1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)說課稿

        時(shí)間:2023-07-28 14:05:25 數(shù)學(xué)說課稿 我要投稿

        高一數(shù)學(xué)說課稿(通用21篇)

          作為一位無私奉獻(xiàn)的人民教師,時(shí)常需要用到說課稿,是說課取得成功的前提。那么你有了解過說課稿嗎?下面是小編為大家整理的高一數(shù)學(xué)說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。

        高一數(shù)學(xué)說課稿(通用21篇)

          高一數(shù)學(xué)說課稿 1

          一、說教材

          1、教材的地位和作用

          《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學(xué))。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學(xué)課本中已現(xiàn)了一些數(shù)和點(diǎn)的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數(shù)學(xué)中的含義,集合是一個(gè)基礎(chǔ)性的概念,也是也是中職數(shù)學(xué)的開篇,是我們后續(xù)學(xué)習(xí)的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點(diǎn)的集合等。通過本章節(jié)的學(xué)習(xí),能讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)語言的簡潔和準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合的語言描述客觀,發(fā)展學(xué)生運(yùn)用數(shù)學(xué)語言交流的能力。

          2、 教學(xué)目標(biāo)

         。1)知識(shí)目標(biāo):

          a、通過實(shí)例了解集合的含義,理解集合以及有關(guān)概念;

          b、初步體會(huì)元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。

         。2)能力目標(biāo):

          a、讓學(xué)生感知數(shù)學(xué)知識(shí)與實(shí)際生活得密切聯(lián)系,培養(yǎng)學(xué)生解決實(shí)際的能力;

          b、學(xué)會(huì)借助實(shí)例分析,探究數(shù)學(xué)問題,發(fā)展學(xué)生的觀察歸納能力。

         。3)情感目標(biāo):

          a、通過聯(lián)系生活,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,形成積極的學(xué)習(xí)態(tài)度;

          b、通過主動(dòng)探究,合作交流,感受探索的樂趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。

          3、重點(diǎn)和難點(diǎn)

          重點(diǎn):集合的概念,元素與集合的關(guān)系。

          難點(diǎn):準(zhǔn)確理解集合的.概念。

          二、學(xué)情分析(說學(xué)情)

          對于中職生來說,學(xué)生的數(shù)學(xué)基礎(chǔ)相對薄弱,他們還沒具備一定的觀察、分析理解、解決實(shí)際問題的能力,在運(yùn)算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高,有厭學(xué)情緒。

          三、說教法

          針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習(xí)興趣。在創(chuàng)設(shè)情境認(rèn)知策略上給予適當(dāng)?shù)狞c(diǎn)撥和引導(dǎo),引導(dǎo)學(xué)生主動(dòng)思、交流、討論,提出問題。在此基礎(chǔ)上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。

          四、學(xué)習(xí)指導(dǎo)(說學(xué)法)

          教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì)學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)數(shù)學(xué)的特點(diǎn)這節(jié)課主要是教學(xué)生動(dòng)腦思考、多訓(xùn)練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與的意識(shí),教學(xué)生獲取知識(shí)的途徑,思考問題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達(dá)到預(yù)期的教學(xué)目的和效果。

          五、教學(xué)過程

          1、引入新課:

          a、創(chuàng)設(shè)情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認(rèn)識(shí)。

          b、介紹集合論的創(chuàng)始者康托爾

          2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現(xiàn)有的認(rèn)知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情接待探究過程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導(dǎo)學(xué)生尋找實(shí)例中的共同特征,培養(yǎng)學(xué)生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

          3、集合的概念,本課的重點(diǎn)。結(jié)合探究中的實(shí)例,讓學(xué)生說出集合和元素各是什么?知識(shí)的呈現(xiàn)由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問題中的集合和元素為后面學(xué)習(xí)兩者間的關(guān)系做好鋪墊。

          教師在這一環(huán)節(jié)做好學(xué)習(xí)指導(dǎo),確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

          4、 熟悉鞏固集合的概念通過例題,練習(xí)、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。

          5、集合的符號(hào)記法,為本節(jié)重點(diǎn)做好鋪墊。

          6、從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語言描述,如何用數(shù)學(xué)語言描述,給出元素與集合關(guān)系符號(hào)表示,在這個(gè)環(huán)節(jié)教師適當(dāng)引導(dǎo)學(xué)生積極主動(dòng)參與到知識(shí)逐步形成過程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習(xí)指導(dǎo):⑴集合元素的確定。⑵理解兩符號(hào)的含義。

          7、 思考交流本課的重要環(huán)節(jié)在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達(dá)自己見解的能力。

          8、 從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。

          9、 學(xué)生練習(xí):通過練習(xí),識(shí)記常見數(shù)集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。

          10、知識(shí)的實(shí)際應(yīng)用:

          問題不難,落實(shí)課本能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識(shí)和能力初步培養(yǎng)學(xué)生應(yīng)用集合的眼光觀看世界。

          11、課堂小節(jié)

          以學(xué)生小節(jié)為主教師幫助為輔,鞏固所學(xué)知識(shí),幫助學(xué)生認(rèn)識(shí)到要學(xué)會(huì)梳理所學(xué)內(nèi)容,要學(xué)會(huì)總結(jié)反思,使學(xué)生的認(rèn)識(shí)進(jìn)一步升華,培養(yǎng)學(xué)生的鬼納總結(jié)能力。

          六、評價(jià)

          教學(xué)評價(jià)的及時(shí)能有效調(diào)動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極作用,教學(xué)過程遵重學(xué)生之間的差異培養(yǎng)學(xué)生應(yīng)用集合的眼光看研究對象,注重過程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節(jié)。

          七、教學(xué)反思

          1、 通過現(xiàn)實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學(xué)生理解接受。

          2、 啟發(fā)探究教學(xué),營造學(xué)生的學(xué)習(xí)氛圍,培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的能力。

          高一數(shù)學(xué)說課稿 2

          一、教學(xué)背景

          1、教材分析

          《對數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學(xué)必修1第二章第二節(jié)第二部分內(nèi)容,對數(shù)函數(shù)是一類特殊的函數(shù),在實(shí)際生產(chǎn)過程中運(yùn)用很廣泛。同時(shí),通過對對數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認(rèn)識(shí)上來對函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究冪函數(shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。

          2、學(xué)情分析

          剛?cè)敫咭坏膶W(xué)生,仍保留著初中生許多學(xué)習(xí)特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對數(shù)函數(shù)又以對數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,導(dǎo)致初中生運(yùn)算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學(xué)的難度。但在此之前,學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì),學(xué)生已經(jīng)初步對新函數(shù)的研究方法有所了解,為本節(jié)的學(xué)習(xí)奠定了基礎(chǔ)。

          基于以上分析,我制定如下教學(xué)目標(biāo)及重、難點(diǎn):

          3、教學(xué)目標(biāo)

          知識(shí)與技能:

          初步掌握對數(shù)函數(shù)的概念、圖象及性質(zhì),并應(yīng)用性質(zhì)解決簡單數(shù)學(xué)問題。

          過程與方法:

          經(jīng)歷對數(shù)函數(shù)性質(zhì)的探索過程,體會(huì)函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應(yīng)用。

          情感態(tài)度與價(jià)值觀:

          培養(yǎng)勇于探索的精神,培養(yǎng)學(xué)生的成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。

          4、教學(xué)重、難點(diǎn)

          重點(diǎn):理解對數(shù)函數(shù)的概念,掌握對數(shù)函數(shù)的圖象及性質(zhì)。

          難點(diǎn):由圖象探究函數(shù)性質(zhì),應(yīng)用性質(zhì)解決具體問題。

          二、教學(xué)方法及手段

          1、教法

          根據(jù)建構(gòu)主義的學(xué)習(xí)理論和新課程標(biāo)準(zhǔn)理念,本節(jié)課以自主探究法和講解法為主,以練習(xí)法為輔,引導(dǎo)學(xué)生自己觀察、歸納、分析,培養(yǎng)學(xué)生采用自主探究的方法進(jìn)行學(xué)習(xí),使學(xué)生體會(huì)學(xué)習(xí)的樂趣。

          2、學(xué)法

          (1)類比學(xué)習(xí):通過指數(shù)函數(shù)類比學(xué)習(xí)對數(shù)函數(shù)。

          (2)小組合作學(xué)習(xí):將學(xué)生分成7個(gè)小組,通過小組內(nèi)討論交流,歸納得出對數(shù)函數(shù)的圖象和性質(zhì)。

          3、教學(xué)手段

          采用多媒體輔助教學(xué)。

          三、教學(xué)教程

          1、情境引入

          通過銀行的復(fù)利計(jì)算問題,逐步引出對數(shù)函數(shù)。

          設(shè)計(jì)意圖:情景來源于生活,通過生活中的實(shí)例來反應(yīng)對數(shù)函數(shù)的重要性,目的在于激發(fā)學(xué)生學(xué)習(xí)的興趣,讓每一個(gè)學(xué)生都主動(dòng)融入到學(xué)習(xí)中。

          2、新知探索

          通過上述模型,讓學(xué)生給對數(shù)函數(shù)下定義。

          學(xué)生用描點(diǎn)法畫和的圖象,教師再借助于計(jì)算機(jī)再畫幾個(gè)對數(shù)函數(shù)的`圖象,讓學(xué)生觀察并總結(jié)出一般情況。

          以“你們能根據(jù)圖象歸納出對數(shù)函數(shù)的性質(zhì)嗎?”設(shè)問,引導(dǎo)學(xué)生能過圖象的特征得出對應(yīng)的性質(zhì)。

          例比較下列各組數(shù)中兩個(gè)值的大。

          (1)log23.4和log28.5;

          (2) log0.33.4和log0.38.5;

          (3) loga3.4和loga8.5(a>0,且a≠1);

          (4) log23.4和log3.42;

          (5) log3.42和log0.38.5。

          3、鞏固練習(xí)

          (1)比較大。

          lg6________lg8;ln1.3________

          (2)比較正數(shù)m,n的大小:

          若,則m_____n;若,則m_____n.

          4、總結(jié)提煉

          (1)自主探究新知識(shí)的方法;

          (2)本節(jié)課應(yīng)用了哪些數(shù)學(xué)思想。

          5、布置作業(yè)

          (1)閱讀教材P70~P72,梳理對數(shù)函數(shù)的概念、圖象、性質(zhì)等知識(shí)點(diǎn);

          (2)教材P74—7、8

          四、板書設(shè)計(jì)

          2.2.2對數(shù)函數(shù)及其性質(zhì)

          一、概念例題

          二、圖象

          三、性質(zhì)

          四、教學(xué)反思

          高一數(shù)學(xué)說課稿 3

          一、教材分析

          1、教材的地位與作用

          模擬方法是北師大版必修3第三章概率第3節(jié),也是必修3最后一節(jié),本節(jié)內(nèi)容是在學(xué)習(xí)了古典概型的基礎(chǔ)上,用模擬方法估計(jì)一些用古典概型解決不了的實(shí)際問題的概率,使學(xué)生初步體會(huì)幾何概型的意義;而模擬試驗(yàn)是培養(yǎng)學(xué)生動(dòng)手能力、小組合作能力、和試驗(yàn)分析能力的好素材。

          2、教學(xué)重點(diǎn)與難點(diǎn)

          教學(xué)重點(diǎn):借助模擬方法來估計(jì)某些事件發(fā)生的概率;

          幾何概型的概念及應(yīng)用

          體會(huì)隨機(jī)模擬中的統(tǒng)計(jì)思想:用樣本估計(jì)總體。

          教學(xué)難點(diǎn):設(shè)計(jì)和操作一些模擬試驗(yàn),對從試驗(yàn)中得出的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)、分析;

          應(yīng)用隨機(jī)數(shù)解決各種實(shí)際問題。

          二、教學(xué)目標(biāo):

          1、知識(shí)目標(biāo):使學(xué)生了解模擬方法估計(jì)概率的實(shí)際應(yīng)用,初步體會(huì)幾何概型的意義;并能夠運(yùn)用模擬方法估計(jì)概率。

          2、能力目標(biāo):培養(yǎng)學(xué)生實(shí)踐能力、協(xié)調(diào)能力、創(chuàng)新意識(shí)和處理數(shù)據(jù)能力以及應(yīng)用數(shù)學(xué)意識(shí)。

          3、情感目標(biāo):鼓勵(lì)學(xué)生動(dòng)手試驗(yàn),探索、發(fā)現(xiàn)規(guī)律并解決實(shí)際問題,激發(fā)學(xué)生學(xué)習(xí)的興趣。

          三、過程分析

          1、創(chuàng)設(shè)良好的學(xué)習(xí)情境,激發(fā)學(xué)生學(xué)習(xí)的欲望

          從學(xué)生的生活經(jīng)驗(yàn)和已有知識(shí)背景出發(fā),提出用學(xué)過知識(shí)不能解決的問題:房間的紗窗破了一個(gè)小洞,隨機(jī)向紗窗投一粒小石子,估計(jì)小石子從小洞穿過的概率。能用古典概型解決嗎?為什么?從而引起認(rèn)知矛盾,激發(fā)學(xué)生學(xué)習(xí)、探究的興趣。

          2、以實(shí)驗(yàn)和問題引導(dǎo)學(xué)習(xí)活動(dòng),使學(xué)生經(jīng)歷“數(shù)學(xué)化”、“再創(chuàng)造”的過程

          通過兩個(gè)實(shí)驗(yàn):

          (1)取一個(gè)矩形,在面積為四分之一的部分畫上陰影,隨機(jī)地向矩形中撒一把豆子(我們數(shù)100粒),統(tǒng)計(jì)落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),觀察它們有怎樣的比例關(guān)系?

          (2)反過來,取一個(gè)已知長和寬的矩形,隨機(jī)地向矩形中撒一把豆子,統(tǒng)計(jì)落在陰影內(nèi)的豆子數(shù)與落在矩形內(nèi)的總豆子數(shù),你能根據(jù)豆子數(shù)得到什么結(jié)論?

          讓學(xué)生分組合作,利用課前準(zhǔn)備的材料進(jìn)行試驗(yàn)、討論、分析,使學(xué)生主動(dòng)進(jìn)入探究狀態(tài),充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,使他們感受到探討數(shù)學(xué)問題的樂趣,培養(yǎng)學(xué)生與他人合作交流的能力以及團(tuán)隊(duì)精神。根據(jù)各小組試驗(yàn)結(jié)果,提出問題,引導(dǎo)學(xué)生進(jìn)行猜想,得出結(jié)論:

          使學(xué)生了解結(jié)論產(chǎn)生的背景,輕易地理解了這個(gè)結(jié)論,并培養(yǎng)學(xué)生數(shù)據(jù)分析能力、抽象概括能力。讓他們感覺到數(shù)學(xué)定理、結(jié)論其實(shí)離他們很近,增強(qiáng)學(xué)生學(xué)習(xí)的動(dòng)力和信心。

          3、類比遷移,注重?cái)?shù)學(xué)與實(shí)際聯(lián)系,發(fā)展學(xué)生應(yīng)用意識(shí)和能力

          (1)求不規(guī)則圖形面積

          如圖,曲線y=-x2+1與x軸,y軸圍成區(qū)域A,

          如何求陰影部分面積?

          通過把不規(guī)則圖形放在規(guī)則的、

          易求面積的圖形中,利用模擬方法

          求不規(guī)則圖形面積,在解決問題時(shí)

          學(xué)生提出了借助不同圖形,教師要

          引導(dǎo)學(xué)生用最佳圖形。讓學(xué)生把不熟

          悉的問題轉(zhuǎn)化為熟悉的問題情

          境,引導(dǎo)學(xué)生利用已有知識(shí)解決新

          的問題,培養(yǎng)學(xué)識(shí)知識(shí)應(yīng)用、類比遷移的能力。

          本例通過介紹用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù)來模擬,使學(xué)生了解現(xiàn)代信息技術(shù)的應(yīng)用,了解另一種模擬方法。

          (2)估計(jì)圓周率π的值

          讓學(xué)生設(shè)計(jì)模擬試驗(yàn),估計(jì)圓周率π的.值,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),使學(xué)習(xí)過程成為學(xué)生的再創(chuàng)造過程。達(dá)到本課的目標(biāo),使學(xué)生了解模擬方法估計(jì)概率的實(shí)際應(yīng)用,能夠運(yùn)用模擬方法估計(jì)概率。通過設(shè)計(jì)和操作模擬試驗(yàn),對得出數(shù)據(jù)進(jìn)行統(tǒng)計(jì)、分析,解決本課難點(diǎn)。讓學(xué)生體驗(yàn)數(shù)學(xué)的發(fā)現(xiàn)和創(chuàng)造過程,發(fā)展他們的創(chuàng)新意識(shí)。同時(shí)通過對介紹古代數(shù)學(xué)家祖沖之,對學(xué)生進(jìn)行愛國主義教育,培養(yǎng)學(xué)生愛國情操。

          (3)幾何概型概率計(jì)算方法

          ①通過問題:如果正方形面積不變,但形狀改變,所得比例發(fā)生變化嗎?

          引出幾何概型的概念、特點(diǎn)和計(jì)算公式

          把試驗(yàn)的結(jié)論上升到理論,使學(xué)生的認(rèn)識(shí)有一個(gè)從試驗(yàn)到理論的升華,使學(xué)生掌握基本概念,并運(yùn)用理論解決問題,使學(xué)生的認(rèn)識(shí)有一個(gè)質(zhì)的飛躍,

         、诶喝鐖D,在墻上掛著一塊邊長為16cm的正方形木板,

          上面畫了小、中、大三個(gè)同心圓,半徑分別為2cm、4cm、

          6cm,某人站在3m處向此板投鏢,設(shè)投鏢擊中線上或沒有

          投中木板時(shí)都不算,可重投。

          問:(1)投中大圓內(nèi)的概率是多少?

          (2)投中小圓和中圓形成的圓環(huán)的概率是多少?

          配套習(xí)題是知識(shí)的直接運(yùn)用,有助于學(xué)生鞏固新學(xué)的知識(shí),使學(xué)生掌握基本知識(shí)和技能。

          ③通過介紹本章開篇中“蒲豐投針”問題,利用計(jì)算機(jī)動(dòng)態(tài)顯示投針試驗(yàn),使學(xué)生對此試驗(yàn)有初步了解,開闊學(xué)生視野,體現(xiàn)數(shù)學(xué)的文化價(jià)值,留給學(xué)生課后探究的空間。

          4、通過實(shí)際問題:小明家的晚報(bào)在下午5:30~6:30之間的任何一個(gè)時(shí)間隨機(jī)地被送到,小明一家人在下午6:00~7:00之間的任何一個(gè)時(shí)間隨機(jī)地開始晚餐。(1)你認(rèn)為晚報(bào)在晚餐開始之前被送到和在晚餐開始之后被送到哪一種可能性更大?(2)晚報(bào)在晚餐開始之前被送到的概率是多少?

          引導(dǎo)學(xué)生利用轉(zhuǎn)盤設(shè)計(jì)試驗(yàn),并分組進(jìn)行試驗(yàn),鼓勵(lì)學(xué)生自主探索與合作交流,培養(yǎng)學(xué)生創(chuàng)新意識(shí),并使學(xué)生了解模擬形式的多樣化,并通過模擬進(jìn)一步熟悉試驗(yàn)的操作,提高動(dòng)手能力和小組協(xié)調(diào)能力。通過問題拓展,介紹用理論解決的方法,激起學(xué)生再探究的欲望,留給學(xué)生課后思考的空間。

          4、課堂小結(jié)

          由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容,讓學(xué)生對所學(xué)內(nèi)容有全面、系統(tǒng)的認(rèn)識(shí)。

          四、教法、學(xué)法分析

          本節(jié)課是在采用信息技術(shù)和數(shù)學(xué)知識(shí)整合的基礎(chǔ)上從生活實(shí)際中提煉數(shù)學(xué)素材,使學(xué)生在熟悉的背景下、在認(rèn)知沖突中展開學(xué)習(xí),通過試驗(yàn)活動(dòng)的開展,使學(xué)生在試驗(yàn)、探究活動(dòng)中獲取原始數(shù)據(jù),進(jìn)而通過數(shù)與形的類比,在老師的引導(dǎo)、啟發(fā)下感悟出模擬的數(shù)學(xué)結(jié)論,通過結(jié)論的運(yùn)用提升為數(shù)學(xué)模型并加以應(yīng)用,它實(shí)現(xiàn)了學(xué)生在學(xué)習(xí)過程中對知識(shí)的探究、發(fā)現(xiàn)的創(chuàng)作經(jīng)歷,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,同學(xué)們在親身經(jīng)歷知識(shí)結(jié)論的探究中獲得了對數(shù)學(xué)價(jià)值的新認(rèn)識(shí)。

          五、評價(jià)分析

          本課是使學(xué)生通過試驗(yàn)掌握用模擬方法估計(jì)概率,主要是用分組合作試驗(yàn)、探究方法研究數(shù)學(xué)知識(shí),因此評價(jià)時(shí)更注重探究和解決問題的全過程,鼓勵(lì)學(xué)生的探索精神,引導(dǎo)學(xué)生對問題的正確分析與思考,關(guān)注學(xué)生提出問題、參與解決問題的全過程,關(guān)注學(xué)生的創(chuàng)新精神和實(shí)踐能力。

          高一數(shù)學(xué)說課稿 4

          一、教材分析

          1、教材中的地位與作用:“2.1直線與方程”是蘇教版數(shù)學(xué)必修2的第二章的內(nèi)容,是解析幾何的開篇之作。而“2.1.1直線的斜率”這一節(jié)是這一章的第一節(jié),是用斜率與傾斜角來刻畫直線方向的,它學(xué)習(xí)的內(nèi)容是基礎(chǔ)的,學(xué)習(xí)方法是重要的。是為今后用代數(shù)的方法研究解析幾何問題的的學(xué)習(xí)奠定基礎(chǔ),起到了啟下的作用。

          2、教學(xué)的重點(diǎn)與難點(diǎn):根據(jù)課程標(biāo)準(zhǔn)的要求,本節(jié)教學(xué)的重點(diǎn)為:直線斜率的本質(zhì)認(rèn)識(shí)與直線斜率的坐標(biāo)公式。因?yàn)檫^定點(diǎn)的直線的傾斜程度就是用直線的斜率來刻畫的,斜率的是通過直線上兩點(diǎn)的縱坐標(biāo)的差與橫坐標(biāo)的差的比來計(jì)算的,反映了用代數(shù)的方法來研究幾何問題的核心思想。教學(xué)的難點(diǎn)為:直線斜率、傾斜角的定義和本質(zhì)的理解、斜率與傾斜角之間的關(guān)系。因?yàn)閮A斜角實(shí)際上是直線相對x軸的傾斜程度來反映直線的傾斜程度的,它與斜率一樣,都是刻畫直線的傾斜程度,但兩者的角度不同,所以存在一定的聯(lián)系,這一聯(lián)系正是教學(xué)的難點(diǎn)所在。

          二、教學(xué)目標(biāo)的確定

          由于“2.1.1直線的斜率”是“直線與方程”的第一課時(shí),又是解析幾何的開始部分。從學(xué)生原有的認(rèn)知上分析,確定教學(xué)的目標(biāo)為:

          1、知識(shí)目標(biāo):

         。1)理解直線的斜率,掌握過兩點(diǎn)的直線的斜率公式

         。2)理解直線的傾斜角的定義,知道直線的傾斜角的范圍

         。3)掌握直線的斜率與傾斜角之間的關(guān)系

         。4)使學(xué)生初步感受直線的方向與直線的斜率之間的對應(yīng)關(guān)系,從而體會(huì)到要研究直線的方向的變化規(guī)律,只要研究直線的斜率的變化的規(guī)律

          2、能力目標(biāo):培養(yǎng)學(xué)生的主動(dòng)探究知識(shí)、合作交流的意識(shí),觀測、探究、分析問題、解決問題的能力

          3、情感目標(biāo):通過課堂教學(xué)培養(yǎng)學(xué)生的數(shù)行結(jié)合的美感與嚴(yán)謹(jǐn)治學(xué)的生活態(tài)度

          三、教學(xué)與學(xué)法

          1、學(xué)法指導(dǎo):學(xué)生原有對直線知識(shí)的掌握情況為:在坐標(biāo)系中能畫出直線的圖形,而高中則要求學(xué)生能用幾何量:斜率與傾斜角來刻畫直線的傾斜程度,能用代數(shù)的方法研究斜率的問題,所以在學(xué)法上要指導(dǎo)學(xué)生:觀測生活中的樓梯的坡度;探究坡度的大小與數(shù)學(xué)中的斜率有關(guān)系;領(lǐng)悟斜率的計(jì)算公式;理解斜率與傾斜角的關(guān)系。

          2、教法指導(dǎo):引導(dǎo)學(xué)生學(xué)會(huì)觀測目標(biāo),點(diǎn)撥生活中的量與量關(guān)系的數(shù)學(xué)本質(zhì),合理、嚴(yán)格的定義直線的傾斜角。正確推倒斜率與傾斜角的關(guān)系式。

          四、教學(xué)過程設(shè)計(jì)

          1、問題情境,提出課題:從生活實(shí)例上樓梯出發(fā):有的樓梯陡一些,有的樓梯平一些。

          問題1:這種“陡”與“平”可以用坡度來刻畫,即“高度”與“寬度”的比值大小來刻畫,那么直線的傾斜程度又如何來刻畫呢?是從學(xué)生的生活發(fā)展區(qū)出發(fā),調(diào)動(dòng)學(xué)生的積極性。類比發(fā)現(xiàn)在直角坐標(biāo)系中直線的傾斜程度可以用縱坐標(biāo)的增量與橫坐標(biāo)的增量的比來刻畫。從而引出將要學(xué)習(xí)的課題――直線的斜率。這樣引入課題顯得比較自然,也符合學(xué)生的思維認(rèn)知規(guī)律。

          2、自主探究,形成概念:

          問題2:刻畫直線的傾斜程度—斜率,那么用什么量來表示這種“坡度”呢?

          在直線上任取兩點(diǎn),如果,那么直線PQ的斜率為(),同時(shí)提醒學(xué)生要注意:

         。1)斜率公式與兩點(diǎn)的順序無關(guān),與所選擇的直線上兩點(diǎn)的位置無關(guān);

         。2)它是一個(gè)比值,是一個(gè)定值;

          (3)前提是,當(dāng)時(shí),即與軸垂直的直線,它的斜率是不存在。

          3、解決問題,理解概念

          通過對例1的分析與講解目的是幫助學(xué)生理解經(jīng)過兩點(diǎn)的直線的斜率公式,使學(xué)生掌握直線斜率的符號(hào)與直線的方向之間的對應(yīng)關(guān)系。還可以進(jìn)一步提出思考:

         。1)給出斜率,畫出符合條件的直線;

         。2)給出直線讓學(xué)生分析直線斜率的特征。對題目作進(jìn)一步的探討。這樣有利于培養(yǎng)學(xué)生的發(fā)散思維,促使良好思維習(xí)慣的'形成

          例2是畫圖問題,使學(xué)生進(jìn)一步理解斜率的幾何意義,在例2的畫圖過程中讓學(xué)生感受直線相對x軸的傾斜程度,應(yīng)該還與一個(gè)角有關(guān)系。從而引出直線傾斜角的概念

          問3:如何定義直線的傾斜角呢?傾斜角概念得出后,教師總結(jié):

         。1)直線的傾斜角與斜率一樣,也是刻畫直線的傾斜程度的量,但直線的傾斜角側(cè)重與直觀形象,直線的斜率則側(cè)重與數(shù)量關(guān)系;

          (2)任何直線都有傾斜角,但不是任何直線都有斜率。

          五、鞏固練習(xí),及時(shí)反饋

          課本練習(xí)1、2、3、4。通過練習(xí)一方面可以加深學(xué)生對定義、公式的理解;另一方面也旨在了解學(xué)生對概念的掌握情況,以便調(diào)節(jié)后面的教學(xué)節(jié)奏。

          六、回顧反思,形成系統(tǒng)

          我是引導(dǎo)學(xué)生從知識(shí)內(nèi)容和思想方法兩個(gè)方面進(jìn)行小結(jié)的。通過小結(jié)使學(xué)生對本節(jié)課的知識(shí)結(jié)構(gòu)有一個(gè)清晰的認(rèn)識(shí)。在小結(jié)時(shí)不僅概括所學(xué)知識(shí),而且還對所用到的數(shù)學(xué)方法和涉及的數(shù)學(xué)思想也進(jìn)行歸納,這樣既可以使學(xué)生完成知識(shí)建構(gòu),又可以培養(yǎng)其能力。

          七、作業(yè)布置

          所布置的作業(yè)都是緊緊圍繞著“直線的斜率”的概念及運(yùn)用。通過作業(yè)來反饋知識(shí)掌握效果,鞏固所學(xué)知識(shí),強(qiáng)化基本技能的訓(xùn)練,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和品質(zhì)。

          八、關(guān)于評價(jià)

          在授課過程中,我根據(jù)學(xué)生對課堂提問及例習(xí)題的解答情況,及時(shí)調(diào)節(jié)課堂節(jié)奏,“易”則可加快,“難”則應(yīng)放慢速度,并借用富有啟發(fā)性的、階梯性的提問對學(xué)生進(jìn)行思維引導(dǎo)。

          課后,我將通過批改作業(yè)以及與學(xué)生談話等方式,來了解學(xué)生對“直線的斜率”概念的掌握情況,檢查教學(xué)目的的實(shí)現(xiàn)程度。同時(shí),對下一步教學(xué)工作作出必要的調(diào)整和改進(jìn)。另外,通過對作業(yè)的評判和統(tǒng)計(jì)課堂練習(xí)完成情況,有助于學(xué)生認(rèn)識(shí)自我,讓他們獲得成就感,從而增強(qiáng)其自信心,培養(yǎng)學(xué)生積極積極的學(xué)習(xí)態(tài)度。

          高一數(shù)學(xué)說課稿 5

          說課的內(nèi)容是《對數(shù)函數(shù)》,現(xiàn)就教材、教法、學(xué)法、教學(xué)程序、板書五個(gè)方面進(jìn)行說明。懇請?jiān)谧母魑粚<摇⒗蠋熍u指正。

          一、說教材

          1、教材的地位、作用及編寫意圖

          《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學(xué)第一冊第四章第八節(jié)。函數(shù)是高中數(shù)學(xué)的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識(shí)在數(shù)學(xué)和其 他許多學(xué)科中有著廣泛的應(yīng)用;學(xué)生已經(jīng)學(xué)習(xí)了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;“對數(shù)函數(shù)”這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個(gè)變量的相互關(guān)系,蘊(yùn)含了函數(shù)與方程的數(shù)學(xué)思想與數(shù)學(xué)方法,是以后數(shù)學(xué)學(xué)習(xí)中不可缺少的部分,也是高考的必考內(nèi)容。

          2、教學(xué)目標(biāo)的確定及依據(jù)。

          依據(jù)教學(xué)大綱和學(xué)生獲得知識(shí)、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):

          (1) 知識(shí)目標(biāo):理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。

          (2) 能力目標(biāo):培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。

          (3) 德育目標(biāo):培養(yǎng)學(xué)生對待知識(shí)的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。

          (4) 情感目標(biāo):在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。

          3、教學(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵

          重點(diǎn):對數(shù)函數(shù)的概念、圖象和性質(zhì);

          難點(diǎn):利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);

          關(guān)鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng)。

          二、說教法

          教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:

          (1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實(shí)驗(yàn)、探索、歸納。

          (2)采用“從特殊到一般”、“從具體到抽象”的方法。

          (3)體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法。

          (4)多媒體演示法。

          三、說學(xué)法

          教給學(xué)生方法比教給學(xué)生知識(shí)更重要,本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的'時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):

          (1)對照比較學(xué)習(xí)法:學(xué)習(xí)對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。

          (2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索、得出對數(shù)函數(shù)的定義。

          (3)自主性學(xué)習(xí)法:通過實(shí)驗(yàn)畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。

          (4)反饋練習(xí)法:檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。

          這樣可發(fā)揮學(xué)生的主觀能動(dòng)性,有利于提高學(xué)生的各種能力。

          四、說教學(xué)程序

          1、復(fù)習(xí)導(dǎo)入

         。1)復(fù)習(xí)提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學(xué)生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。

          設(shè)計(jì)意圖:設(shè)計(jì)的提問既與本節(jié)內(nèi)容有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知清除了障礙,有意識(shí)地培養(yǎng)學(xué)生分析問題的能力。

         。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?

          設(shè)計(jì)意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望知道問題的答案。

          2、認(rèn)定目標(biāo)(出示教學(xué)目標(biāo))

          3、導(dǎo)學(xué)達(dá)標(biāo)

          按"教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線”的原則,安排師生互動(dòng)活動(dòng).

          (1)對數(shù)函數(shù)的概念

          引導(dǎo)學(xué)生從對數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進(jìn)行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是 y=logax,見課件。 把函數(shù)y=logax叫做對數(shù)函數(shù),其中a>0且a≠1。從而引出對數(shù)函數(shù)的概念,展示課件。

          設(shè)計(jì)意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識(shí)逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學(xué)生易于接受。

          因?yàn)閷?shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對應(yīng)法則及圖象間的關(guān)系,培養(yǎng)學(xué)生參與意識(shí),通過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。

          (2)對數(shù)函數(shù)的圖象

          提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對數(shù)函數(shù)的圖象呢?讓學(xué)生思考并回答,用描點(diǎn)法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,列表、描點(diǎn)畫圖。再考慮一下,我們還可以用什么方法畫出對數(shù)函數(shù)的圖象呢?

          讓學(xué)生回答,畫出指數(shù)函數(shù)關(guān)于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。

          教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點(diǎn)法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。

          方法一(描點(diǎn)法)首先列出x,y(y=log2x,y=log x)值的對應(yīng)表,因?yàn)閷?shù)函數(shù)的定義域?yàn)閤>0,因此可取x= , , ,1,2,4,8,請計(jì)算對應(yīng)的y值,然后在坐標(biāo)系內(nèi)描點(diǎn)、畫出它們的圖象.

          方法二(圖象變換法)因?yàn)閷?shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù), 圖象關(guān)于直線y=x對稱,所以只要畫出y=ax的圖象關(guān)于直線y=x對稱的曲線,就可以得到y(tǒng)=logax.的圖象。學(xué)生動(dòng)手做實(shí)驗(yàn),先描出y=2x的圖象,畫出它關(guān)于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。

          設(shè)計(jì)意圖:用這種對稱變換的方法畫函數(shù)的圖象,可以加深和鞏固學(xué)生對互為反函數(shù)的兩個(gè)函數(shù)之間的認(rèn)識(shí),便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點(diǎn)法畫函數(shù)圖象更為方便,兩種方法可同時(shí)進(jìn)行,分析畫法之后,可讓學(xué)生自由選擇畫法。

          這樣可以充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的積極性。

         。3)對數(shù)函數(shù)的性質(zhì)

          在理解對數(shù)函數(shù)定義的基礎(chǔ)上,掌握對數(shù)函數(shù)的圖象和性質(zhì)是本節(jié)的重點(diǎn),關(guān)鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領(lǐng),講對數(shù)函數(shù)的性質(zhì),可先在同一坐標(biāo)系內(nèi)畫出上述兩個(gè)對數(shù)函數(shù)的圖象,根據(jù)圖象讓學(xué)生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補(bǔ)充。

          作了以上分析之后,再分a>1與0<a<1兩種情況列出對數(shù)函數(shù)圖象和性質(zhì)表,體現(xiàn)了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進(jìn)行詳細(xì)講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個(gè)表以便讓學(xué)生對比著記憶。

          設(shè)計(jì)意圖:這種講法既嚴(yán)謹(jǐn)又直觀易懂,還能讓學(xué)生主動(dòng)參與教學(xué)過程,對培養(yǎng)學(xué)生的創(chuàng)新能力有幫助,學(xué)生易于接受易于掌握,而且利用表格,可以突破難點(diǎn)。

          由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)

          設(shè)計(jì)意圖:通過比較對照的方法,學(xué)生更好地掌握兩個(gè)函數(shù)的定義、圖象和性質(zhì),認(rèn)識(shí)兩個(gè)函數(shù)的內(nèi)在聯(lián)系,提高學(xué)生對函數(shù)思想方法的認(rèn)識(shí)和應(yīng)用意識(shí)。

          4、鞏固達(dá)標(biāo)(見課件)

          這一訓(xùn)練是為了培養(yǎng)學(xué)生利用所學(xué)知識(shí)解決實(shí)際問題的能力,通過這個(gè)環(huán)節(jié)學(xué)生可以加深對本節(jié)知識(shí)的理解和運(yùn)用,并從講解過程中找出所涉及的知識(shí)點(diǎn),予以總結(jié)。充分體現(xiàn)“數(shù)形結(jié)合”和“分類討論”的思想。

          5、反饋練習(xí)(見課件)

          習(xí)題是對學(xué)生所學(xué)知識(shí)的反饋過程,教師可以了解學(xué)生對知識(shí)掌握的情況。

          6、歸納總結(jié)(見課件)

          引導(dǎo)學(xué)生對主要知識(shí)進(jìn)行回顧,使學(xué)生對本節(jié)有一個(gè)整體的把握,因此,從三方面進(jìn)行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。

          7、課外作業(yè) :(1)完成P178 A組1、2、3題

         。2)當(dāng)?shù)讛?shù)a>1與0<a<1時(shí),底數(shù)不同,對數(shù)函數(shù)圖象有什么持點(diǎn)?

          五、說板書

          板書設(shè)計(jì)為表格式(見課件),這樣的板書簡明清楚,重點(diǎn)突出,加深學(xué)生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學(xué)效果。

          高一數(shù)學(xué)說課稿 6

          一、教材分析:

          1、教材的地位與作用。

          本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。"用概率預(yù)測隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

          在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的'是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

          2、重點(diǎn)與難點(diǎn)。

          重點(diǎn):對概率意義的理解,經(jīng)過多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。

          難點(diǎn):對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

          二、目的分析:

          知識(shí)與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。

          過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。

          情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。

          三、教法、學(xué)法分析:

          引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

          四、教學(xué)過程分析:

          1、引導(dǎo)學(xué)生探究

          精心設(shè)計(jì)問題一,學(xué)生經(jīng)過對問題一的探究,一方面復(fù)習(xí)前面學(xué)過的"確定事件和不確定事件"的知識(shí),為學(xué)好本節(jié)資料理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測隨機(jī)事件可能性發(fā)生大。。引導(dǎo)學(xué)生對問題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過程。

          2、歸納概括

          學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。

          引導(dǎo)學(xué)生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題能力,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。

          3、舉例應(yīng)用

         、乓龑(dǎo)學(xué)生對教材書例題、問題一、問題二中問題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

          ⑵引導(dǎo)學(xué)生對練習(xí)中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。

          4、深化發(fā)展

         、旁O(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。

         、谱寣W(xué)生設(shè)計(jì)活動(dòng)資料,對知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。

          高一數(shù)學(xué)說課稿 7

          一、說教材

          教材是連接教師和學(xué)生的紐帶,在整個(gè)教學(xué)過程中起著至關(guān)重要的作用,所以,先談?wù)勎覍滩牡睦斫狻?/p>

          正弦函數(shù)的性質(zhì)是選自北師大版高中數(shù)學(xué)必修四第一章三角函數(shù)第五節(jié)正弦函數(shù)的性質(zhì)與圖象5.3正弦函數(shù)的性質(zhì)的資料,主要資料便是正弦函數(shù)的性質(zhì),教材經(jīng)過作圖、觀察、誘導(dǎo)公式等方法得出正弦函數(shù)y=sinx的性質(zhì)。并且教材突出了正弦函數(shù)圖象的重要性,能夠幫忙學(xué)生更深刻的認(rèn)識(shí)、理解、記憶正弦函數(shù)的性質(zhì)。

          二、說學(xué)情

          合理把握學(xué)情是上好一堂課的基礎(chǔ),本次課所應(yīng)對的學(xué)生群體具有以下特點(diǎn)。

          高中的學(xué)生掌握了必須的基礎(chǔ)知識(shí),思維較敏捷,動(dòng)手能力較強(qiáng),但理解能力、自主學(xué)習(xí)能力較缺乏;诖,本節(jié)課注重引導(dǎo)學(xué)生動(dòng)腦思考,更富有啟發(fā)性。并且學(xué)生的自尊心較強(qiáng),所以對學(xué)生的評價(jià)注重先揚(yáng)后抑,鼓勵(lì)學(xué)生多多發(fā)言,還能夠?qū)W(xué)生進(jìn)行正確引導(dǎo)。

          三、說教學(xué)目標(biāo)

          根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維目標(biāo):

          (一)知識(shí)與技能

          會(huì)用正弦函數(shù)圖象研究和理解正弦函數(shù)的性質(zhì),能熟練運(yùn)用正弦函數(shù)的性質(zhì)解決問題。

          (二)過程與方法

          經(jīng)過正弦函數(shù)的圖象,探索正弦函數(shù)的性質(zhì),提升邏輯思考、歸納總結(jié)的能力。

          (三)情感態(tài)度價(jià)值觀

          經(jīng)過本節(jié)的學(xué)習(xí)體驗(yàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性,養(yǎng)成細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)認(rèn)真的良好思維習(xí)慣和不斷探求新知識(shí)的精神。

          四、說教學(xué)重難點(diǎn)

          本著新課程標(biāo)準(zhǔn),吃透教材,了解學(xué)生特點(diǎn)的基礎(chǔ)上我確定了以下重難點(diǎn)

         。ㄒ唬┙虒W(xué)重點(diǎn)

          由正弦函數(shù)的圖象得到正弦函數(shù)的性質(zhì)。

          (二)教學(xué)難點(diǎn)

          正弦函數(shù)的周期性和單調(diào)性。

          五、說教法和學(xué)法

          此刻的文盲不是不懂字的人,而是沒有掌握學(xué)習(xí)方法的人。因而在本節(jié)課我將采用講授法、探究法、練習(xí)法等教學(xué)方法,我在教學(xué)過程中異常重視對學(xué)生的引導(dǎo),讓學(xué)生從機(jī)械的學(xué)答中向?qū)W問轉(zhuǎn)變,從學(xué)會(huì)到會(huì)學(xué),成為真正學(xué)習(xí)的主人。

          六、說教學(xué)過程

          在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項(xiàng)活動(dòng)的安排也注重互動(dòng)、交流,限度的調(diào)動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。

         。ㄒ唬┬抡n導(dǎo)入

          首先是導(dǎo)入環(huán)節(jié),在這一環(huán)節(jié)中我將采用復(fù)習(xí)的導(dǎo)入方法。

          我會(huì)讓學(xué)生回憶正弦函數(shù)的概念,以及上節(jié)課所學(xué)的正弦函數(shù)圖象,讓學(xué)生根據(jù)圖象思考正弦函數(shù)有哪些性質(zhì)從而引出課題——《正弦函數(shù)的性質(zhì)》。

          這樣設(shè)計(jì)能夠讓學(xué)生對前面的知識(shí)進(jìn)行充分的回顧,為本節(jié)課的順利開展奠定基礎(chǔ)。

         。ǘ┬轮剿

          接下來是新課講授環(huán)節(jié),在這一環(huán)節(jié)我將采用講解法、小組合作探究的方式進(jìn)行。

          讓學(xué)生自我經(jīng)過五點(diǎn)作圖法畫出正弦函數(shù)的圖象,并在大屏幕上展示正弦函數(shù)的標(biāo)準(zhǔn)圖象。

          學(xué)生一邊看投影,一邊思考如下問題:

         。1)正弦函數(shù)的定義域是什么

          (2)正弦函數(shù)的值域是什么

         。3)正弦函數(shù)的最值情景如何

          (4)正弦函數(shù)的周期

         。5)正弦函數(shù)的奇偶性

         。6)正弦函數(shù)的遞增區(qū)間

          給學(xué)生十分鐘的時(shí)間小組討論,之后小組代表發(fā)言,師生共同總結(jié)。

          1、定義域:y=sinx定義域?yàn)镽

          2、值域:引導(dǎo)學(xué)生回憶單位圓中的正弦函數(shù)線,發(fā)現(xiàn)值域?yàn)閇—1,1]

          3、最值:根據(jù)值域的確定得到在何處取得最值以及函數(shù)的正負(fù)性。

          4、周期性:經(jīng)過觀察圖象引導(dǎo)學(xué)生發(fā)現(xiàn)正弦函數(shù)的圖象是有規(guī)律不斷重復(fù)出現(xiàn)的,讓學(xué)生思考后發(fā)現(xiàn)是每隔2π重復(fù)出現(xiàn)一次,得出y=sinx的.最小正周期是2π。之后經(jīng)過誘導(dǎo)公式證明。

          5、奇偶性:在剛才經(jīng)過誘導(dǎo)公式證明后順勢提出公式,總結(jié)得到正弦函數(shù)是奇函數(shù)。

          6、單調(diào)性:最終讓學(xué)生根據(jù)剛才所得到的結(jié)論自我嘗試總結(jié)正弦函數(shù)的單調(diào)性。

          在探究完正弦函數(shù)性質(zhì)后,利用單位圓和正弦函數(shù)圖象理解和記憶正弦函數(shù)的性質(zhì),這樣的安排能夠讓學(xué)生及時(shí)鞏固正弦函數(shù)的性質(zhì),并且還能夠結(jié)合之前所學(xué)的單位圓,三角函數(shù)線等知識(shí),讓學(xué)生感受到知識(shí)間的聯(lián)系。

         。ㄈ┱n堂練習(xí)

          第三環(huán)節(jié)是鞏固環(huán)節(jié),多媒體出示書上例題2:用五點(diǎn)法畫出函數(shù)的簡圖,并根據(jù)圖象討論它的性質(zhì)。

          經(jīng)過這樣的練習(xí),既鞏固了學(xué)生學(xué)過的知識(shí),又進(jìn)一步培養(yǎng)了學(xué)生理解、分析、推理的能力,趣味的知識(shí)在學(xué)生們的積極主動(dòng)的探索中顯得更有味道。

         。ㄋ模┬〗Y(jié)作業(yè)

          最終一個(gè)環(huán)節(jié)為小結(jié)作業(yè)環(huán)節(jié),關(guān)于課堂小結(jié),我打算讓學(xué)生自我來總結(jié)。這樣既發(fā)揮了學(xué)生的主體性,又能夠提高學(xué)生的總結(jié)概括能力,讓我在第一時(shí)間得到學(xué)習(xí)反饋,及時(shí)加以疏導(dǎo)。

          在作業(yè)布置上,我讓學(xué)生思考余弦函數(shù)的圖象與性質(zhì)是什么樣的。

          經(jīng)過比較靈活的題目呈現(xiàn),能夠讓學(xué)生結(jié)合本節(jié)課的知識(shí)進(jìn)而思考后續(xù)的知識(shí)。

          七、說板書設(shè)計(jì)

          我的板書設(shè)計(jì)遵循簡介明了突出重點(diǎn)部分,以下是我的板書設(shè)計(jì):

          (略)

          高一數(shù)學(xué)說課稿 8

          1、教材分析

          1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)

          (1)本課內(nèi)容是高中數(shù)學(xué)第二冊第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容

          (2)包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式

          1-2教材所處地位、作用和前后聯(lián)系

          本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對兩線位置關(guān)系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

          可見,本課有承前啟后的作用。

          1-3教學(xué)大綱要求

          掌握點(diǎn)到直線的距離公式

          1-4高考大綱要求及在高考中的顯示形式

          掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對值,直線垂直,最小值等。

          1-5教學(xué)目標(biāo)及確定依據(jù)

          教學(xué)目標(biāo)

          (1)掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過程,能用公式來求點(diǎn)線距離和線線距離。

          (2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

          (3)認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。

          (4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

          確定依據(jù):

          中華人民共和國教育部制定的《全日制普通高級中學(xué)數(shù)學(xué)教學(xué)大綱》(2002年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說明》(2004年)

          1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

         。1)重點(diǎn):點(diǎn)到直線的距離公式

          確定依據(jù):由本節(jié)在教材中的地位確定

         。2)難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)

          確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。

          分析“嘗試性題組”解題思路可突破難點(diǎn)

         。3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。

          2、教法

          2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺學(xué)習(xí),通過學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

          確定依據(jù):

          (1)美國教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。

          (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

          2-2教具:多媒體和黑板等傳統(tǒng)教具

          3、學(xué)法

          3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問題。

          一句話:還課堂以生命力,還學(xué)生以活力。

          3-2學(xué)情:

         。1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對兩線位置關(guān)系的定性認(rèn)識(shí)和對兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。

         。2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。

         。3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問題數(shù)學(xué)化,是每個(gè)追求成長、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過程,錘煉意志,培養(yǎng)能力。

          3-3學(xué)具:直尺、三角板

          3、教學(xué)程序

          時(shí),此時(shí)又怎樣求點(diǎn)A到直線

          的距離呢?

          生: 定性回答

          點(diǎn)明課題,使學(xué)生明確學(xué)習(xí)目標(biāo)。

          創(chuàng)設(shè)“不憤不啟,不悱不發(fā)”的學(xué)習(xí)情景。

          練習(xí)

          比較

          發(fā)現(xiàn)

          歸納

          討論

          的距離為d

          (1) A(2,4),

         。簒 = 3, d=_____

          (2) A(2,4),

         。簓 = 3,d=_____

          (3) A(2,4),

         。簒 – y = 0,d=_____

          嘗試性題組告訴學(xué)生下手不難,還負(fù)責(zé)特例檢驗(yàn),從而增強(qiáng)學(xué)生參與的信心。

          請三個(gè)同學(xué)上黑板板演

          師: 請這三位同學(xué)分別說說自己的解題思路。

          生: 回答

          教學(xué)機(jī)智:應(yīng)沉淀為三種思路:一,根據(jù)定義轉(zhuǎn)化為定點(diǎn)到垂足的距離;二,利用等積法轉(zhuǎn)化為直角三角形中三個(gè)頂點(diǎn)之間的距離;三,利用直角三角形中的邊角關(guān)系。

          視回答的情況,老師進(jìn)行肯定、修正或補(bǔ)充提問:“還有其他不同的思路嗎”。

          說解題思路,一是讓學(xué)生清晰有條理的表達(dá)自己的思考過程,二是其求解過程提示了證明的途徑(根據(jù)定義或畫坐標(biāo)線時(shí)正好交出一個(gè)直角三角形)

          師:很好,剛才我們解決了定點(diǎn)到特殊直線的距離問題,那么,點(diǎn)P(x0,y0)到一般直線:Ax+By+C=0(A,B≠0)的距離又怎樣求?

          教學(xué)機(jī)智:如學(xué)生反應(yīng)不大,則補(bǔ)充提問:上面三個(gè)題的解題思路對這個(gè)問題有啟示嗎?

          生:方案一:根據(jù)定義

          方案二:根據(jù)等積法

          設(shè)置此問,一是使學(xué)生的認(rèn)知由特殊向一般轉(zhuǎn)化,發(fā)現(xiàn)可能的方法,二是讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索和創(chuàng)造,感受數(shù)學(xué)的生機(jī)和樂趣。

          師生一起進(jìn)行比較,鎖定方案二進(jìn)行推證。

          “師生共作”體現(xiàn)新型師生觀,且//時(shí),又怎樣求這兩線的距離?

          生:計(jì)算得線線距離公式

          師:板書點(diǎn)到直線的'距離公式,兩平行線間距離公式

          “沒有新知識(shí),新知識(shí)均是舊知識(shí)的組合”,創(chuàng)設(shè)此問可發(fā)揮學(xué)生的創(chuàng)造性,增加學(xué)生的成就感。

          反思小結(jié)

          經(jīng)驗(yàn)共享

         。 分 鐘)

          師: 通過以上的學(xué)習(xí),你有哪些收獲?(知識(shí),能力,情感)。有哪些疑問?誰能答這些疑問?

          生: 討論,回答。

          對本節(jié)課用到的技能,數(shù)學(xué)思維方法等進(jìn)行小結(jié),使學(xué)生對本節(jié)知識(shí)有一個(gè)整體的認(rèn)識(shí)。

          共同進(jìn)步,各取所長。

          練習(xí)

         。ㄎ 分 鐘)

          P53 練習(xí) 1, 2,3

          熟練的用公式來求點(diǎn)線距離和線線距離。

          再度延伸

          (一 分 鐘)

          探索其他推導(dǎo)方法

          “帶著問題進(jìn)課堂,帶著更多的問題出課堂”,讓學(xué)生真正學(xué)會(huì)學(xué)習(xí)。

          4、教學(xué)評價(jià)

          學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:

          (1) 整理知識(shí)結(jié)構(gòu)

          (2) 總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法

          (3) 總結(jié)在學(xué)習(xí)過程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說明產(chǎn)生障礙的原因

          (4) 談?wù)勀銓蠋熃谭ǖ慕ㄗh和要求。

          作用:

          (1) 通過反思使學(xué)生對所學(xué)知識(shí)系統(tǒng)化。反思的過程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過程。

          (2) 報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。

          (3) 及時(shí)了解學(xué)生學(xué)習(xí)過程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。

          5、板書設(shè)計(jì)

          (略)

          6、教學(xué)的反思總結(jié)

          心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。

          高一數(shù)學(xué)說課稿 9

          一、教材分析

          集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

          本節(jié)課主要分為兩個(gè)部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

          二、教學(xué)目標(biāo)

          1、學(xué)習(xí)目標(biāo)

         。1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合之間的關(guān)系以及理解“屬于”關(guān)系;

         。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

          2、能力目標(biāo)

          (1)能夠把一句話一個(gè)事件用集合的方式表示出來。

          (2)準(zhǔn)確理解集合與及集合內(nèi)的元素之間的關(guān)系。

          3、情感目標(biāo)

          通過本節(jié)的把實(shí)際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。

          三、教學(xué)重點(diǎn)與難點(diǎn)

          重點(diǎn) 集合的基本概念與表示方法;

          難點(diǎn) 運(yùn)用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

          四、教學(xué)方法

         。1)本課將采用探究式教學(xué),讓學(xué)生主動(dòng)去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果;

         。2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標(biāo)。

          五、學(xué)習(xí)方法

         。1)主動(dòng)學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認(rèn)識(shí)的同時(shí),教師層層深入,啟發(fā)學(xué)生積極思維,主動(dòng)探索知識(shí),培養(yǎng)學(xué)生思維想象 的綜合能力。

         。2)反饋補(bǔ)救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實(shí)現(xiàn)“培優(yōu)扶差,滿足不同!

          六、教學(xué)思路

          具體的思路如下

          復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對數(shù)學(xué)更加感興趣,有助于上課的效率!因?yàn)闀r(shí)間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。

          一、 引入課題

          軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生?

          在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對象的總體。

          二、 正體部分

          學(xué)生閱讀教材,并思考下列問題:

         。1)集合有那些概念?

         。2)集合有那些符號(hào)?

         。3)集合中元素的特性是什么?

          (4)如何給集合分類?

         。ㄒ唬┘系挠嘘P(guān)概念

          (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號(hào),都可以稱作對象。

         。2)集合:把一些能夠確定的不同的對象看成一個(gè)整體,就說這個(gè)整體是由這些對象的全體構(gòu)成的集合。

         。3)元素:集合中每個(gè)對象叫做這個(gè)集合的元素。

          集合通常用大寫的拉丁字母表示,如A、B、C元素通常用小寫的拉丁字母表示,如a、b、c。

          1、思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對學(xué)生的例子予以討論、點(diǎn)評,進(jìn)而講解下面的問題。

          2、元素與集合的.關(guān)系

          (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

          (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

          要注意“∈”的方向,不能把a(bǔ)∈A顛倒過來寫。(舉例)

          集合A={3,4,6,9}a=2 因此我們知道a?A

          3、集合中元素的特性

         。1)確定性:給定一個(gè)集合,任何對象是不是這個(gè)集合的元素是確定的了。

          (2)互異性:集合中的元素一定是不同的。

         。3)無序性:集合中的元素沒有固定的順序。

          4、集合分類

          根據(jù)集合所含元素個(gè)屬不同,可把集合分為如下幾類:

         。1)把不含任何元素的集合叫做空集Ф

         。2)含有有限個(gè)元素的集合叫做有限集

         。3)含有無窮個(gè)元素的集合叫做無限集

          注:應(yīng)區(qū)分?,{?},{0},0等符號(hào)的含義

          5、常用數(shù)集及其表示方法

         。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合.記作N

         。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集.記作NX或N+

         。3)整數(shù)集:全體整數(shù)的集合.記作Z

         。4)有理數(shù)集:全體有理數(shù)的集合.記作Q

         。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合.記作R

          注:(1)自然數(shù)集包括數(shù)0.

         。2)非負(fù)整數(shù)集內(nèi)排除0的集.記作NX或N+,Q、Z、R等其它數(shù)集內(nèi)排

          除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成ZX

         。ǘ┘系谋硎痉椒

          我們可以用自然語言來描述一個(gè)集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

         。1) 列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi)。

          如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

          例1、(課本例1)

          思考2,引入描述法

          說明:集合中的元素具有無序性,所以用列舉法表示集合時(shí)不必考慮元素的順序。

         。2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號(hào){}內(nèi)。 具體方法:在大括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

          如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

          例2、(課本例2)

          說明:(課本P5最后一段)

          思考3:(課本P6思考) 強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素

          {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

          辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。

          說明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個(gè)元素時(shí),不宜采用列舉法。

         。ㄈ┱n堂練習(xí)(課本P6練習(xí))

          三、 歸納小結(jié)與作業(yè)

          本節(jié)課從實(shí)例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實(shí)例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

          書面作業(yè):習(xí)題1.1,第1- 4題

          高一數(shù)學(xué)說課稿 10

          一、說教材

          1、從在教材中的地位與作用來看

          《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

          2、從學(xué)生認(rèn)知角度看

          從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個(gè)突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò)。

          3、學(xué)情分析

          教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。

          4、重點(diǎn)、難點(diǎn)

          教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。

          教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。

          公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。

          二、說目標(biāo)

          知識(shí)與技能目標(biāo):

          理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。

          過程與方法目標(biāo):

          通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

          情感與態(tài)度價(jià)值觀:

          通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。

          三、說過程

          學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:

          1、創(chuàng)設(shè)情境,提出問題

          在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當(dāng)時(shí)的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚,為什么呢?

          設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的`是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性、故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)。

          此時(shí)我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥?倲(shù)。帶著這樣的問題,學(xué)生會(huì)動(dòng)手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和這時(shí)我對他們的這種思路給予肯定。

          設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時(shí)間營造知識(shí)形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆。

          2、師生互動(dòng),探究問題

          在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?

          探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

          探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

          設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。

          經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

          設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

          3、類比聯(lián)想,解決問題

          這時(shí)我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個(gè)別學(xué)生進(jìn)行指導(dǎo)。

          設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。

          對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)

          再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)

          設(shè)計(jì)意圖:通過反問精講,一方面使學(xué)生加深對知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。

          4、討論交流,延伸拓展

          高一數(shù)學(xué)說課稿 11

          一、說設(shè)計(jì)理念

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問題。

          基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實(shí)際和已有的知識(shí)經(jīng)驗(yàn),從學(xué)生感興趣的素材,設(shè)計(jì)新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識(shí)的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識(shí)解決生活問題的能力,體驗(yàn)數(shù)學(xué)的應(yīng)用價(jià)值。

          二、教材分析:

         。ㄒ唬┙滩牡牡匚缓妥饔

          有關(guān)統(tǒng)計(jì)圖的認(rèn)識(shí),小學(xué)階段主要認(rèn)識(shí)條形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖?紤]到扇形統(tǒng)計(jì)圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖的特點(diǎn)和作用的基礎(chǔ)上進(jìn)行教學(xué)的。主要通過熟悉的事例使學(xué)生體會(huì)到扇形統(tǒng)計(jì)圖的實(shí)用價(jià)值。

          (二)教學(xué)目標(biāo)

          1、聯(lián)系生活情境了解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用

          2、能讀懂扇形統(tǒng)計(jì)圖,從中獲取有效的信息。

          3、讓學(xué)生在觀察、比較、討論和交流中體會(huì)扇形統(tǒng)計(jì)圖反映的是整體和部分的關(guān)系。

         。ㄈ┙虒W(xué)重點(diǎn):

          1、能讀懂扇形統(tǒng)計(jì)圖,理解扇形統(tǒng)計(jì)圖的特點(diǎn)和作用,并能從中獲取有效信息。

          2、認(rèn)識(shí)折線統(tǒng)計(jì)圖,了解折線統(tǒng)計(jì)圖的特點(diǎn)。

          (四)教學(xué)難點(diǎn):

          1、能從扇形統(tǒng)計(jì)圖中獲得有用信息,并做出合理推斷。

          2、能根據(jù)統(tǒng)計(jì)圖和數(shù)據(jù)進(jìn)行數(shù)據(jù)變化趨勢的分析。

          二、學(xué)情分析

          本單元的教學(xué)是在學(xué)生已有統(tǒng)計(jì)經(jīng)驗(yàn)的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖,知道他們的特點(diǎn),并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識(shí)對比,自然生成新知識(shí)點(diǎn)。

          三、設(shè)計(jì)理念和教法分析

          1、本堂課力爭做到由“關(guān)注知識(shí)”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識(shí)”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者。”將課堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識(shí)的構(gòu)建。

          2、運(yùn)用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的.引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動(dòng)、多思考,自主構(gòu)建知識(shí)體系。引導(dǎo)學(xué)生獲取信息并合作交流。

          四、說學(xué)法

          《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動(dòng)手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時(shí),我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會(huì)到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動(dòng)中讓每個(gè)學(xué)生都動(dòng)口,動(dòng)手,動(dòng)腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性。

          五、說教學(xué)程序

          本課分成創(chuàng)設(shè)情境,感知特點(diǎn)——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實(shí)踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

          六、說教學(xué)過程

          (一)復(fù)習(xí)引新

          1、復(fù)習(xí)舊知

          提問:我們學(xué)習(xí)過哪些統(tǒng)計(jì)方法?其中條形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖各有什么特點(diǎn)?

          2、引入新課

         。ǘ┳灾魈剿鳎瑢W(xué)習(xí)新知

          新知識(shí)教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計(jì)圖,理解特征,這是本節(jié)課的重點(diǎn)。在教學(xué)中,以知識(shí)遷移的方式建立新舊知識(shí)之間的聯(lián)系,放手讓學(xué)生獨(dú)立思考,互相合作,進(jìn)一步了解統(tǒng)計(jì)圖的特征。

          第二步實(shí)踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計(jì)知識(shí)與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計(jì)圖回答問題,是讓學(xué)生運(yùn)用到剛才學(xué)習(xí)到的知識(shí)來解決生活中的一些問題,并鞏固剛才所學(xué)的知識(shí),為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時(shí),讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進(jìn)行推理與判斷

          三、課堂總結(jié)

          四、布置作業(yè)。

          五、板書設(shè)計(jì):

          高一數(shù)學(xué)說課稿 12

          今天我說課的題目是《條件語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

          一、教材分析

          1、教材所處的地位和作用

          在此之前,學(xué)生已學(xué)習(xí)了算法的概念、程序框圖與算法的基本邏輯結(jié)構(gòu)、輸入語句、輸出語句和賦值語句,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。這一節(jié)課主要的內(nèi)容為條件語句表示方法、結(jié)構(gòu)以及用法。條件語句與程序圖中的條件結(jié)構(gòu)相對應(yīng),它是五種基本算法語句中的一種,通過本節(jié)課的學(xué)習(xí),學(xué)生將更加了解算法語句,并能用更全面的眼光看待前面學(xué)過的語句,并為以后的學(xué)習(xí)作好必要的準(zhǔn)備。本節(jié)課對學(xué)生算法語言能力、有條理的思考與清晰地表達(dá)的能力,邏輯思維能力的綜合提升具有重要作用。

          2、教學(xué)的重點(diǎn)和難點(diǎn)

          重點(diǎn):條件語句的表示方法、結(jié)構(gòu)和用法;用條件語句表示算法。

          難點(diǎn):理解條件語句的表示方法、結(jié)構(gòu)和用法。

          二、教學(xué)目標(biāo)分析

          1、知識(shí)與技能目標(biāo):

         、耪_理解條件語句的概念,并掌握其結(jié)構(gòu)。

         、茣(huì)應(yīng)用條件語句編寫程序。

          2、過程與方法目標(biāo):

         、磐ㄟ^實(shí)例,發(fā)展對解決具體問題的過程與步驟進(jìn)行分析的能力。

         、仆ㄟ^模仿,操作、探索、經(jīng)歷設(shè)計(jì)算法、設(shè)計(jì)框圖、編寫程序以解決具體問題的過程,發(fā)展應(yīng)用算法的能力。

         、窃诮鉀Q具體問題的過程中學(xué)習(xí)條件語句,感受算法的重要意義。

          3、情感,態(tài)度和價(jià)值觀目標(biāo)

          ⑴能通過具體實(shí)例,感受和體會(huì)算法思想在解決具體問題中的意義,進(jìn)一步體會(huì)算法思想的重要性,體驗(yàn)算法的有效性,增進(jìn)對數(shù)學(xué)的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的'樂趣。

         、仆ㄟ^感受和認(rèn)識(shí)現(xiàn)代信息技術(shù)在解決數(shù)學(xué)問題中的重要作用和威力,形成自覺地將數(shù)學(xué)理論和現(xiàn)代信息技術(shù)結(jié)合的思想。

         、窃诰帉懗绦蚪鉀Q問題的過程中,逐步養(yǎng)成扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

          三、教學(xué)方法與手段分析

          1、教學(xué)方法:根據(jù)本節(jié)內(nèi)容邏輯性強(qiáng),學(xué)生不易理解的特點(diǎn),本節(jié)教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這種方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過對實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

          2、教學(xué)手段:運(yùn)用計(jì)算機(jī)、圖形計(jì)算器輔助教學(xué)

          四、教學(xué)過程分析

          1、創(chuàng)設(shè)情境(約4分鐘)

          首先,我要求學(xué)生們編寫程序,輸入一元二次方程

          的系數(shù),輸出它的實(shí)數(shù)根。這樣可以把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),因?yàn)橐鉀Q這一問題,根據(jù)我們之前所學(xué)的三種算法語句是無法解決的,這樣就引出今天我們所要學(xué)習(xí)的內(nèi)容。

          2、探究新知(約8分鐘)

          為了引入概念,我首先給出了一個(gè)基本的應(yīng)用條件語句能夠解決的例題:

          例1 編寫一個(gè)程序,求實(shí)數(shù)x的絕對值。

          整個(gè)過程由師生共同分析完成。老師要引導(dǎo)學(xué)生分析、研究例題中的兩個(gè)程序,既要讓學(xué)生們看到已知的三種語句,更要注意到未知的語句,即條件語句?偨Y(jié)上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進(jìn)行研究.

          3、知識(shí)應(yīng)用(約15分鐘)

          此環(huán)節(jié)有兩個(gè)例題

          例2 編寫程序,寫出輸入兩個(gè)數(shù)a和b,將較大的數(shù)打印出來

          例3 編寫程序,使任意輸入的3個(gè)整數(shù)按從大到小的順序輸出.

          先把解決問題的思路用程序框圖表示出來,然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對應(yīng)的程序語句表達(dá)出來。(程序框圖先由學(xué)生討論,再統(tǒng)一,然后利用圖形計(jì)算器演示,學(xué)生會(huì)驚喜的發(fā)現(xiàn):自己也是個(gè)編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習(xí)興趣)

          4、練習(xí)鞏固(約4分鐘)

          課本第30頁第3題

          練習(xí)可鞏固學(xué)生對知識(shí)的理解,也可在練習(xí)中發(fā)現(xiàn)問題,使問題得到及時(shí)的解決。

          5、課堂小結(jié)(約5分鐘)

          條件語句的步驟、結(jié)構(gòu)及功能、

          知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用

          6、布置作業(yè)

          課本練習(xí)第3、4題

          [設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

          7、板書設(shè)計(jì)

          1.2.2條件語句

          1、條件語句的一般格式

         。1)IF-THEN-ELSE語句

          格式: 框圖:

          (2)IF-THEN語句

          格式: 框圖:

          2、小結(jié)

         。1)

          (2)

         。3)

          2、例1 引例

          例2 例4

          例3

          高一數(shù)學(xué)說課稿 13

          今天我要進(jìn)行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時(shí)《函數(shù)單調(diào)性與最大(。┲怠贰N覍慕滩姆治;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評價(jià)五個(gè)方面來陳述我對本節(jié)課的設(shè)計(jì)方案。懇請?jiān)谧膶<以u委批評指正。

          一、教材分析

          1、教材的地位和作用

         。1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);

         。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時(shí)又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

          (3)它是歷年高考的熱點(diǎn)、難點(diǎn)問題

          2、教材重、難點(diǎn)

          重點(diǎn):函數(shù)單調(diào)性的定義

          難點(diǎn):函數(shù)單調(diào)性的證明

          重難點(diǎn)突破:在學(xué)生已有知識(shí)的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實(shí)現(xiàn)重難點(diǎn)突破。(這個(gè)必須要有)

          二、教學(xué)目標(biāo)

          知識(shí)目標(biāo):

         。1)函數(shù)單調(diào)性的定義

          (2)函數(shù)單調(diào)性的證明

          能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

          情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)

          三、教法學(xué)法分析

          1、教法分析

          “教必有法而教無定法”,只有方法得當(dāng)才會(huì)有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價(jià)法

          2、學(xué)法分析

          “授人以魚,不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的.只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

          四、教學(xué)過程

          1、以舊引新,導(dǎo)入新知

          通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點(diǎn),總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個(gè)曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)

          2、創(chuàng)設(shè)問題,探索新知

          緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個(gè)函數(shù)的單調(diào)性。

          讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。

          讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。

          3、例題講解,學(xué)以致用

          例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

          例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗(yàn)學(xué)生的學(xué)習(xí)效果。

          例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問題,這一例題要采用教師板演的方式,來對例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

          學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺(tái)板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。

          4、歸納小結(jié)

          本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)。

          5、作業(yè)布置

          為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1、3A組1、2、3 ,二組 習(xí)題1、3A組2、3、B組1、2

          6、板書設(shè)計(jì)

          我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點(diǎn),讓學(xué)生一目了然。

          五、教學(xué)評價(jià)

          本節(jié)課是在學(xué)生已有知識(shí)的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動(dòng)機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。

          以上就是我對本節(jié)課的設(shè)計(jì),謝謝!

          高一數(shù)學(xué)說課稿 14

          一、 教材分析

          是在學(xué)習(xí)了基礎(chǔ)上進(jìn)一步研究 并為后面學(xué)習(xí) 做準(zhǔn)備,在整個(gè)高中數(shù)學(xué)中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

          根據(jù)新課標(biāo)要求和學(xué)生實(shí)際水平我制定以下教學(xué)目標(biāo)

          1、 知識(shí)能力目標(biāo):使學(xué)生理解掌握

          2、 過程方法目標(biāo):通過觀察歸納抽象概括使學(xué)生構(gòu)建領(lǐng)悟 數(shù)學(xué)思想,培養(yǎng) 能力

          3、 情感態(tài)度價(jià)值觀目標(biāo):通過學(xué)習(xí)體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)善于

          觀察勇于思考的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn) 的科學(xué)態(tài)度

          根據(jù)教學(xué)目標(biāo)、本節(jié)特點(diǎn)和學(xué)生實(shí)際情況本節(jié)重點(diǎn)是 ,由于學(xué)生對 缺少感性認(rèn)識(shí),所以本節(jié)課的重點(diǎn)是

          二、教法學(xué)法

          根據(jù)教師主導(dǎo)地位和學(xué)生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學(xué)方法并借助多媒體為輔助手段。在教師點(diǎn)撥下,學(xué)生自主探索、合作交流來尋求解決問題的.方法。

          三、 教學(xué)過程

          1、由……引入:

          把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但易于保持,而且易于遷移到陌生的問題情境中。

          對于本題:……

          2、由實(shí)例得出本課新的知識(shí)點(diǎn)是:……

          3、講解例題。

          我們在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。在題中:

          4、能力訓(xùn)練。

          課后練習(xí)……

          使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識(shí)與解題思想方法。

          5、總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。

          知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。

          6、變式延伸,進(jìn)行重構(gòu)。

          重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識(shí)的串聯(lián)、累積、加工,從而達(dá)到舉一反三的效果。

          四、教學(xué)評價(jià)

          學(xué)生學(xué)習(xí)的學(xué)習(xí)結(jié)果評價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價(jià),教師應(yīng)當(dāng)高度重視學(xué)生學(xué)習(xí)過程中的參與度、自信心、團(tuán)隊(duì)精神合作意識(shí)數(shù)學(xué)能力的發(fā)現(xiàn),以及學(xué)習(xí)的興趣和成就感。

          高一數(shù)學(xué)說課稿 15

          首先,我對本節(jié)教材進(jìn)行一些分析:

          一、教材分析(說教材):

          1、教材所處的地位和作用:

          本節(jié)內(nèi)容在全書和章節(jié)中的作用是:這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

          2、教育教學(xué)目標(biāo):

          根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

          (1)知識(shí)目標(biāo):

         。2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語言表達(dá)能力以及通過師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,

         。3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。

          3、重點(diǎn),難點(diǎn)以及確定依據(jù):

          本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)

          重點(diǎn): 通過 突出重點(diǎn)

          難點(diǎn): 通過 突破難點(diǎn)

          關(guān)鍵:

          下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>

          二、教學(xué)策略(說教法)

          1、 教學(xué)手段:

          如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法。基于本節(jié)課的特點(diǎn): 應(yīng)著重采用 的教學(xué)方法。

          2、教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號(hào)法,問答式,課堂討論法。在采用問答法時(shí),特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動(dòng)力。

          3、學(xué)情分析:(說學(xué)法)

          我們常說:“現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。

         。1) 學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)

          生特點(diǎn),積極采用形象生動(dòng),形式多樣的`教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

          (2) 知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí) ,許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙, 知識(shí) 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。

          (3) 動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動(dòng)力

          最后我來具體談?wù)勥@一堂課的教學(xué)過程:

          4、教學(xué)程序及設(shè)想:

          (1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問題情境中。

         。2)由實(shí)例得出本課新的知識(shí)點(diǎn)

         。3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。

          (4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識(shí)與解題思想方法。

          (5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

          (6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識(shí)的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。

         。7)板書

          (8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,

          教學(xué)程序:

          課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分

          高一數(shù)學(xué)說課稿 16

          一、教材分析

          1、教材內(nèi)容

          本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2.1.3函數(shù)簡單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題。

          2、教材所處地位、作用

          函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì)。通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會(huì)函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識(shí)解決一些簡單的實(shí)際問題。通過上述活動(dòng),加深對函數(shù)本質(zhì)的認(rèn)識(shí)。函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ)。此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識(shí)之一。從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法。

          3、教學(xué)目標(biāo)

         。1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

          的方法;

         。2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

         。3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì)。

          4、重點(diǎn)與難點(diǎn)

          教學(xué)重點(diǎn):

         。1)函數(shù)單調(diào)性的概念;

         。2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性。

          教學(xué)難點(diǎn):

          (1)函數(shù)單調(diào)性的知識(shí)形成;

         。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性。

          二、教法分析與學(xué)法指導(dǎo)

          本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

          1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主體參與的積極性。

          2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類問題的.解決。

          3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用。具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá)。

          4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性。

          在學(xué)法上:

          1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。

          2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的一個(gè)飛躍。

          三、 教學(xué)過程

          教學(xué)

          環(huán)節(jié)

          教 學(xué) 過 程

          設(shè) 計(jì) 意 圖

          問題

          情境

         。úシ胖醒腚娨暸_(tái)天氣預(yù)報(bào)的音樂)

          滿足在定義域上的單調(diào)性的討論。

          2、重視學(xué)生發(fā)現(xiàn)的過程。如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程。

          3、重視學(xué)生的動(dòng)手實(shí)踐過程。通過對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運(yùn)用定義。

          4、重視課堂問題的設(shè)計(jì)。通過對問題的設(shè)計(jì),引導(dǎo)學(xué)生解決問題。

          高一數(shù)學(xué)說課稿 17

          一、教材分析

          1、教材所處的地位和作用

          奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

          奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。所以,本節(jié)課起著承上啟下的重要作用。

          2、學(xué)情分析

          從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了必須數(shù)量的簡單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。

          從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

          3、教學(xué)目標(biāo)

          基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):

          【知識(shí)與技能】

          1)能確定一些簡單函數(shù)的奇偶性。

          2)能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

          【過程與方法】

          經(jīng)歷奇偶性概念的構(gòu)成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

          【情感、態(tài)度與價(jià)值觀】

          經(jīng)過自主探索,體會(huì)數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。

          從課堂反應(yīng)看,基本上到達(dá)了預(yù)期效果。

          4、教學(xué)重點(diǎn)和難點(diǎn)

          重點(diǎn):函數(shù)奇偶性的概念和幾何意義。

          幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識(shí)點(diǎn)并不是很難理解,但知識(shí)點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下頭的錯(cuò)誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn)成立即可,而忽視了研究函數(shù)定義域的問題。所以,在介紹奇、偶函數(shù)的定義時(shí),必須要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。所以,我把函數(shù)的奇偶性概念設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個(gè)問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點(diǎn)問題的講解。

          難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過程。

          由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構(gòu)奇偶性的概念造成了必須的困難。所以我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計(jì)為本節(jié)課的難點(diǎn)。

          二、教法與學(xué)法分析

          1、教法

          根據(jù)本節(jié)教材資料和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個(gè)又一個(gè)帶有啟發(fā)性和思考性的`問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上到達(dá)了預(yù)期效果。

          2、學(xué)法

          讓學(xué)生在觀察一歸納一檢驗(yàn)一應(yīng)用的學(xué)習(xí)過程中,自主參與知識(shí)的發(fā)生、發(fā)展、構(gòu)成的過程,從而使學(xué)生掌握知識(shí)。

          三、教學(xué)過程

          具體的教學(xué)過程是師生互動(dòng)交流的過程,共分六個(gè)環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、構(gòu)成概念;學(xué)生探索、領(lǐng)會(huì)定義;知識(shí)應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下頭我對這六個(gè)環(huán)節(jié)進(jìn)行說明。

         。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣

          由于本節(jié)資料相對獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的資料,使學(xué)生的思維迅速定向,到達(dá)開始就明確目標(biāo)突出重點(diǎn)的效果。

          用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個(gè)特殊函數(shù)圖象。經(jīng)過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識(shí)作好鋪墊。

         。ǘ┲笇(dǎo)觀察、構(gòu)成概念

          在這一環(huán)節(jié)中共設(shè)計(jì)了2個(gè)探究活動(dòng)。

          探究1、2數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個(gè)探究主要是經(jīng)過學(xué)生的自主探究來實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對稱。之后學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體此刻自變量與函數(shù)值之間有何規(guī)律引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。借助課件演示(令比較得出等式,再令,得到)讓學(xué)生發(fā)現(xiàn)兩個(gè)函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性,然后經(jīng)過解析式給出嚴(yán)格證明,進(jìn)一步說明這個(gè)特性對定義域內(nèi)任意一個(gè)都成立。最終給出偶函數(shù)(奇函數(shù))定義(板書)。

          在這個(gè)過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識(shí),轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識(shí),切實(shí)經(jīng)歷了一次從特殊歸納出一般的過程體驗(yàn)。

         。ㄈ⿲W(xué)生探索、領(lǐng)會(huì)定義

          探究3下列函數(shù)圖象具有奇偶性嗎?

          設(shè)計(jì)意圖:深化對奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是——定義域關(guān)于原點(diǎn)對稱。(突破了本節(jié)課的難點(diǎn))

          (四)知識(shí)應(yīng)用,鞏固提高

          在這一環(huán)節(jié)我設(shè)計(jì)了4道題

          例1確定下列函數(shù)的奇偶性

          選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下頭完成。

          例1設(shè)計(jì)意圖是歸納出確定奇偶性的步驟:

          (1)先求定義域,看是否關(guān)于原點(diǎn)對稱;

          (2)再確定f(-x)=-f(x)還是f(-x)=f(x)。

          例2確定下列函數(shù)的奇偶性:

          例3確定下列函數(shù)的奇偶性:

          例2、3設(shè)計(jì)意圖是探究一個(gè)函數(shù)奇偶性的可能情景有幾種類型?

          例4(1)確定函數(shù)的奇偶性。

         。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

          例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

          在這個(gè)過程中,我重點(diǎn)關(guān)注了學(xué)生的推理過程的表述。經(jīng)過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識(shí)、理解和應(yīng)用都能提升很大一個(gè)高度,到達(dá)當(dāng)堂消化吸收的效果。

         。ㄎ澹┛偨Y(jié)反饋

          在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,問題貫穿于探究過程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

          在本節(jié)課的最終對知識(shí)點(diǎn)進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識(shí)在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識(shí)的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識(shí)的應(yīng)用能力、增強(qiáng)錯(cuò)誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

          (六)分層作業(yè),學(xué)以致用

          必做題:課本第36頁練習(xí)第1-2題。

          選做題:課本第39頁習(xí)題1、3A組第6題。

          思考題:課本第39頁習(xí)題1、3B組第3題。

          設(shè)計(jì)意圖:面向全體學(xué)生,注重個(gè)人差異,加強(qiáng)作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步到達(dá)不一樣的人在數(shù)學(xué)上得到不一樣的發(fā)展。

          高一數(shù)學(xué)說課稿 18

          一、教材分析

          本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)資料,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,并且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。所以,正弦定理和余弦定理的知識(shí)十分重要。

          根據(jù)上述教材資料分析,研究到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

          認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

          能力目標(biāo):引導(dǎo)學(xué)生經(jīng)過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

          情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,經(jīng)過學(xué)生之間、師生之間的交流、合作和評價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

          教學(xué)重點(diǎn):正弦定理的資料,正弦定理的.證明及基本應(yīng)用。

          教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時(shí)確定解的個(gè)數(shù)。

          二、教法

          根據(jù)教材的資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實(shí)際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過例題和練習(xí)來突破難點(diǎn)

          三、學(xué)法:

          指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、團(tuán)體等多種解難釋疑的嘗試活動(dòng),將自我所學(xué)知識(shí)應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,構(gòu)成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

          四、教學(xué)過程

          第一:創(chuàng)設(shè)情景,大概用2分鐘

          第二:實(shí)踐探究,構(gòu)成概念,大約用25分鐘

          第三:應(yīng)用概念,拓展反思,大約用13分鐘

         。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

          “興趣是最好的教師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個(gè)零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今日的學(xué)習(xí)課題。

          (二)探尋特例,提出猜想

          1、激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

          2、那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對一般三角形進(jìn)行驗(yàn)證。

          3、讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

          在三角形中,角與所對的邊滿足關(guān)系

          這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

         。ㄈ┻壿嬐评恚C明猜想

          1、強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

          2、鼓勵(lì)學(xué)生經(jīng)過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

          3、提示學(xué)生思考哪些知識(shí)能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          4、思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

         。ㄋ模w納總結(jié),簡單應(yīng)用

          1、讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

          2、正弦定理的資料,討論能夠解決哪幾類有關(guān)三角形的問題。

          3、運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自我參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

         。ㄎ澹┲v解例題,鞏固定理

          1、例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

          例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

          2、例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

          例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

          (六)課堂練習(xí),提高鞏固

          1、在△ABC中,已知下列條件,解三角形。

          (1)A=45°,C=30°,c=10cm

          (2)A=60°,B=45°,c=20cm

          2、在△ABC中,已知下列條件,解三角形。

          (1)a=20cm,b=11cm,B=30°

          (2)c=54cm,b=39cm,C=115°

          學(xué)生板演,教師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

         。ㄆ撸┬〗Y(jié)反思,提高認(rèn)識(shí)

          經(jīng)過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對此有何體會(huì)?

          1、用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

          2、它表述了三角形的邊與對角的正弦值的關(guān)系。

          3、定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

          (從實(shí)際問題出發(fā),經(jīng)過猜想、實(shí)驗(yàn)、歸納等思維方法,最終得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著結(jié)論,并且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

          (八)任務(wù)后延,自主探究

          如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)資料,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)資料。

          高一數(shù)學(xué)說課稿 19

          一、教材分析

          1.教材中的地位及作用

          本節(jié)課是學(xué)生在已掌握雙曲線的定義及標(biāo)準(zhǔn)方程之后,在此基礎(chǔ)上,反過來利用雙曲線的標(biāo)準(zhǔn)方程研究其幾何性質(zhì)。它是教學(xué)大綱要求學(xué)生必須掌握的內(nèi)容,也是高考的一個(gè)考點(diǎn),是深入研究雙曲線,靈活運(yùn)用雙曲線的定義、方程、性質(zhì)解題的基礎(chǔ),更能使學(xué)生理解、體會(huì)解析幾何這門學(xué)科的研究方法,培養(yǎng)學(xué)生的解析幾何觀念,提高學(xué)生的數(shù)學(xué)素質(zhì)。

          2.教學(xué)目標(biāo)的確定及依據(jù)

          平面解析幾何研究的主要問題之一就是:通過方程,研究平面曲線的性質(zhì)。教學(xué)參考書中明確要求:學(xué)生要掌握圓錐曲線的性質(zhì),初步掌握根據(jù)曲線的方程,研究曲線的幾何性質(zhì)的方法和步驟。根據(jù)這些教學(xué)原則和要求,以及學(xué)生的學(xué)習(xí)現(xiàn)狀,我制定了本節(jié)課的教學(xué)目標(biāo)。

         。1)知識(shí)目標(biāo):①使學(xué)生能運(yùn)用雙曲線的標(biāo)準(zhǔn)方程討論雙曲線的范圍、對稱性、頂點(diǎn)、離心率、漸近線等幾何性質(zhì);

          ②掌握雙曲線標(biāo)準(zhǔn)方程中

          的幾何意義,理解雙曲線的漸近線的概念及證明;

         、勰苓\(yùn)用雙曲線的幾何性質(zhì)解決雙曲線的一些基本問題。

          (2)能力目標(biāo):①在與橢圓的性質(zhì)的類比中獲得雙曲線的性質(zhì),培養(yǎng)學(xué)生的觀察能力,想象能力,數(shù)形結(jié)合能力,分析、歸納能力和邏輯推理能力,以及類比的學(xué)習(xí)方法;

         、谑箤W(xué)生進(jìn)一步掌握利用方程研究曲線性質(zhì)的基本方法,加深對直角坐標(biāo)系中曲線與方程的概念的理解。

         。3)德育目標(biāo):培養(yǎng)學(xué)生對待知識(shí)的科學(xué)態(tài)度和探索精神,而且能夠運(yùn)用運(yùn)動(dòng)的,變化的觀點(diǎn)分析理解事物。

          3.重點(diǎn)、難點(diǎn)的確定及依據(jù)

          對圓錐曲線來說,漸近線是雙曲線特有的性質(zhì),而學(xué)生對漸近線的發(fā)現(xiàn)與證明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中我把漸近線的發(fā)現(xiàn)作為重點(diǎn),充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,巧妙地應(yīng)用極限思想導(dǎo)出了雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲透于其中,學(xué)生也易接受。因此,我把漸近線的證明作為本節(jié)課的難點(diǎn),根據(jù)本節(jié)的教學(xué)內(nèi)容和教學(xué)大綱以及高考的要求,結(jié)合學(xué)生現(xiàn)有的實(shí)際水平和認(rèn)知能力,我把漸近線和離心率這兩個(gè)性質(zhì)作為本節(jié)課的重點(diǎn)。

          4.教學(xué)方法

          這節(jié)課內(nèi)容是通過雙曲線方程推導(dǎo)、研究雙曲線的性質(zhì),本節(jié)內(nèi)容類似于“橢圓的簡單的幾何性質(zhì)”,教學(xué)中可以與其類比講解,讓學(xué)生自己進(jìn)行探究,得到類似的結(jié)論。在教學(xué)中,學(xué)生自己能得到的結(jié)論應(yīng)該讓學(xué)生自己得到,凡是難度不大,經(jīng)過學(xué)習(xí)學(xué)生自己能解決的問題,應(yīng)該讓學(xué)生自己解決,這樣有利于調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)他們的學(xué)習(xí)積極性,同時(shí)也有利于學(xué)習(xí)建立信心,使他們的主動(dòng)性得到充分發(fā)揮,從中提高學(xué)生的'思維能力和解決問題的能力。

          漸近線是雙曲線特有的性質(zhì),我們常利用它作出雙曲線的草圖,而學(xué)生對漸近線的發(fā)現(xiàn)與證明方法接受、理解和掌握有一定的困難。因此,在教學(xué)過程中著重培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,從已有知識(shí)出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動(dòng)學(xué)生自身探索的內(nèi)驅(qū)力,進(jìn)一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。

          例題的選備,可將此題作一題多變(變條件,變結(jié)論),訓(xùn)練學(xué)生一題多解,開拓其解題思路,使他們在做題中總結(jié)規(guī)律、發(fā)展思維、提高知識(shí)的應(yīng)用能力和發(fā)現(xiàn)問題、解決問題能力。

          二、教學(xué)程序

         。ㄒ唬.設(shè)計(jì)思路

         。ǘ.教學(xué)流程

          1.復(fù)習(xí)引入

          我們已經(jīng)學(xué)習(xí)過橢圓的標(biāo)準(zhǔn)方程和雙曲線的標(biāo)準(zhǔn)方程,以及橢圓的簡單的幾何性質(zhì),請同學(xué)們來回顧這些知識(shí)點(diǎn),對學(xué)習(xí)的舊知識(shí)加以復(fù)習(xí)鞏固,同時(shí)為新知識(shí)的學(xué)習(xí)做準(zhǔn)備,利用多媒體工具的先進(jìn)性,結(jié)合圖像來演示。

          2.觀察、類比

          這節(jié)課內(nèi)容是通過雙曲線方程推導(dǎo)、研究雙曲線的性質(zhì),本節(jié)內(nèi)容類似于“橢圓的簡單的幾何性質(zhì)”,教學(xué)中可以與其類比講解,讓學(xué)生自己進(jìn)行探究,首先觀察雙曲線的形狀,試著按照橢圓的幾何性質(zhì),歸納總結(jié)出雙曲線的幾何性質(zhì)。一般學(xué)生能用類似于推導(dǎo)橢圓的幾何性質(zhì)的方法得出雙曲線的范圍、對稱性、頂點(diǎn)、離心率,對知識(shí)的理解不能浮于表面只會(huì)看圖,也要會(huì)從方程的角度來解釋,抓住方程的本質(zhì)。用多媒體演示,加強(qiáng)學(xué)生對雙曲線的簡單幾何性質(zhì)范圍、對稱性、頂點(diǎn)(實(shí)軸、虛軸)、離心率(不深入的講解)的鞏固。之后,比較雙曲線的這四個(gè)性質(zhì)和橢圓的性質(zhì)有何聯(lián)系及區(qū)別,這樣可以加強(qiáng)新舊知識(shí)的聯(lián)系,借助于類比方法,引起學(xué)生學(xué)習(xí)的興趣,激發(fā)求知欲。

          3.雙曲線的漸近線的發(fā)現(xiàn)、證明

         。1)發(fā)現(xiàn)

          由橢圓的幾何性質(zhì),我們能較準(zhǔn)確地畫出橢圓的圖形。那么,由雙曲線的幾何性質(zhì),能否較準(zhǔn)確地畫出雙曲線

          的圖形為引例,讓學(xué)生動(dòng)筆實(shí)踐,通過列表描點(diǎn),就能把雙曲線的頂點(diǎn)及附近的點(diǎn)較準(zhǔn)確地畫出來,但雙曲線向遠(yuǎn)處如何伸展就不是很清楚。從而說明想要準(zhǔn)確的畫出雙曲線的圖形只有那四個(gè)性質(zhì)是不行的。

          從學(xué)生曾經(jīng)學(xué)習(xí)過的反比例函數(shù)入手,而且可以比較精確的畫出反比例函數(shù)

          的圖像,它的圖像是雙曲線,當(dāng)雙曲線伸向遠(yuǎn)處時(shí),它與x、y軸無限接近,此時(shí)x、y軸是的漸近線,為后面引出漸近線的概念埋下伏筆。從而讓學(xué)生猜想雙曲線有何特征?有沒有漸近線?由于雙曲線的對稱性,我們只須研究它的圖形在第一象限的情況即可。在研究雙曲線的范圍時(shí),由雙曲線的標(biāo)準(zhǔn)方程,可解出,當(dāng)x無限增大時(shí),y也隨之增大,不容易發(fā)現(xiàn)它們之間的微妙關(guān)系。但是如果將式子變形為,我們就會(huì)發(fā)現(xiàn):當(dāng)x無限增大,逐漸減小、無限接近于0,而就逐漸增大、無限接近于1();若將變形為,即說明此時(shí)雙曲線在第一象限,當(dāng)x無限增大時(shí),其上的點(diǎn)與坐標(biāo)原點(diǎn)之間連線的斜率比1小,但與斜率為1的直線無限接近,且此點(diǎn)永遠(yuǎn)在直線的下方。其它象限向遠(yuǎn)處無限伸展的變化趨勢就可以利用對稱性得到,從而可知雙曲線的圖形在遠(yuǎn)處與直線無限接近,此時(shí)我們就稱直線叫做雙曲線的漸近線。這樣從已有知識(shí)出發(fā),層層設(shè)(釋)疑,激活已知,啟迪思維,調(diào)動(dòng)學(xué)生自身探索的內(nèi)驅(qū)力,進(jìn)一步清晰概念(或圖形)特征,培養(yǎng)思維的深刻性。

          利用由特殊到一般的規(guī)律,就可以引導(dǎo)學(xué)生探尋雙曲線

          (a>0,b>0)的漸近線,讓學(xué)生同樣利用類比的方法,將其變形為,由于雙曲線的對稱性,我們可以只研究第一象限向遠(yuǎn)處的變化趨勢,繼續(xù)變形為,可發(fā)現(xiàn)當(dāng)x無限增大時(shí),逐漸減小、無限接近于0,逐漸增大、無限接近于,即說明對于雙曲線在第一象限遠(yuǎn)處的點(diǎn)與坐標(biāo)原點(diǎn)之間連線的斜率比小,與斜率為的直線無限接近,且此點(diǎn)永遠(yuǎn)在直線下方。其它象限向遠(yuǎn)處無限伸展的變化趨勢可以利用對稱性得到,從而可知雙曲線(a>0,b>0)的圖形在遠(yuǎn)處與直線無限接近,直線叫做雙曲線(a>0,b>0)的漸近線。我就是這樣將漸近線的發(fā)現(xiàn)作為重點(diǎn),充分暴露思維過程,培養(yǎng)學(xué)生的創(chuàng)造性思維,通過誘導(dǎo)、分析,巧妙地應(yīng)用極限思想導(dǎo)出了雙曲線的漸近線方程。這樣處理將數(shù)學(xué)思想滲透于其中,學(xué)生也易接受。

         。2)證明

          如何證明直線

          是雙曲線(a>0,b>0)的漸近線呢?

          啟發(fā)思考①:首先,逐步接近,轉(zhuǎn)換成什么樣的數(shù)學(xué)語言?(x→∞,d→0)

          啟發(fā)思考②:顯然有四處逐步接近,是否每一處都進(jìn)行證明?

          啟發(fā)思考③:鎖定第一象限后,具體地怎樣利用x表示d

         。üぞ呤鞘裁矗狐c(diǎn)到直線的距離公式)

          啟發(fā)思考④:讓學(xué)生設(shè)點(diǎn),而d的表達(dá)式較復(fù)雜,能否將問題進(jìn)行轉(zhuǎn)化?

          分析:要證明直線

          是雙曲線(a>0,b>0)的漸近線,即要證明隨著x的增大,直線和曲線越來越靠攏。也即要證曲線上的點(diǎn)到直線的距離

         。麺Q|越來越短,因此把問題轉(zhuǎn)化為計(jì)算|MQ|。但因|MQ|不好直接求得,因此又可以把問題轉(zhuǎn)化為求|MN|。

          啟發(fā)思考⑤:這樣證明后,還須交代什么?

         。ㄔ谄渌笙蓿砜勺C,或由對稱性可知有相似情況)

          引導(dǎo)學(xué)生層層深入的進(jìn)行探究,從而更深刻的理解雙曲線的漸近線的發(fā)現(xiàn)及證明過程。

         。3)深化

          再來研究實(shí)軸在y軸上的雙曲線

          (a>0,b>0)的漸近線方程就會(huì)變得容易很多,此時(shí)可利用類比的方法或者利用對稱性得到焦點(diǎn)在y軸上的雙曲線的漸近線方程即為。

          這樣,我們就完滿地解決了畫雙曲線遠(yuǎn)處趨向問題,從而可比較精確的畫出雙曲線。但是如果仔細(xì)觀察漸近線實(shí)質(zhì)就是雙曲線過實(shí)軸端點(diǎn)、虛軸端點(diǎn),作平行與坐標(biāo)軸的直線

          所成的矩形的兩條對角線,數(shù)形結(jié)合,來加強(qiáng)對雙曲線的漸近線的理解。

          4.離心率的幾何意義

          橢圓的離心率反映橢圓的扁平程度,雙曲線離心率有何幾何意義呢?不難得到:

          ,這是剛剛學(xué)生在類比橢圓的幾何性質(zhì)時(shí)就可以得到的簡單結(jié)論。通過對離心率的研究,同樣也可以使學(xué)生進(jìn)一步加深對漸近線的理解。

          由等式

          ,可得:,不難發(fā)現(xiàn):e越。ㄔ浇咏1),就越接近于0,雙曲線開口越。籩越大,就越大,雙曲線開口越大。所以,雙曲線的離心率反映的是雙曲線的開口大小。通過對這些性質(zhì)的探究,就可以更好的理解雙曲線圖形與這些基本量之間的關(guān)系,更加準(zhǔn)確的作出雙曲線的圖形。

          5.例題分析

          為突出本節(jié)內(nèi)容,使學(xué)生盡快掌握剛才所學(xué)的知識(shí)。我選配了這樣的例題:

          例1.求雙曲線9x2-16y2=144的實(shí)半軸長和虛半軸長、頂點(diǎn)和焦點(diǎn)坐標(biāo)、漸近線方程、離心率。選題目的在于拿到一個(gè)雙曲線的方程之后若不是標(biāo)準(zhǔn)式,要先將所給的雙曲線方程化為標(biāo)準(zhǔn)方程,后根據(jù)標(biāo)準(zhǔn)方程分別求出有關(guān)量。本題求漸近線的方程的方法:(1)直接根據(jù)漸近線方程寫出;(2)利用雙曲線的圖形中的矩形框架的對角線得到。加強(qiáng)對于雙曲線的漸近線的應(yīng)用和理解。

          變1:求雙曲線9y2-16x2=144的實(shí)半軸長和虛半軸長、頂點(diǎn)和焦點(diǎn)坐標(biāo)、漸近線方程、離心率。選題目的:和上題相同先將所給的雙曲線方程化為標(biāo)準(zhǔn)方程,后根據(jù)標(biāo)準(zhǔn)方程分別求出有關(guān)量;但求漸近線時(shí)可直接求出,也可以利用對稱性來求解。

          關(guān)鍵在于對比:雙曲線的形狀不變,但在坐標(biāo)系中的位置改變,它的那些性質(zhì)改變,那些性質(zhì)不變?試歸納雙曲線的幾何性質(zhì)。(小結(jié)列表)

          變2:已知雙曲線的漸近線方程是

          ,且經(jīng)過點(diǎn)(,3),求雙曲線的標(biāo)準(zhǔn)方程。

          選題目的

         。涸谝阎p曲線的漸近線的前提下,如何利用已知信息求解雙曲線的方程。方法1:分焦點(diǎn)在x軸,焦點(diǎn)在y軸分別求解;方法2:確定點(diǎn)所在的區(qū)域,定方程的形式,然后求a、b。深化知識(shí),加強(qiáng)應(yīng)用,使知識(shí)系統(tǒng)化。

          例題的選備,可將此題作一題多變(變條件,變結(jié)論),訓(xùn)練學(xué)生一題多解,開拓其解題思路,使他們在做題中總結(jié)規(guī)律、發(fā)展思維、提高知識(shí)的應(yīng)用能力和發(fā)現(xiàn)問題、解決問題能力。

          6.課堂練習(xí)

          課本P113練習(xí)1.2,讓學(xué)生自己練習(xí),熟悉并運(yùn)用雙曲線的幾何性質(zhì)解題,加強(qiáng)應(yīng)用性。

          7.課堂小結(jié)

         。1)通過本節(jié)學(xué)習(xí),要求學(xué)生熟悉并掌握雙曲線的幾何性質(zhì),尤其是雙曲線的漸近線方程及其“漸近”性質(zhì)的證明,并能簡單應(yīng)用雙曲線的幾何性質(zhì);

         。2)雙曲線的幾何性質(zhì)總結(jié)(學(xué)生填表歸納)。

          8.課后作業(yè)

          課本P113習(xí)題

          思考:雙曲線與其漸近線的方程之間有何內(nèi)在的變化規(guī)律?

          以上就是我對于《雙曲線的簡單幾何性質(zhì)》的教學(xué)設(shè)計(jì),希望老師們給與批評與指正!我會(huì)不斷努力,力爭開拓創(chuàng)新,不斷進(jìn)步。

          高一數(shù)學(xué)說課稿 20

          一、本節(jié)課內(nèi)容的數(shù)學(xué)本質(zhì)

          本節(jié)課的主要任務(wù)是探究二分法基本原理,給出用二分法求方程近似解的基本步驟,使學(xué)生學(xué)會(huì)借助計(jì)算器用二分法求給定精確度的方程的近似解。通過探究讓學(xué)生體驗(yàn)從特殊到一般的認(rèn)識(shí)過程,滲透逐步逼近和無限逼近思想(極限思想),體會(huì)“近似是普遍的、精確則是特殊的”辯證唯物主義觀點(diǎn)。引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)理解有關(guān)內(nèi)容,通過求方程的近似解感受函數(shù)、方程、不等式以及算法等內(nèi)容的有機(jī)結(jié)合,使學(xué)生體會(huì)知識(shí)之間的聯(lián)系。

          所以本節(jié)課的本質(zhì)是讓學(xué)生體會(huì)函數(shù)與方程的思想、近似的思想、逼近的思想和初步感受程序化地處理問題的算法思想。

          二、本節(jié)課內(nèi)容的地位、作用

          “二分法”的理論依據(jù)是“函數(shù)零點(diǎn)的存在性(定理)”,本節(jié)課是上節(jié)學(xué)習(xí)內(nèi)容《方程的根與函數(shù)的零點(diǎn)》的自然延伸;是數(shù)學(xué)必修3算法教學(xué)的一個(gè)前奏和準(zhǔn)備;同時(shí)滲透數(shù)形結(jié)合思想、近似思想、逼近思想和算法思想等。

          三、學(xué)生情況分析

          學(xué)生已初步理解了函數(shù)圖象與方程的根之間的關(guān)系,具備一定的用數(shù)形結(jié)合思想解決問題的能力,這為理解函數(shù)零點(diǎn)附近的函數(shù)值符號(hào)提供了知識(shí)準(zhǔn)備。但學(xué)生僅是比較熟悉一元二次方程解與函數(shù)零點(diǎn)的關(guān)系,對于高次方程、超越方程與對應(yīng)函數(shù)零點(diǎn)之間的聯(lián)系的認(rèn)識(shí)比較模糊,計(jì)算器的使用不夠熟練,這些都給學(xué)生學(xué)習(xí)本節(jié)內(nèi)容造成一定困難。

          四、教學(xué)目標(biāo)定位

          根據(jù)教材內(nèi)容和學(xué)生的實(shí)際情況,本節(jié)課的教學(xué)目標(biāo)設(shè)定如下:

          通過具體實(shí)例理解二分法的概念及其適用條件,了解二分法是求方程近似解的.一種方法,會(huì)用二分法求某些具體方程的近似解,從中體會(huì)函數(shù)與方程之間的聯(lián)系,體會(huì)程序化解決問題的思想。

          借助計(jì)算器用二分法求方程的近似解,讓學(xué)生充分體驗(yàn)近似的思想、逼近的思想和程序化地處理問題的思想及其重要作用,并為下一步學(xué)習(xí)算法做知識(shí)準(zhǔn)備。

          通過探究、展示、交流,養(yǎng)成良好的學(xué)習(xí)品質(zhì),增強(qiáng)合作意識(shí)。

          通過具體問題體會(huì)逼近過程,感受精確與近似的相對統(tǒng)一。

          五、教學(xué)診斷分析

          “二分法”的思想方法簡便而又應(yīng)用廣泛,所需的數(shù)學(xué)知識(shí)較少,算法流程比較簡潔,便于編寫計(jì)算機(jī)程序;利用計(jì)算器和多媒體輔助教學(xué),直觀明了;學(xué)生在生活中也有相關(guān)體驗(yàn),所以易于被學(xué)生理解和掌握。 但“二分法”不能用于求方程偶次重根的近似解,精確度概念不易理解。

          六、教學(xué)方法和特點(diǎn)

          本節(jié)課采用的是問題驅(qū)動(dòng)、啟發(fā)探究的教學(xué)方法。

          通過分組合作、互動(dòng)探究、搭建平臺(tái)、分散難點(diǎn)的學(xué)習(xí)指導(dǎo)方法把問題逐步推進(jìn)、拾級而上,并輔以多媒體教學(xué)手段,使學(xué)生自主探究二分法的原理。

          本節(jié)課特點(diǎn)主要有以下幾方面:

          1、以問題驅(qū)動(dòng)教學(xué),激發(fā)學(xué)生的求知欲,體現(xiàn)了以學(xué)生為主的教學(xué)理念。

          2、注重與現(xiàn)實(shí)生活中案例相結(jié)合,讓學(xué)生體會(huì)數(shù)學(xué)來源于現(xiàn)實(shí)生活又可以解決現(xiàn)實(shí)生活中的問題。

          以李詠主持的幸運(yùn)52猜商品價(jià)格來創(chuàng)設(shè)情境,不僅激發(fā)學(xué)生學(xué)習(xí)興趣,學(xué)生也在猜測的過程中體會(huì)二分法思想。

          3、注重學(xué)生參與知識(shí)的形成過程,使他們“聽”有所思,“學(xué)”有所獲。

          本節(jié)課中的每一個(gè)問題都是在師生交流中產(chǎn)生,在學(xué)生合作探究中解決,使學(xué)生經(jīng)歷了完整的學(xué)習(xí)過程,培養(yǎng)合作交流意識(shí)。

          4、恰當(dāng)?shù)乩矛F(xiàn)代信息技術(shù),幫助學(xué)生揭示數(shù)學(xué)本質(zhì)。

          本節(jié)課中利用計(jì)算器進(jìn)行了多次計(jì)算,逐步縮小實(shí)數(shù)解所在范圍,精確度的確定就顯得非常自然,突破了教學(xué)上的難點(diǎn),提高了探究活動(dòng)的有效性。整個(gè)課件都以PowerPoint為制作平臺(tái),演示Excel

          程序求方程的近似解,界畫活潑,充分體現(xiàn)了信息技術(shù)與數(shù)學(xué)課程有機(jī)整合。

          七、預(yù)期效果分析

          以方程的根與函數(shù)的零點(diǎn)知識(shí)作基礎(chǔ),通過對求方程近似解的探究討論,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng);采用多媒體技術(shù),大容量信息的呈現(xiàn)和生動(dòng)形象的演示,激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,掌握二分法的本質(zhì),完成教學(xué)目標(biāo)。

          另外盡管使用了科學(xué)計(jì)算器,但求一個(gè)方程的近似解也是很費(fèi)時(shí)的,學(xué)生容易出現(xiàn)計(jì)算錯(cuò)誤和產(chǎn)生急躁情緒;況且問題探究式教學(xué)跟學(xué)生的學(xué)習(xí)程度有很大關(guān)系,各小組的探究時(shí)間存在差異,教師要適時(shí)指導(dǎo)。

          高一數(shù)學(xué)說課稿 21

          一、背景分析

          1、學(xué)習(xí)任務(wù)分析

          本節(jié)課是必修1第1章第2節(jié)的內(nèi)容,是函數(shù)這一章的起始課,它上承集合,下引性質(zhì),與方程、不等式、數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容聯(lián)系密切,是學(xué)好后繼知識(shí)的基礎(chǔ)和工具,所以本節(jié)課在數(shù)學(xué)教學(xué)中的地位和作用是至關(guān)重要的。

          2、學(xué)情分析

          學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,初步具備了學(xué)習(xí)函數(shù)概念的基本能力,但函數(shù)的概念從初中的變量學(xué)說到高中階段的對應(yīng)說很抽象,不易理解。

          另外,通過對集合的學(xué)習(xí),學(xué)生基本適應(yīng)了有效教學(xué)的.課堂模式,初步具備了小組合作、自主探究的學(xué)習(xí)能力。

          基于以上的分析,我認(rèn)為本節(jié)課的教學(xué)重點(diǎn)為:函數(shù)的概念以及構(gòu)成函數(shù)的三要素;

          教學(xué)難點(diǎn)為:函數(shù)概念的形成及理解。

          二、教學(xué)目標(biāo)設(shè)計(jì)

          根據(jù)《課程標(biāo)準(zhǔn)》對本節(jié)課的學(xué)習(xí)要求,結(jié)合本班學(xué)生的情況,故而確立本節(jié)課的教學(xué)目標(biāo)。

          1、知識(shí)與技能(方面)

          通過豐富的實(shí)例,讓學(xué)生

         、倭私夂瘮(shù)是非空數(shù)集到非空數(shù)集的一個(gè)對應(yīng);

         、诹私鈽(gòu)成函數(shù)的三要素;

         、劾斫夂瘮(shù)概念的本質(zhì);

         、芾斫鈌(x)與f(a)(a為常數(shù))的區(qū)別與聯(lián)系;

         、輹(huì)求一些簡單函數(shù)的定義域。

          2、過程與方法(方面)

          在教學(xué)過程中,結(jié)合生活中的實(shí)例,通過師生互動(dòng)、生生互動(dòng)培養(yǎng)學(xué)生分析推理、歸納總結(jié)和表達(dá)問題的能力,在函數(shù)概念的構(gòu)建過程中體會(huì)類比、歸納、猜想等數(shù)學(xué)思想方法。

          3、情感、態(tài)度與價(jià)值觀(方面)

          讓學(xué)生充分體驗(yàn)函數(shù)概念的形成過程,參與函數(shù)定義域的求解過程以及函數(shù)的求值過程,使學(xué)生感受到數(shù)學(xué)的抽象美與簡潔美。

          三、課堂結(jié)構(gòu)設(shè)計(jì)

          為充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,變被動(dòng)學(xué)習(xí)為主動(dòng)愉快的探究,我使用有效教學(xué)的課堂模式,課前學(xué)生通過結(jié)構(gòu)化預(yù)習(xí),完成問題生成單,課中采用師生互動(dòng)、小組討論、學(xué)生展寫、展講例題,教師點(diǎn)評的方式完成問題解決單,課后完成問題拓展單,課堂結(jié)構(gòu)包含:

          復(fù)習(xí)舊知,引出課題(約2分鐘)

          創(chuàng)設(shè)情境,形成概念(約5分鐘)

          剖析概念(約12分鐘)

          例題分析,鞏固知識(shí)

          小組討論,展寫例題(約8分鐘)

          小組展講,教師點(diǎn)評(約10分鐘)

          總結(jié)反思,知識(shí)升華(約2分鐘)

          (最后)布置作業(yè),拓展練習(xí)

          四、教學(xué)媒體設(shè)計(jì)

          教學(xué)中利用投影與黑板相結(jié)合的形式,利用投影直觀、生動(dòng)地展示實(shí)例,并能增加課堂容量;利用黑板列舉本節(jié)重要內(nèi)容,使學(xué)生對所學(xué)內(nèi)容有一整體認(rèn)識(shí),并讓學(xué)生利用黑板展寫、展講例題,有問題及時(shí)發(fā)現(xiàn)及時(shí)解決。

        【高一數(shù)學(xué)說課稿】相關(guān)文章:

        高一數(shù)學(xué)說課稿01-14

        高一數(shù)學(xué)說課稿12-28

        高一數(shù)學(xué)優(yōu)秀說課稿12-30

        人教版高一數(shù)學(xué)優(yōu)秀說課稿02-17

        高一數(shù)學(xué)交集并集說課稿07-06

        高一數(shù)學(xué)說課稿(15篇)12-28

        高一數(shù)學(xué)說課稿15篇12-28

        高一數(shù)學(xué)優(yōu)秀說課稿(3篇)01-06

        高一數(shù)學(xué)優(yōu)秀說課稿3篇01-06

        高一數(shù)學(xué)說課稿精選15篇12-28

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>