數列公式及結論總結
數列公式及結論總結
一、高考數列基本公式:
1、一般數列的通項an與前n項和Sn的關系:an=
2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關于n的一次式;當d=0時,an是一個常數。
3、等差數列的前n項和公式:
當d≠0時,Sn是關于n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關于n的正比例式。
4、等比數列的通項公式: an= a1qn-1an= akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關于n的正比例式);
當q≠1時,
二、高考數學中有關等差、等比數列的結論
1、等差數列{an}的任意連續(xù)m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數列。
4、等比數列{an}的任意連續(xù)m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數列。
5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
10、三個數成等比數列的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)
12、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c≠1) 是等差數列。
【數列公式及結論總結】相關文章:
電場公式總結06-08
正弦函數公式總結09-14
平方差公式總結03-23
有關磁場必備公式總結04-28
物理常見的力公式總結01-17
初中物理電功公式總結01-04
高中物理電場公式總結06-16
正弦函數的四則運算公式總結03-03
初中數學角平分線的公式定理總結11-01
初中數學算術平方根的乘除運算公式總結04-08