1. <rp id="zsypk"></rp>

      2. 勾股定理復(fù)習(xí)課說課稿

        時間:2023-02-05 02:09:33 說課稿 我要投稿
        • 相關(guān)推薦

        勾股定理復(fù)習(xí)課說課稿(精選5篇)

          作為一位兢兢業(yè)業(yè)的人民教師,時常需要用到說課稿,認真擬定說課稿,那么問題來了,說課稿應(yīng)該怎么寫?下面是小編收集整理的勾股定理復(fù)習(xí)課說課稿(精選5篇),歡迎大家分享。

        勾股定理復(fù)習(xí)課說課稿(精選5篇)

          勾股定理復(fù)習(xí)課說課稿1

          一、教材分析:

         。ㄒ唬┙滩牡牡匚慌c作用

          從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。

          從學(xué)生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;勾股定理又是對學(xué)生進行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

          根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。

         。ǘ┲攸c與難點

          為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導(dǎo)學(xué)生動手實驗突出重點,合作交流突破難點。

          二、教學(xué)與學(xué)法分析

          教學(xué)方法葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導(dǎo)。"因此教師利用幾何直觀提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計實驗讓學(xué)生進行驗證,感悟其中所蘊涵的思想方法。

          學(xué)法指導(dǎo)為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗知識的形成過程。

          三、教學(xué)過程

          我國數(shù)學(xué)文化源遠流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計為以下五個環(huán)節(jié)。

          首先,情境導(dǎo)入古韻今風(fēng)

          給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進行合作拼圖。讓學(xué)生觀察并思考三個正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。

          第二步追溯歷史解密真相

          勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學(xué)知識的循序漸進、螺旋上升的原則,我設(shè)計如下三個活動。

          從上面低起點的問題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會想到用"數(shù)格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用"割"和"補"的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

          突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的.面積時,學(xué)生將展示"割"的方法,"補"的方法,有的學(xué)生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚,肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問題的能力。

          使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時,改變?nèi)呴L度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時,三邊關(guān)系就改變了,進而強調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時也拓展了學(xué)生的視野。

          以上三個環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語言表達能力。

          感性認識未必是正確的,推理驗證證實我們的猜想。

          第三步推陳出新借古鼎新

          教材中直接給出"趙爽弦圖"的證法對學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點也是重點,教師應(yīng)給學(xué)生充分的自主探索的時間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出"學(xué)生是學(xué)習(xí)的主體,教師是組織者、引導(dǎo)者與合作者"這一教學(xué)理念。學(xué)生會發(fā)現(xiàn)兩種證明方案。

          方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學(xué)的嚴(yán)謹性。對比"古"、"今"兩種證法,讓學(xué)生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學(xué)生的符號意識。

          教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

          第四步取其精華古為今用

          我按照"理解—掌握—運用"的梯度設(shè)計了如下三組習(xí)題。

         。1)對應(yīng)難點,鞏固所學(xué)。

         。2)考查重點,深化新知。

         。3)解決問題,感受應(yīng)用。

          第五步溫故反思任務(wù)后延

          在課堂接近尾聲時,我鼓勵學(xué)生從"四基"的要求對本節(jié)課進行小結(jié)。進而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。

          然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

          勾股定理復(fù)習(xí)課說課稿2

          一、教材分析

          (一)教材地位與作用

          勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。

         。ǘ┙虒W(xué)目標(biāo)知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。情感態(tài)度與價值觀:激發(fā)愛國熱情,體驗自己努力得到結(jié)論的成就感,體驗數(shù)學(xué)充滿探索和創(chuàng)造,體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

         。ㄈ┙虒W(xué)重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

          教學(xué)難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

          突出重點、突破難點的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實驗,讓學(xué)生在實驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

          二、教法與學(xué)法分析:

          學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強。

          教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點,在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

          學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

          三、教學(xué)過程設(shè)計

          1、創(chuàng)設(shè)情境,提出問題

          2、實驗操作,模型構(gòu)建

          3、回歸生活,應(yīng)用新知

          4、知識拓展,鞏固深化

          5、感悟收獲,布置作業(yè)

          (一)創(chuàng)設(shè)情境提出問題

          (1)圖片欣賞:勾股定理數(shù)形圖1955年希臘發(fā)行。美麗的勾股樹2002年國際數(shù)學(xué)的一枚紀(jì)念郵票。

          設(shè)計意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價值。

          (2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的.底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

          設(shè)計意圖:以實際問題為切入點引入新課,反映了數(shù)學(xué)來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

         。ǘ⿲嶒灢僮髂P蜆(gòu)建

          1、等腰直角三角形(數(shù)格子)

          2、一般直角三角形(割補)

          問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

          問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關(guān)系嗎?(割補法是本節(jié)的難點,組織學(xué)生合作交流)

          設(shè)計意圖:不僅有利于突破難點,而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

          通過以上實驗歸納總結(jié)勾股定理。

          設(shè)計意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時發(fā)揮了學(xué)生的主體作用,體驗了從特殊——一般的認知規(guī)律。

          三、回歸生活應(yīng)用新知

          讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

          四、知識拓展鞏固深化

          基礎(chǔ)題,情境題,探索題。

          設(shè)計意圖:給出一組題目,分三個梯度,由淺入深層層練習(xí),照顧學(xué)生的個體差異,關(guān)注學(xué)生的個性發(fā)展。知識的運用得到升華。

          基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學(xué)問題?你能解決所提出的問題嗎?

          設(shè)計意圖:這道題立足于雙基。通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維。

          情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

          設(shè)計意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

          探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

          設(shè)計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

          五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?

          作業(yè):

          1、課本習(xí)題2、1

          2、搜集有關(guān)勾股定理證明的資料。

          板書設(shè)計探索勾股定理

          如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。

          設(shè)計說明:

          1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法。

          2、讓學(xué)生人人參與,注重對學(xué)生活動的評價,一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達水平。

          勾股定理復(fù)習(xí)課說課稿3

          一、教材分析:

          勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。

          教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

          據(jù)此,制定教學(xué)目標(biāo)如下:

          1、理解并掌握勾股定理及其證明。

          2、能夠靈活地運用勾股定理及其計算。

          3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

          4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

          二、教學(xué)重點:

          勾股定理的證明和應(yīng)用。

          三、教學(xué)難點:

          勾股定理的證明。

          四、教法和學(xué)法:

          教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:

          以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。

          切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

          通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

          五、教學(xué)程序:

          本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:

         。ㄒ唬﹦(chuàng)設(shè)情境以古引新

          1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

          2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。

          3、板書課題,出示學(xué)習(xí)目標(biāo)。

         。ǘ┏醪礁兄斫饨滩

          教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。

          (三)質(zhì)疑解難、討論歸納:

          1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的`學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。

          2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;

          (1)這兩個圖形有什么特點?

         。2)你能寫出這兩個圖形的面積嗎?

         。3)如何運用勾股定理?是否還有其他形式?

          這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

          (四)鞏固練習(xí),強化提高

          1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。

          2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。

         。ㄎ澹w納總結(jié),練習(xí)反饋

          引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。

          本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。

          勾股定理復(fù)習(xí)課說課稿4

          一、說教材分析

          1。教材的地位和作用

          華師大版八年級上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。

          因此他的教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:

          知識與技能:

          1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。

          2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。

          過程與方法:

          1、經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。

          2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語言表達能力和初步的邏輯推理能力。

          情感、態(tài)度與價值觀:

          1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

          2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識和然所精神。

          3、讓學(xué)生通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。

          由于八年級的學(xué)生具有一定分析能力,但活動經(jīng)驗不足,所以本節(jié)課教學(xué)重點:勾股定理的探索過程,并掌握和運用它。

          教學(xué)難點:分割,補全法證面積相等,探索勾股定理。

          二、說教法學(xué)法分析:

          要上好一堂課,就是要把所確定的三維目標(biāo)有機地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

          先從學(xué)生熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。

          學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。

          三、說教學(xué)程序設(shè)計

          1、故事引入新課,激起學(xué)生學(xué)習(xí)興趣。

          牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達哥拉斯的發(fā)現(xiàn)引入新課。

          2、探索新知

          在這里我設(shè)計了四個內(nèi)容:

         、偬剿鞯妊苯侨切稳叺年P(guān)系

         、谶呴L為3、4、5為邊長的直角三角形的三邊關(guān)系

         、蹖W(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

         、苋厼閍、b、c的直角三角形的`三邊的關(guān)系,(證明)

          ⑤勾股定理歷史介紹,讓學(xué)生體會勾股定理的文化價值。

          體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。

          3、新知運用:

         、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

         、谠谥苯侨切沃校阎螧=90°,AB=6,BC=8,求AC。

         、垡鲆粋人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

         、苋鐖D,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”。他們僅僅少走了步路(假設(shè)2步為1米),卻踩傷了花草。

          4、小結(jié)本課:

          學(xué)完了這節(jié)課,你有什么收獲?

          老師補充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

          反思:

          教學(xué)設(shè)計主要是體現(xiàn)從特殊到一般的知識形成過程,探索問題的設(shè)計上有點難,第二個問題應(yīng)加個3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設(shè)計進去,就為后面的練習(xí)留足時間。探索時間較長,整個課程推行進度較慢,練習(xí)較少。

          對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問題的思考不能及時想出來,沒有及時很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因為問題設(shè)計的較難,沒有很好的體現(xiàn)出探究。

          預(yù)期的目標(biāo)沒有很好的達成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。

          勾股定理復(fù)習(xí)課說課稿5

          一、教材分析

         。ㄒ唬┙滩乃幍牡匚

          這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。

         。ǘ└鶕(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

          1、能說出勾股定理的內(nèi)容。

          2、會初步運用勾股定理進行簡單的計算和實際運用。

          3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

          4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的.思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。

         。ㄈ┍菊n的教學(xué)重點:探索勾股定理

          本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。

          二、教法與學(xué)法分析:

          教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。

          學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

          三、教學(xué)過程設(shè)計

          (一)提出問題:

          首先創(chuàng)設(shè)這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設(shè)計具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。

         。ǘ⿲嶒灢僮鳎

          1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學(xué)生計算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進行表達,引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

          2、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。

         。ㄈw納驗證:

          1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。

          2、驗證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過測量、計算來驗證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進行愛國主義教育。

          (四)問題解決:

          讓學(xué)生解決開頭的實際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。完完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。

        【勾股定理復(fù)習(xí)課說課稿】相關(guān)文章:

        勾股定理說課稿,勾股定理說課稿范文08-16

        關(guān)于勾股定理說課稿 勾股定理第一課時說課稿04-20

        《勾股定理》的說課稿01-18

        《勾股定理》說課稿12-16

        勾股定理說課稿05-22

        勾股定理說課稿11-12

        《勾股定理》說課稿01-05

        《勾股定理》說課稿優(yōu)秀03-09

        勾股定理說課稿優(yōu)秀05-05

        勾股定理說課稿精選15篇12-16

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>