1. <rp id="zsypk"></rp>

      2. 《勾股定理》說課稿

        時間:2021-04-01 17:48:51 說課稿 我要投稿

        《勾股定理》說課稿范文(通用3篇)

          作為一名默默奉獻(xiàn)的教育工作者,時常需要用到說課稿,編寫說課稿助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。怎么樣才能寫出優(yōu)秀的說課稿呢?以下是小編幫大家整理的《勾股定理》說課稿范文(通用3篇),供大家參考借鑒,希望可以幫助到有需要的朋友。

        《勾股定理》說課稿范文(通用3篇)

          《勾股定理》說課稿1

          一、教材分析:

          (一)、本節(jié)課在教材中的地位作用

          “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

          (二)、教學(xué)目標(biāo):根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標(biāo)。知識技能:

          1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

          2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。

          過程與方法:

          1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程。

          2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應(yīng)用。

          3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。

          情感態(tài)度:

          1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

          2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

          (三)、學(xué)情分析:

          盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點、難點和關(guān)鍵。

          重點:勾股定理逆定理的應(yīng)用

          難點:勾股定理逆定理的證明

          關(guān)鍵:輔助線的添法探索

          二、教學(xué)過程:

          本節(jié)課的設(shè)計原則是:使學(xué)生在動手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識結(jié)構(gòu)的目的。

          (一)、復(fù)習(xí)回顧:復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識之間的聯(lián)系。

          (二)、創(chuàng)設(shè)問題情境

          一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學(xué)生已有知識與待研究知識的認(rèn)識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學(xué)生感到數(shù)學(xué)就在身邊。

          (三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)

          因為幾何來源于現(xiàn)實生活,對初二學(xué)生來說選擇適當(dāng)?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

          這樣設(shè)計是因為勾股定理逆定理的證明方法是學(xué)生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個難點,我讓學(xué)生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

          接下來就是利用這個數(shù)學(xué)模型,從理論上證明這個定理。從動手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學(xué)生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學(xué)生不是被動接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

          在同學(xué)們完成證明之后,可讓他們對照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

          (四)、組織變式訓(xùn)練

          本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學(xué)生的學(xué)習(xí)過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導(dǎo),把發(fā)展學(xué)生的思維和隨時把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

          (五)、歸納小結(jié),納入知識體系

          本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識問題的好方法,希望同學(xué)在課外練習(xí)時注意用這種方法,這都是教給學(xué)習(xí)方法。

          (六)、作業(yè)布置

          由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓(xùn)練項目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。B組題適當(dāng)加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個性有積極作用。

          三、說教法、學(xué)法與教學(xué)手段

          為貫徹實施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識上升到理性認(rèn)識,加深對所學(xué)知識的理解和掌握;有利于突破難點和突出重點。

          此外,本節(jié)課我還采用了理論聯(lián)系實際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗和感性認(rèn)識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學(xué)生獨立探討、主動獲取知識。

          總之,本節(jié)課遵循從生動直觀到抽象思維的認(rèn)識規(guī)律,力爭最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性;力爭把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識的過程;力爭使學(xué)生在獲得知識的過程中得到能力的培養(yǎng)。

          《勾股定理》說課稿2

          一、教材分析

          教材所處的地位與作用

          “探索勾股定理”是人教版八年級《數(shù)學(xué)》下冊內(nèi)容。“勾股定理”是安排在學(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學(xué)中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。

          二、教學(xué)目標(biāo)

          綜上分析及教學(xué)大綱要求,本課時教學(xué)目標(biāo)制定如下:

          1、知識目標(biāo)

          知道勾股定理的由來,初步理解割補拼接的面積證法。

          掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

          2、能力目標(biāo)

          在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——歸納——驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。

          3、情感目標(biāo)

          通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識的發(fā)生、發(fā)展過程。

          介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國情感。

          三、教學(xué)重難點

          本課重點是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學(xué)生構(gòu)造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。

          四、教學(xué)問題診斷

          本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對于學(xué)生來說,有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的`課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

          五、教法與學(xué)法分析

          [教學(xué)方法與手段]

          針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

          [學(xué)法分析]

          在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實驗,自己獲取知識,并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動手、動口、動腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強他們的主動感和責(zé)任感,這樣對掌握新知會事半功倍。

          六、教學(xué)流程設(shè)計

          1、創(chuàng)設(shè)情境,引入新課

          本節(jié)課開始利用多媒體介紹了在北京召開的2002年國際數(shù)學(xué)家大會的會標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué)生思維的閘門,激勵探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動變?yōu)橹鲃,在輕松愉悅的氛圍中學(xué)到知識。

          2、觀察發(fā)現(xiàn),類比猜想

          讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗證,讓學(xué)生經(jīng)歷了“觀察——合理猜測——歸納——驗證”的這一數(shù)學(xué)思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進(jìn)行計算,其原則就是由不規(guī)則經(jīng)過割補變?yōu)橐?guī)則。

          3、實驗探究,證明結(jié)論

          因為勾股定理的出現(xiàn),使數(shù)學(xué)從單一的純計算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。

          4、練兵之際

          這是“總統(tǒng)證法”,此時讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強了學(xué)生的自信心和自豪感。

          5、自己動手,拼出弦圖

          讓同學(xué)們拿出了提前準(zhǔn)備好的四個全等的邊長為a、b、c的直角三角形進(jìn)行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學(xué)生,讓他們在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

          6、總結(jié)反思

          通過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動。在活動中學(xué)生可以用自己創(chuàng)造與體驗的方法來學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動腦、動手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實驗室”,學(xué)生通過自己活動得出結(jié)論,使創(chuàng)新精神與實踐能力得到了發(fā)展。

          七、設(shè)計說明

          1、根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結(jié)論——自己動手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——歸納——驗證的思想和數(shù)形結(jié)合的思想。

          2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般的數(shù)學(xué)思想對直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好的思維品質(zhì)的形成有重要作用,對學(xué)生終身發(fā)展也有很大作用。

          《勾股定理》說課稿3

          一、教材分析

          教材的地位和作用

          它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。

          因此他的教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:

          知識與技能:

          1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。

          2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。

          過程與方法:

          1、經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。

          2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學(xué)生們的數(shù)學(xué)語言表達(dá)能力和初步的邏輯推理能力。

          情感、態(tài)度與價值觀:

          1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

          2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生們的合作意識和然所精神。

          3、讓學(xué)生們通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。

          由于八年級的學(xué)生們具有一定分析能力,但活動經(jīng)驗不足,所以

          本節(jié)課教學(xué)重點:勾股定理的探索過程,并掌握和運用它。

          教學(xué)難點:分割,補全法證面積相等,探索勾股定理。

          二、教法學(xué)法分析:

          要上好一堂課,就是要把所確定的三維目標(biāo)有機地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

          先從學(xué)生們熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生們在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生們自己的課堂。

          學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生們在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生們感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。

          三、教學(xué)程序設(shè)計

          1、故事引入新課,激起學(xué)生們學(xué)習(xí)興趣。

          牛頓,瓦特的故事,讓學(xué)生們科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。

          2、探索新知

          在這里我設(shè)計了四個內(nèi)容:

         、偬剿鞯妊苯侨切稳叺年P(guān)系

          ②邊長為3、4、5為邊長的直角三角形的三邊關(guān)系

          ③學(xué)生們畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

         、苋厼閍、b、c的直角三角形的三邊的關(guān)系,(證明)

         、莨垂啥ɡ須v史介紹,讓學(xué)生們體會勾股定理的文化價值。

          體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。

          3、新知運用:

         、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

         、谠谥苯侨切沃校阎螧=90°,AB=6,BC=8,求AC。

         、垡鲆粋人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

         、苋鐖D,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”。他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草。

          4、小結(jié)本課:

          學(xué)完了這節(jié)課,你有什么收獲?

          老師補充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

        【《勾股定理》說課稿范文(通用3篇)】相關(guān)文章:

        《勾股定理》的說課稿范文03-15

        勾股定理說課稿04-27

        勾股定理說課稿04-27

        勾股定理說課稿范文7篇02-04

        勾股定理說課稿15篇02-04

        《探索勾股定理》的說課稿11-30

        勾股定理的逆定理說課稿12-04

        勾股定理的逆定理說課稿4篇12-04

        華師大版八年級數(shù)學(xué) 勾股定理說課稿11-08

        初中數(shù)學(xué)勾股定理一等獎?wù)f課稿(精選7篇)04-07

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>