《平面向量》教案設(shè)計
作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫教案,教案是備課向課堂教學轉(zhuǎn)化的關(guān)節(jié)點。那么你有了解過教案嗎?下面是小編精心整理的《平面向量》教案設(shè)計,希望能夠幫助到大家。
《平面向量》教案設(shè)計1
課時5 平面向量基本定理
【學習目標】
1.掌握平面向量的基本定理,能用兩個不共線向量表示一個向量;或一個向量分解為兩個向量。
2.能應(yīng)用平面向量基本定理解決一些幾何問題。
【知識梳理】
若 , 是不共線向量, 是平面內(nèi)任一向量
在平面內(nèi)取一點O,作 = , = , = ,使 =λ1 =λ2
= = + =λ1 +λ2
得平面向量基本定理:
注意:1? 、 必須不共線,且它是這一平面內(nèi)所有向量的一組基底
2? 這個定理也叫共面向量定理
3?λ1,λ2是被 , , 唯一確定的實數(shù)。
【例題選講】
1.如圖,ABCD是平行四邊形,對角線AC,BD交于M, , ,試用基底 、 表示 。
2.設(shè) 、 是平面內(nèi)一組基底,如果 =3 -2 , =4 + , =8 -9 ,求證:A,B,D三點共線。
3.設(shè) 、 是平面內(nèi)一組基底,如果 =2 +k , =- -3 , =2 - ,若A,B,D三點共線,求實數(shù)k的值。
4. 中, ,DE//BC,與邊AC相交于點E,中線AM與DE交于點N,如圖, , ,試用 、 表示 。
【歸納反思】
1.平面向量基本定理是平面向量坐標表示的基礎(chǔ),它說明同一平面內(nèi)的任一向量都可以表示為其他兩個不共線向量的線性組合。
2.在解具體問題時適當?shù)剡x取基底,使其它向量能夠用基底來表示,選擇了兩個不共線地向量 ,平面內(nèi)的任何一個向量都可以用 唯一表示,這樣幾何問題就可以轉(zhuǎn)化為代數(shù)問題,轉(zhuǎn)化為只含 的代數(shù)運算。
【課內(nèi)練習】
1.下面三種說法,正確的是
。1)一個平面內(nèi)只有一對不共線的向量可作為表示該平面所有向量的基底;
。2)一個平面內(nèi)有無數(shù)對不共線的向量可作為表示該平面所有向量的基底;
。3)零向量不可為基底中的向量;
2.如果 、 是平面 內(nèi)一組基底,,那么下列命題中正確的`是
。1)若實數(shù)m,n,使m +n = ,則m=n=0;
(2)空間任一向量 可以表示為 = m +n ,這里m,n是實數(shù);
。3)對實數(shù)m,n,向量m +n 不一定在平面 ;
。4)對平面 內(nèi)的任一向量 ,使 = m +n 的實數(shù)m,n有無數(shù)組。
3.若G是 的重心,D、E、F分別是AB、BC、CA的中點,則 =
4.如圖,在 中,AM:AB=1:3,AN:AC=1:4,BN與CM交于點P,設(shè) ,試用 , 表示 。
5.設(shè) , , ,求證:A、B、D三點共線。
【鞏固提高】
1.設(shè) 是平面內(nèi)所有向量的一組基底,則下面四組中不能作為基底的是
A + 和 - B 3 -2 和-6 +4
C +2 和 +2 D 和 +
2.若 , , ,則 =
A + B + C + D +
3.平面直角坐標系中,O為原點,A(3,1),B(-1,3),點C滿足 ,其中 ,且 =1,則點C的軌跡方程為
4.O是平面上一定點,A,B,C是平面上不共線的三個點,動點P滿足
,則P的軌跡一定通過 的 心
5.若點D在 的邊BC上,且 = ,則3m+n的值為
6.設(shè) = +5 , = -2 +8 , =3( - ),求證:A、B、D三點共線。
7.在圖中,對于平行四邊形ABCD,點M是AB的中點,點N在BD上,且BN= BD,求證:M,N,C三點共線。
8.已知 =5 +2 , =6 +y , , , 是一組基底,求y的值。
9.如圖,在 中,D、E分別是線段AC的兩個四等份點,點F是線段BC的中點,設(shè) , ,試用 , 為基底表示向量 。
《平面向量》教案設(shè)計2
第一教時
教材:
向量
目的:
要求學生掌握向量的意義、表示方法以及有關(guān)概念,并能作一個向量與已知向量相等,根據(jù)圖形判定向量是否平行、共線、相等。
過程:
一、開場白:本P93(略)
實例:老鼠由A向西北逃竄,貓在B處向東追去,
問:貓能否追到老鼠?(畫圖)
結(jié)論:貓的速度再快也沒用,因為方向錯了。
二、提出題:平面向量
1.意義:既有大小又有方向的量叫向量。例:力、速度、加速度、沖量等
注意:1數(shù)量與向量的區(qū)別:
數(shù)量只有大小,是一個代數(shù)量,可以進行代數(shù)運算、比較大;
向量有方向,大小,雙重性,不能比較大小。
2從19世紀末到20世紀初,向量就成為一套優(yōu)良通性的數(shù)學體系,用以研究空間性質(zhì)。
2.向量的表示方法:
1幾何表示法:點—射線
有向線段——具有一定方向的線段
有向線段的三要素:起點、方向、長度
記作(注意起訖)
2字母表示法: 可表示為 (印刷時用黑體字)
P95 例 用1cm表示5n mail(海里)
3.模的概念:向量 的大小——長度稱為向量的'模。
記作: 模是可以比較大小的
4.兩個特殊的向量:
1零向量——長度(模)為0的向量,記作 。 的方向是任意的。
注意 與0的區(qū)別
2單位向量——長度(模)為1個單位長度的向量叫做單位向量。
例:溫度有零上零下之分,“溫度”是否向量?
答:不是。因為零上零下也只是大小之分。
例: 與 是否同一向量?
答:不是同一向量。
例:有幾個單位向量?單位向量的大小是否相等?單位向量是否都相等?
答:有無數(shù)個單位向量,單位向量大小相等,單位向量不一定相等。
三、向量間的關(guān)系:
1.平行向量:方向相同或相反的非零向量叫做平行向量。
記作: ∥ ∥
規(guī)定: 與任一向量平行
2.相等向量:長度相等且方向相同的向量叫做相等向量。
記作: =
規(guī)定: =
任兩相等的非零向量都可用一有向線段表示,與起點無關(guān)。
3.共線向量:任一組平行向量都可移到同一條直線上 ,
所以平行向量也叫共線向量。
例:(P95)略
變式一:與向量長度相等的向量有多少個?(11個)
變式二:是否存在與向量長度相等、方向相反的向量?(存在)
變式三:與向量共線的向量有哪些?( )
四、小結(jié):
五、作業(yè):
P96 練習 習題5.1
《平面向量》教案設(shè)計3
一.復習目標:
1.了解平面向量基本定理,理解平面向量的坐標概念,會用坐標形式進行向量的加法、減法、數(shù)乘的運算,掌握向量坐標形式的平行的條;
2.學會使用分類討論、函數(shù)與方程思想解決有關(guān)問題。
二.主要知識:
1.平面向量坐標的概念;
2.用向量的坐標表示向量加法、減法、數(shù)乘運算和平行等等;
3.會利用向量坐標的定義求向量的坐標或點的坐標及動點的軌跡問題.
三.前預(yù)習:
1.若向量 ,則 ( )
2.設(shè) 四點坐標依次是 ,則四邊形 為 ( )
正方形 矩形 菱形 平行四邊形
3.下列各組向量,共線的是 ( )
4.已知點 ,且有 ,則 。
5.已知點 和向量 = ,若 =3 ,則點B的坐標為 。
6.設(shè) ,且有 ,則銳角 。
四.例題分析:
例1.已知向量 , ,且 ,求實數(shù) 的值。
小結(jié):
例2.已知 ,
。1)求 ;(2)當 為何實數(shù)時, 與 平行, 平行時它們是同向還是反向?
小結(jié):
例3.已知點 ,試用向量方法求直線 和 ( 為坐標原點)交點 的坐標。
小結(jié):
例4.已知點 及 ,試問:
。1)當 為何值時, 在 軸上? 在 軸上? 在第三象限?
。2)四邊形 是否能成為平行四邊形?若能,則求出 的值.若不能,說明理由。
小結(jié):
五.后作業(yè):
1. 且 ,則銳角 為 ( )
2.已知平面上直線 的方向向量 ,點 和 在 上的射影分別是 和 ,則 ,其中 ( )
3.已知向量 且 ,則 = ( )
4.在三角形 中,已知 ,點 在中線 上,且 ,則點 的坐標是 ( )
5.平面內(nèi)有三點 ,且 ∥ ,則 的值是 ( )
6.三點 共線的充要條是 ( )
7.如果 , 是平面 內(nèi)所有向量的`一組基底,那么下列命題中正確的是 ( )
若實數(shù) 使 ,則
空間任一向量 可以表示為 ,這里 是實數(shù)
對實數(shù) ,向量 不一定在平面 內(nèi)
對平面內(nèi)任一向量 ,使 的實數(shù) 有無數(shù)對
8.已知向量 , 與 方向相反,且 ,那么向量 的坐標是_ ____.
9.已知 ,則與 平行的單位向量的坐標為 。
10.已知 ,求 ,并以 為基底表示 。
11.向量 ,當 為何值時, 三點共線?
12.已知平行四邊形 中,點 的坐標分別是 ,點 在橢圓 上移動,求 點的軌跡方程.
【《平面向量》教案設(shè)計】相關(guān)文章:
高二年級數(shù)學《平面向量及線性運算》知識點06-02
《共面向量定理》的教學反思08-15
高三數(shù)學復習教案:空間向量及其應(yīng)用06-02
教案設(shè)計精選06-15
aieiui教案設(shè)計07-09
《掌聲》教案設(shè)計07-09
《石榴》的教案設(shè)計07-09
荷花的教案設(shè)計06-05
《趕!方贪冈O(shè)計06-05