函數(shù)一向是數(shù)學中的難點,那么函數(shù)性質的知識點又有哪一些呢?下面函數(shù)性質知識點總結是小編為大家?guī)淼,希望對大家有所幫助?/p>
函數(shù)性質知識點總結
1.函數(shù)的單調性(局部性質)
(1)增函數(shù)
設函數(shù)y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x12時,都有f(x1)2),那么就說f(x)在區(qū)間D上是增函數(shù).區(qū)間D稱為y=f(x)的單調增區(qū)間.
如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x12 時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調減區(qū)間.
注意:函數(shù)的單調性是函數(shù)的局部性質;
(2) 圖象的特點
如果函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調區(qū)間與單調性的判定方法
(A) 定義法:
1 任取x1,x2∈D,且x12;
2 作差f(x1)-f(x2);
3 變形(通常是因式分解和配方);
4 定號(即判斷差f(x1)-f(x2)的正負);
5 下結論(指出函數(shù)f(x)在給定的區(qū)間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數(shù)的單調性
復合函數(shù)f[g(x)]的單調性與構成它的函數(shù)u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”
注意:函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質)
(1)偶函數(shù)
一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對于函數(shù)f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關于y軸對稱;奇函數(shù)的圖象關于原點對稱.
利用定義判斷函數(shù)奇偶性的步驟:
1首先確定函數(shù)的定義域,并判斷其是否關于原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).
注意:函數(shù)定義域關于原點對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關于原點對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .
9、函數(shù)的解析表達式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:
1) 湊配法
2) 待定系數(shù)法
3) 換元法
4) 消參法
10.函數(shù)最大(小)值(定義見課本p36頁)
1 利用二次函數(shù)的性質(配方法)求函數(shù)的最大(小)值
2 利用圖象求函數(shù)的最大(小)值
3 利用函數(shù)單調性的判斷函數(shù)的最大(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數(shù)y=f(x)在x=b處有最大值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數(shù)的定義域:
、 ⑵
2.設函數(shù) 的定義域為 ,則函數(shù) 的定義域為_ _
3.若函數(shù) 的定義域為 ,則函數(shù)的定義域是
4.函數(shù) ,若 ,則 =
5.求下列函數(shù)的值域:
⑴ ⑵
(3) (4)
6.已知函數(shù) ,求函數(shù) , 的解析式
7.已知函數(shù) 滿足 ,則 = 。
8.設 是R上的奇函數(shù),且當 時, ,則當 時 =
在R上的解析式為
9.求下列函數(shù)的單調區(qū)間:
、 ⑵ ⑶
10.判斷函數(shù) 的單調性并證明你的結論.
11.設函數(shù) 判斷它的奇偶性并且求證: .