1. <rp id="zsypk"></rp>

      2. 數(shù)學(xué)公式總結(jié)高三

        時(shí)間:2021-10-08 13:36:31 總結(jié) 我要投稿

        數(shù)學(xué)公式總結(jié)高三

          總結(jié)是在一段時(shí)間內(nèi)對學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書面材料,它能使我們及時(shí)找出錯(cuò)誤并改正,讓我們一起認(rèn)真地寫一份總結(jié)吧。那么你真的懂得怎么寫總結(jié)嗎?以下是小編幫大家整理的數(shù)學(xué)公式總結(jié)高三,供大家參考借鑒,希望可以幫助到有需要的朋友。

        數(shù)學(xué)公式總結(jié)高三

        數(shù)學(xué)公式總結(jié)高三1

          正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

          余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

          圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

          圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

          拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2p_=2pyx2=-2py

          直棱柱側(cè)面積S=c_斜棱柱側(cè)面積S=c'_

          正棱錐側(cè)面積S=1/2c_'正棱臺側(cè)面積S=1/2(c+c')h'

          圓臺側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi_2

          圓柱側(cè)面積S=c_=2pi_圓錐側(cè)面積S=1/2__=pi__

          弧長公式l=a_a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__

          錐體體積公式V=1/3__圓錐體體積公式V=1/3_i_2h

          斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長

          柱體體積公式V=s_圓柱體V=p_2h

          乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

          三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

          |a-b|≥|a|-|b|-|a|≤a≤|a|

          一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

          根與系數(shù)的關(guān)系X1+X2=-b/aX1_2=c/a注:韋達(dá)定理

          判別式

          b2-4ac=0注:方程有兩個(gè)相等的實(shí)根

          b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

          b2-4ac<0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根

        數(shù)學(xué)公式總結(jié)高三2

          在數(shù)學(xué)和物理中,弧度是角的度量單位。它是由國際單位制導(dǎo)出的單位,單位縮寫是rad。定義:弧長等于半徑的弧,其所對的圓心角為1弧度。(即兩條射線從圓心向圓周射出,形成一個(gè)夾角和夾角正對的一段弧。當(dāng)這段弧長正好等于圓的半徑時(shí),兩條射線的夾角的弧度為1)。

          根據(jù)定義,一周的弧度數(shù)為2πr/r=2π,360°角=2π弧度,因此,1弧度約為57.3°,即57°17'44.806'',1°為π/180弧度,近似值為0.01745弧度,周角為2π弧度,平角(即180°角)為π弧度,直角為π/2弧度。

          在具體計(jì)算中,角度以弧度給出時(shí),通常不寫弧度單位,直接寫值。最典型的例子是三角函數(shù),如sin 8π、tan (3π/2)。

          在初中數(shù)學(xué)中,我們學(xué)過圓弧長公式:

          弧長=nπr2/360,在這里n就是角度數(shù),即圓心角n所對應(yīng)的弧長。

          但如果我們利用弧度的話,以上的式子將會變得更簡單:(注意,弧度有正負(fù)之分)

          l=|α| r,即α的大小與半徑之積。

          同樣,我們可以簡化扇形面積公式:

          S=|α| r^2/2(二分之一倍的α角的大小,與半徑的平方之積,從中我們可以看出,當(dāng)|α|=2π,即周角時(shí),公式變成了S=πr^2,圓面積的公式!)

          在 Windows 操作系統(tǒng)附帶的計(jì)算器程序(電腦左下角的開始→程序→附件→計(jì)算器)的科學(xué)計(jì)算法里,可以調(diào)用弧度來進(jìn)行計(jì)算。

        數(shù)學(xué)公式總結(jié)高三3

          符合一定條件的'動點(diǎn)所形成的圖形,或者說,符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡.

          軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

          【軌跡方程】就是與幾何軌跡對應(yīng)的代數(shù)描述。

          一、求動點(diǎn)的軌跡方程的基本步驟

          ⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點(diǎn)M的坐標(biāo);

         、矊懗鳇c(diǎn)M的集合;

          ⒊列出方程=0;

         、椿喎匠虨樽詈喰问;

          ⒌檢驗(yàn)。

          二、求動點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

          ⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

         、捕x法:如果能夠確定動點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

         、诚嚓P(guān)點(diǎn)法:用動點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

          ⒋參數(shù)法:當(dāng)動點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

         、到卉壏ǎ簩蓜忧方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

          _譯法:求動點(diǎn)軌跡方程的一般步驟

          ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

         、谠O(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

         、哿惺健谐鰟狱c(diǎn)p所滿足的關(guān)系式;

         、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

          ⑤證明——證明所求方程即為符合條件的動點(diǎn)軌跡方程。

        數(shù)學(xué)公式總結(jié)高三4

          【某些數(shù)列前n項(xiàng)和】

          1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

          2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

          13+23+33+43+53+63+…n3=n2(n+1)2/41_+2_+3_+4_+5_+6_+…+n(n+1)=n(n+1)(n+2)/3

          正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

          余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

          弧長公式l=a_a是圓心角的弧度數(shù)r>0扇形面積公式s=1/2__

          乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

          三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

          |a-b|≥|a|-|b|-|a|≤a≤|a|

          一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

          根與系數(shù)的關(guān)系X1+X2=-b/aX1_2=c/a注:韋達(dá)定理

          【判別式】

          b2-4ac=0注:方程有兩個(gè)相等的實(shí)根

          b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

          b2-4ac

        數(shù)學(xué)公式總結(jié)高三5

          正整數(shù)階乘指從1乘以2乘以3乘以4一直乘到所要求的數(shù)。

          例如所要求的數(shù)是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。 例如所要求的數(shù)是6,則階乘式是1×2×3×……×6,得到的積是720,720就是6的階乘。例如所要求的數(shù)是n,則階乘式是1×2×3×……×n,設(shè)得到的積是x,x就是n的階乘。

          任何大于1的自然數(shù)n階乘表示方法:

          n!=1×2×3×……×n

          或

          n!=n×(n-1)!

          n的雙階乘:

          當(dāng)n為奇數(shù)時(shí)表示不大于n的所有奇數(shù)的乘積

          如:7!!=1×3×5×7

          當(dāng)n為偶數(shù)時(shí)表示不大于n的所有偶數(shù)的乘積(除0外)

          如:8!!=2×4×6×8

          小于0的整數(shù)-n的階乘表示:

          (-n)!= 1 / (n+1)!

          以下列出0至20的階乘:

          0!=1,注意(0的階乘是存在的)

          1!=1,

          2!=2,

          3!=6,

          4!=24,

          5!=120,

          6!=720,

          7!=5,040,

          8!=40,320

          9!=362,880

          10!=3,628,800

          11!=39,916,800

          12!=479,001,600

          13!=6,227,020,800

          14!=87,178,291,200

          15!=1,307,674,368,000

          16!=20,922,789,888,000

          17!=355,687,428,096,000

          18!=6,402,373,705,728,000

          19!=121,645,100,408,832,000

          20!=2,432,902,008,176,640,000

          另外,數(shù)學(xué)家定義,0!=1,所以0!=1!

        【數(shù)學(xué)公式總結(jié)高三】相關(guān)文章:

        初三數(shù)學(xué)公式與學(xué)習(xí)方法12-28

        蘋果數(shù)學(xué)公式矢量圖數(shù)學(xué)手抄報(bào)07-18

        高三英語作文總結(jié)09-07

        高三語文考試總結(jié)06-09

        高三學(xué)習(xí)總結(jié)12-23

        高三英語下教學(xué)總結(jié)01-16

        高三英語教師教學(xué)總結(jié)01-15

        高三物理教師總結(jié)范文01-06

        高三學(xué)生期末總結(jié)01-05

        高三教師培訓(xùn)總結(jié)01-14

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>