- 相關推薦
初一數(shù)學上冊多邊形的內角和說課稿
作為一名教學工作者,很有必要精心設計一份說課稿,借助說課稿可以有效提升自己的教學能力。寫說課稿需要注意哪些格式呢?下面是小編為大家整理的初一數(shù)學上冊多邊形的內角和說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。
一、 教材分析
1、教學內容
“多邊形的內角和”一節(jié)包括的內容主要有多邊形的有關概念以及多邊形內角和公式的推導和運用。
2、本章及本節(jié)的地位與作用
本章《多邊形》,探索的是三角形和多邊形的有關概念和性質,是學生在上學期初步認識和感受空間圖形之后的延伸,也為今后進一步學習各種多邊形打好基礎。
本節(jié)課“多邊形的內角和”作為本章的一個重點,是三角形有關知識的拓展,學習四邊形的基礎, 公式的運用還充分地體現(xiàn)了圖形與客觀世界的密切聯(lián)系。
3、重點與難點
多邊形內角和的公式及公式的推導和運用是本節(jié)課的重點; 因為公式的得出可以用多種不同的方法推導, 所以我確定本節(jié)課的難點是如何引導學生通過自主學習, 探索多邊形內角和的公式。
二、教學目標
根據(jù)新課程標準的要求,課改應體現(xiàn)學生身心發(fā)展特點;應有利于引導學生主動探索和發(fā)現(xiàn);有利于進行創(chuàng)造性的教學。因此,我把本節(jié)課的教學目標確定為以下三個方面:
知識目標:
① 識別多邊形的頂點、邊、內角及對角線;
、 理解多邊形內角和公式的推導過程;
、 掌握多邊形內角和公式的內涵及其運用。
能力目標:
、 培養(yǎng)學生類比歸納、轉化的能力;
② 培養(yǎng)學生觀察分析、猜想和概括的能力。
思想情感目標:
通過體會數(shù)學圖形的美感,提高審美能力, 樹立認識數(shù)學來源于生活,又服務于實踐的觀點。
三、教法分析
在教法上樹立以學生為本的思想,通過創(chuàng)設問題情境,啟發(fā)引導學生觀察----分析----猜想----概括,培養(yǎng)學生積極思考,勇于探索的精神,充分發(fā)揮其自主能動性。
學法指導是培養(yǎng)學生學習能力的關鍵,本節(jié)課針對學生的認知規(guī)律,指導他們動手操作、交流合作,體驗發(fā)現(xiàn)問題、探索問題和解決問題的學習過程。
教學手段上采用多媒體輔助教學,通過直觀演示,更好地實現(xiàn)了“數(shù)形結合”的教學,切實有效地提高了課堂教學的效果。
四、過程設計
1、創(chuàng)設問題情境,引入新課
我是這樣設計問題的:
在一個平面內,把一個三角形的三個頂點固定,一邊套上橡皮筋往外拉成一條折線,該折線與三角形的另外兩邊圍成一個什么圖形?再把橡皮筋的一邊又往外拉,再固定, 又圍成什么圖形?……不斷地向外拉,結果圍成什么圖形?
如果上述情況不是往外拉而是往里推,那是什么圖形?
在學生的回答中引出主題:今天我們來學習多邊形的有關知識.
。ò鍟: 多邊形的內角和)。
因為前面已經(jīng)學過三角形的有關知識, 從學生熟悉的情境入手引入新知識, 更能引起學生的學習興趣, 啟發(fā)思考: 多邊形與三角形有什么密切的聯(lián)系呢? 滲透了互為轉化的思想。
2、新課學習:
。1)基本概念
我把新課的引入過程作為本節(jié)課一條主線,各環(huán)節(jié)都圍繞著這條主線展開。
首先告訴學生:我們往外拉得到的這些圖形稱為凸多邊形,你能給往里推得到的多邊形起個名字嗎?怎樣區(qū)別這兩種圖形呢?把凹多邊形與凸多邊形從分割的角度來區(qū)別,指出暫時研究的只是凸多邊形。
幫助學生復習三角形的有關概念,類比得出四邊形、五邊形、… n邊形的定義,識別多邊形的頂點、邊及內角,并會表示出一個多邊形。
引入特殊多邊形之前, 先欣賞生活中常見到的豐富多彩的圖案, 讓學生體會數(shù)學圖形的美,提高審美情趣. 稱這樣的多邊形為正多邊形,說明這種規(guī)則的、對稱的圖形非常重要,為下一節(jié)學習用正多邊形鋪設地板作好鋪墊。
在多邊形的對角線這一概念的認識和理解上,應突出它的作用,引導學生觀察、發(fā)現(xiàn),由于這種特殊的線段,把多邊形分割成了最基本的圖形——三角形,目的是為多邊形內角和公式的推導埋下伏筆。
(2)知識探究
為了加深對概念的理解,領會其運用,突出本節(jié)課的重點和難點,同時體現(xiàn)新課程標準的精神實質, 在知識探究這一部分,我采取以下兩個探究活動充分調動全體學生主動探索多邊形的內角和公式:
【初一數(shù)學上冊多邊形的內角和說課稿】相關文章:
多邊形內角和說課稿12-07
《多邊形的內角和》的說課稿01-26
多邊形的內角和說課稿07-02
《多邊形及其內角和》說課稿08-05
多邊形的內角和教案01-25
《探索多邊形的內角和與外角和》07-11
多邊形內角和教學設計12-05