教學(xué)法,則對(duì)應(yīng)的是在數(shù)學(xué)建模教學(xué)過程中,結(jié)合案例進(jìn)行數(shù)學(xué)建模問題的講解,達(dá)到讓學(xué)生對(duì)數(shù)學(xué)建模的建模過程和方法以及建模的具體應(yīng)用有清晰的認(rèn)識(shí)的目的。數(shù)學(xué)建模教學(xué)中應(yīng)用案例教學(xué)法主要應(yīng)該包括三個(gè)部分,即事前、事中、事后三個(gè)部分。事前是指教師在數(shù)學(xué)建模開始之前選擇合適的問題,講解問題的環(huán)境,也就是介紹清楚問題的背景資料,所掌握的數(shù)據(jù)信息,建?赡苡玫降臄(shù)學(xué)方法和模型,以及問題的最終目的。事中是指在教師講解清楚問題的準(zhǔn)備工作之后,教師與學(xué)生,學(xué)生之間針對(duì)問題進(jìn)行討論,討論的目的是要搞清楚問題的實(shí)質(zhì)是什么,可以利用哪些方法和模型工具,探討那一種方法最為合理,最終決定使用的具體模型工具。事后則是指模型的最后檢驗(yàn),模型是否合理需要通過最后對(duì)模型結(jié)果的檢驗(yàn)做標(biāo)準(zhǔn),可以在兩種以上不同的模型得出的結(jié)果之間進(jìn)行對(duì)比,考察其存在的差距。
2.3強(qiáng)化課堂教學(xué)效果,課后進(jìn)行實(shí)踐
課堂上進(jìn)行數(shù)學(xué)建模的教學(xué)和探討,課后要補(bǔ)以實(shí)踐進(jìn)行強(qiáng)化訓(xùn)練。課堂教學(xué)一定程度上停留在理論階段,雖然數(shù)學(xué)建模具有很大實(shí)用性,但是學(xué)生進(jìn)行建模的時(shí)候只是通過教師所提供的數(shù)據(jù)信息和建模方法,盡管學(xué)生也參與了一定的討論,卻仍然無法能讓學(xué)生對(duì)用模能夠有比較直觀的感受和了解,因此實(shí)踐訓(xùn)練成為了數(shù)學(xué)建模一個(gè)必不可少的構(gòu)成部分。數(shù)學(xué)建模實(shí)踐主要可以通過兩種形式進(jìn)行,一種是實(shí)驗(yàn)室實(shí)踐,學(xué)校應(yīng)該建立健全數(shù)學(xué)建模專用實(shí)驗(yàn)室,實(shí)驗(yàn)室可以看做是現(xiàn)實(shí)的理想化環(huán)境,在理想化的實(shí)驗(yàn)室里可以很好的對(duì)認(rèn)模、建模等過程的認(rèn)識(shí)。由于中學(xué)生對(duì)理解問題的能力還處于初級(jí)階段,實(shí)驗(yàn)室可以不用那么復(fù)雜,這樣既可以節(jié)約實(shí)驗(yàn)室建設(shè)成本,也能同時(shí)達(dá)到實(shí)踐訓(xùn)練目的。一種聯(lián)系實(shí)際進(jìn)行實(shí)踐。教師要從較為簡(jiǎn)單的實(shí)際問題出發(fā),讓學(xué)生自主選擇和他們自己比較相關(guān)的問題,進(jìn)行簡(jiǎn)單的數(shù)學(xué)建模練習(xí),然后以作業(yè)的形式上交給教師,教師進(jìn)行逐個(gè)批復(fù),然后就發(fā)現(xiàn)的新問題進(jìn)行討論與解決。
2.4開展數(shù)學(xué)建;顒(dòng),鼓勵(lì)學(xué)生積極參與
為了提高學(xué)生的數(shù)學(xué)建模能力,學(xué)校可以開展數(shù)學(xué)建;顒(dòng),可以是競(jìng)賽制的,也可以是非競(jìng)賽制的,但對(duì)成績(jī)比較優(yōu)秀的學(xué)生都要給一定的獎(jiǎng)勵(lì),以提高學(xué)生的積極性。建;顒(dòng)要有規(guī)章制度,要比較正規(guī)化,否則可能會(huì)達(dá)不到預(yù)期效果,而且建模過程要保證學(xué)生不受干擾,競(jìng)賽要保證公平、公開。
2.5鞏固學(xué)生基礎(chǔ),開發(fā)學(xué)生學(xué)習(xí)興趣
數(shù)學(xué)建模首先需要的是扎實(shí)的數(shù)學(xué)功底,學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)要過關(guān),同時(shí)學(xué)生要具備較好的理論聯(lián)系實(shí)際的能力以及抽象能力,因此教師必須要抓好學(xué)生的基礎(chǔ)知識(shí)學(xué)習(xí),從一開始就打下堅(jiān)實(shí)的基礎(chǔ),在日常的教學(xué)過程中要有意加強(qiáng)學(xué)生的理論聯(lián)系實(shí)際的意識(shí)和能力。還有就是要開發(fā)學(xué)生的學(xué)習(xí)興趣,興趣是他們最好的老師,如果教學(xué)過程過于枯燥無味,那么學(xué)生們就無法提起興趣進(jìn)行學(xué)習(xí),會(huì)產(chǎn)生厭倦情緒,不利于學(xué)習(xí)效果。數(shù)學(xué)建模過程本身應(yīng)該是一個(gè)比較有趣的過程,是對(duì)實(shí)際生活進(jìn)行簡(jiǎn)化的一個(gè)過程,它應(yīng)該是生動(dòng)的,有實(shí)際價(jià)值的。應(yīng)該鼓勵(lì)學(xué)生間的交流,鼓勵(lì)學(xué)生用建模的思維方法去思考和解決生活中發(fā)現(xiàn)的小問題,對(duì)做的比較好的同學(xué)可以予以適當(dāng)?shù)莫?jiǎng)勵(lì)!
【參考文獻(xiàn)】
[1]黃樂華.中學(xué)數(shù)學(xué)建模的理論與實(shí)踐思考[J].龍巖師專學(xué)報(bào).2003(12).
。郏玻萑~其孝.大學(xué)生數(shù)學(xué)建模競(jìng)賽輔導(dǎo)材料[M].長(zhǎng)沙:湖南教育出版社.2003.
。郏常菔.教師與學(xué)生在教學(xué)過程中的交互作用[J].數(shù)學(xué)教育學(xué)報(bào).2002(11).