高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),因此十分有必須要寫一份總結(jié)哦。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?以下是小編整理的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇,僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇1
函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;
(3)利用定理,或借助函數(shù)的圖象判定.
9、函數(shù)的解析表達(dá)式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的.定義域.
(2)求函數(shù)的解析式的主要方法有:
1)湊配法
2)待定系數(shù)法
3)換元法
4)消參法
10.函數(shù)(小)值(定義見課本p36頁(yè))
○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值
○2利用圖象求函數(shù)的(小)值
○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇2
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(fù)(2和-2)時(shí)的函數(shù)圖像。
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1.過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2.對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇3
1.等比數(shù)列的有關(guān)概念
(1)定義:
如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈N_q為非零常數(shù)).
(2)等比中項(xiàng):
如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即:G是a與b的等比中項(xiàng)?a,G,b成等比數(shù)列?G2=ab.
2.等比數(shù)列的有關(guān)公式
(1)通項(xiàng)公式:an=a1qn-1.
3.等比數(shù)列{an}的常用性質(zhì)
(1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_,則am·an=ap·aq=a.
特別地,a1an=a2an-1=a3an-2=….
(2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時(shí)q≠-1);an=amqn-m.
4.等比數(shù)列的特征
(1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的,公比q也是非零常數(shù).
(2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.
5.等比數(shù)列的前n項(xiàng)和Sn
(1)等比數(shù)列的前n項(xiàng)和Sn是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中的運(yùn)用.
(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇4
【直線與方程】
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。
、谶^(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):
(1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇5
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長(zhǎng),S=6a2,V=a3
4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)人教版5篇】相關(guān)文章:
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-20
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)08-09
高一政治知識(shí)點(diǎn)總結(jié)05-08
高一化學(xué)知識(shí)點(diǎn)總結(jié)01-12
高一歷史知識(shí)點(diǎn)總結(jié)05-07
高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-18
高一政治必修一知識(shí)點(diǎn)總結(jié)05-09
人教版高一地理必修二常考知識(shí)點(diǎn)11-12