- 相關(guān)推薦
初中主要數(shù)學概念總結(jié)
總結(jié)是指社會團體、企業(yè)單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規(guī)律性認識的一種書面材料,它是增長才干的一種好辦法,是時候?qū)懸环菘偨Y(jié)了。但是總結(jié)有什么要求呢?以下是小編為大家整理的初中主要數(shù)學概念總結(jié),僅供參考,希望能夠幫助到大家。
初中主要數(shù)學概念總結(jié)1
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來
初二數(shù)學學習經(jīng)驗心得
1學好初中數(shù)學課前要預習
初中生想要學好數(shù)學,那么就要利用課前的時間將課上老師要講的內(nèi)容預習一下。初中數(shù)學課前的預習是要明白老師在課上大致所講的內(nèi)容,這樣有利于和方便初中生整理知識結(jié)構(gòu)。
初中生課前預習數(shù)學還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現(xiàn)溜號和走神的情況。同時課前預習還可以將知識點形成體系,可以幫助初中生建立完整的知識結(jié)構(gòu)。
2學習初中數(shù)學課上是關(guān)鍵
初中生想要學好學生,在課上就是一個字:跟。上初中數(shù)學課時跟住老師,老師講到哪里一定要跟上,仔細看老師的板書,隨時知道老師講的是哪里,涉及到的知識點是什么。有的初中生喜歡記筆記,在這里提醒大家,初中數(shù)學課上的'時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課后完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3課后可以適當做一些初中數(shù)學基礎題
在每學完一課后,初中生可以在課后做一些初中數(shù)學的基礎題型,在做這樣的題時,建議大家是,不要出現(xiàn)錯誤的情況,做完題后要學會思考和整理。當你的初中數(shù)學基礎題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據(jù)解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數(shù)學的學習有幫助的,但是如果將重點放在這上面,沒有什么好處。同時要學會整理,將自己錯題歸納并總結(jié),數(shù)學是由簡單明了的事項一步一步地發(fā)展而來,所以,只要學習數(shù)學的人老老實實地、一步一步地去理解,并同時記住其要點,以備以后之需用,就一定能理解其全部內(nèi)容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,…….這時,只不過是反復地做同一件事,故不管誰都應該會做.
初中主要數(shù)學概念總結(jié)2
平面直角坐標系
1.定義:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
2.平面上的任意一點都可以用一個有序數(shù)對來表示,記為(a,b),a是橫坐標,b是縱坐標。
3.原點的坐標是(0,0);
縱坐標相同的點的連線平行于x軸;
橫坐標相同的點的連線平行于y軸;
x軸上的點的縱坐標為0,表示為(x,0);
y軸上的點的橫坐標為0,表示為(0,y)。
4.建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。
5.幾個象限內(nèi)點的特點:
第一象限(+,+);第二象限(―,+);
第三象限(―,―);第四象限(+,―)。
6.(x,y)關(guān)于原點對稱的點是(―x,―y);
(x,y)關(guān)于x軸對稱的點是(x,―y);
(x,y)關(guān)于y軸對稱的點是(―x,y)。
7.點到兩軸的距離:點P(x,y)到x軸的距離是y;
點P(x,y)到y(tǒng)軸的距離是x簟
8.在第一、三象限角平分線上的點的.坐標是(m,m);
在第二、四象限叫平分線上的點的坐標是(m,―m)。
不等式與不等式組
(1)不等式
用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。
(2)不等式的性質(zhì)
①對稱性;
、趥鬟f性;
、奂臃▎握{(diào)性,即同向不等式可加性;
④乘法單調(diào)性;
、萃蛘挡坏仁娇沙诵;
⑥正值不等式可乘方;
、哒挡坏仁娇砷_方;
(3)一元一次不等式
用不等號連接的,含有一個未知數(shù),并且未知數(shù)的次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。
(4)一元一次不等式組
一元一次不等式組是由幾個含有同一個未知數(shù)的一元一次不等式組成的不等式組。
點、線、面、體知識點
1.幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
2.點動成線,線動成面,面動成體。
點、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個點可以用一個大寫字母表示。
一條直線可以用一個小寫字母表示。
一條射線可以用端點和射線上另一點來表示。
一條線段可用它的端點的兩個大寫字母來表示。
注意:
(1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。
(2)直線和射線無長度,線段有長度。
(3)直線無端點,射線有一個端點,線段有兩個端點。
(4)點和直線的位置關(guān)系有線面兩種:
、冱c在直線上,或者說直線經(jīng)過這個點。
、邳c在直線外,或者說直線不經(jīng)過這個點。
角的種類
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。
還有許多種角的關(guān)系,如內(nèi)錯角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)。
【初中主要數(shù)學概念總結(jié)】相關(guān)文章:
初中數(shù)學概念教學總結(jié)09-27
初中數(shù)學概念課的教學方案05-17
初中物理概念總結(jié)03-15
初三數(shù)學概念總結(jié)06-02
數(shù)學概念教學反思10-10
數(shù)學概念的教學反思03-05
高考數(shù)學主要考點總結(jié)09-30
函數(shù)的概念的數(shù)學教案02-07