九年級(jí)數(shù)學(xué)上冊(cè)第一二的單元檢測(cè)試題
1、選擇題(每小題3分,共30分)
1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5 B、(x-p)2=9C、(x-p+2)2=9 D、(x-p+2)2=5
2、已知m是方程x2-x-1=0的一個(gè)根,則代數(shù)式m2-m的值等于( )
A、-1 B、0 C、1 D、2
3、若α、β是方程x2+2x-2005=0的兩個(gè)實(shí)數(shù)根,則α2+3α+β的值為( )
A、2005 B、2003 C、-2005 D、4010
4、關(guān)于x的方程kx2+3x-1=0有實(shí)數(shù)根,則k的取值范圍是( )
A、k≤-9999 B、k≥-且k≠0C、k≥- D、k>-且k≠0 4444
5、關(guān)于x的一元二次方程的兩個(gè)根為x1=1,x2=2,則這個(gè)方程是( )
A、 x2+3x-2=0 B、x2-3x+2=0 C、x2-2x+3=0 D、x2+3x+2=0
6、已知關(guān)于x的方程x2(-2k-1)x+k2=0有兩個(gè)不相等的實(shí)根,那么k的最大整數(shù)值是( )
A、-2 B、-1 C、0 D、1
7、某城2004年底已有綠化面積300公頃,經(jīng)過(guò)兩年綠化,綠化面積逐年增加,到2006年底增加到363公頃,設(shè)綠化面積平均每年的增長(zhǎng)率為x,由題意所列方程正確的是( )
A、300(1+x)=363 B、300(1+x)2=363
C、300(1+2x)=363 D、363(1-x)2=300
8、甲、乙兩個(gè)同學(xué)分別解一道一元二次方程,甲因把一次項(xiàng)系數(shù)看錯(cuò)了,而解得方程兩根為-3和5,乙把常數(shù)項(xiàng)看錯(cuò)了,解得兩根為2+6和2-6,則原方程是( )
A、 x2+4x-15=0 B、x2-4x+15=0 C、x2+4x+15=0 D、x2-4x-15=0
9、若方程x2+mx+1=0和方程x2-x-m=0有一個(gè)相同的實(shí)數(shù)根,則m的值為( )
A、2 B、0 C、-1 D、1 4
y2?5y?6=0,則第三邊長(zhǎng)為( ) 10、已知直角三角形x、y兩邊的長(zhǎng)滿足|x2-4|+
A、 22或 B、5或22 C、或22 D、、22或5
二、 填空題(每小題3分,共30分)
11、若關(guān)于x的方程2x2-3x+c=0的一個(gè)根是1,則另一個(gè)根是.
12、一元二次方程x2-3x-2=0的解是
13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是
14、等腰△ABC中,BC=8,AB、AC的長(zhǎng)是關(guān)于x的方程x2-10x+m=0的兩根,則m的值是 .
15、2005年某市人均GDP約為2003年的1.2倍,如果該市每年的人均GDP增長(zhǎng)率相同,那么增長(zhǎng)率為 .
16、科學(xué)研究表明,當(dāng)人的下肢長(zhǎng)與身高之比為0.618時(shí),看起來(lái)最美,某成年女士身高為153cm,下肢長(zhǎng)為92cm,該女士穿的高根鞋鞋根的最佳高度約為cm.(精確到
0.1cm)
17、一口井直徑為2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿剛好與井口平,則井深為 m,竹竿長(zhǎng)為 m.
18、直角三角形的周長(zhǎng)為2+
為 .
19、如果方程3x2-ax+a-3=0只有一個(gè)正根,則a2?8a?16的值是.
20、已知方程x2+3x+1=0的兩個(gè)根為α、β,則6,斜邊上的中線為1,則此直角三角形的面積?+的值為 . ??
三、 解答題(共60分)
21、解方程(每小題3分,共12分)
(1)(x-5)2=16 (2)x2-4x+1=0 (3)x3-2x2-3x=0 (4)x2+5x+3=0
22、(8分)已知:x1、x2是關(guān)于x的方程x2+(2a-1)x+a2=0的兩個(gè)實(shí)數(shù)根,且(x1+2)(x2+2)=11,求a的值.
23、(8分)已知:關(guān)于x的方程x2-2(m+1)x+m2=0
(1) 當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)
不相等的實(shí)數(shù)根,并求這兩個(gè)根.
24、(8分)已知一元二次方程x2-4x+k=0有兩個(gè)不相等的實(shí)數(shù)根
(1) 求k的取值范圍 2. 如果k是符合條件的最大整數(shù),且一元二次方程x2-4x+k=0
與x2+mx-1=0有一個(gè)相同的根,求此時(shí)m的值.
25、(8分)已知a、b、c分別是△ABC中∠A、∠B、∠C所對(duì)的邊,且關(guān)于x的方程(c-b)x2+2(b-a)x+(a-b)=0有兩個(gè)相等的'實(shí)數(shù)根,試判斷△ABC的形狀.
26、(8分)某工程隊(duì)在我市實(shí)施棚戶區(qū)改造過(guò)程中承包了一項(xiàng)拆遷工程,原計(jì)劃每天拆遷1250m2,因?yàn)闇?zhǔn)備工作不足,第一天少拆遷了20%,從第二天開(kāi)始,該工程隊(duì)加快了拆遷速度,第三天拆遷了1440m2
求:(1)該工程隊(duì)第二天第三天每天的拆遷面積比前一天增長(zhǎng)的百分?jǐn)?shù)相同,求這個(gè)百分?jǐn)?shù).
27、(分)某水果批發(fā)商場(chǎng)經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷售量將減少20千克
(1) 現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少
元?若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場(chǎng)獲利最多?
7,.某商品進(jìn)價(jià)為每件40元,如果售價(jià)為每件50
210件,如果售價(jià)超過(guò)50元,但不超過(guò)80元,每件商品的售價(jià)每上漲10元,每個(gè)月少賣1件,如果售價(jià)超過(guò)80元后,若再漲價(jià),每件商品的售價(jià)每漲1元,每個(gè)月少賣3件。設(shè)該商品的售價(jià)為X元。
(1)、每件商品的利潤(rùn)為 元。若超過(guò)50元,但不超過(guò)80元,每月售 件。 若超過(guò)80元,每月售 件。(用X的式子填空。)
(2)、若超過(guò)50元但是不超過(guò)80元,售價(jià)為多少時(shí) 利潤(rùn)可達(dá)到7200元
(3)、若超過(guò)80元,售價(jià)為多少時(shí)利潤(rùn)為7500元
8.某商場(chǎng)銷售一批襯衫,平均每天可出售30件,每件賺50元,為擴(kuò)大銷售,加盈利,盡量減少庫(kù)存,商場(chǎng)決定降價(jià),如果每件降1元,商場(chǎng)平均每天可多賣2件,若商場(chǎng)平均每天要賺2100元,問(wèn)襯衫降價(jià)多少元
11.一元二次方程解應(yīng)用題 將進(jìn)貨單價(jià)為40元的商品按50元出售時(shí),能賣500個(gè),如果該商品每漲價(jià)1元,其銷售量就減少10個(gè)。商店為了賺取8000元的利潤(rùn),這種商品的售價(jià)應(yīng)定為多少?應(yīng)進(jìn)貨多少?
12.隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2006年擁有家庭轎車64輛,2008年底家庭轎車的擁有量達(dá)到100輛.(1) 若該小區(qū)2006年底到2009年底家庭轎車擁有量的年平均增長(zhǎng)率都相同,求該小區(qū)到2009年底家庭轎車將達(dá)到多少輛?
(2) 為了緩解停車矛盾,該小區(qū)決定投資15萬(wàn)元再建造若干個(gè)停車位.據(jù)測(cè)算,建造費(fèi)用分別為室內(nèi)車位5000元/個(gè),露天車位1000元/個(gè),考慮到實(shí)
際因素,計(jì)劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過(guò)室內(nèi)車位的2.5倍,求該小區(qū)最多可建兩種車位各多少個(gè)?試寫出所有可能的方案。
【九年級(jí)數(shù)學(xué)上冊(cè)第一二的單元檢測(cè)試題】相關(guān)文章:
有關(guān)小升初數(shù)學(xué)一二單元檢測(cè)試題05-20
初一政治上冊(cè)第一二單元綜合檢測(cè)試題09-13
四年級(jí)數(shù)學(xué)上冊(cè)一二單元試題09-26
數(shù)學(xué)上冊(cè)第一單元檢測(cè)試題及答案09-02
小升初數(shù)學(xué)單元檢測(cè)試題05-24
一二單元測(cè)試題11-07