1. <rp id="zsypk"></rp>

      2. 實用文檔>有理數(shù)的乘方教案

        有理數(shù)的乘方教案

        時間:2024-06-01 02:53:28

        有理數(shù)的乘方教案

          作為一位杰出的教職工,有必要進行細致的教案準備工作,編寫教案有利于我們科學、合理地支配課堂時間。那要怎么寫好教案呢?下面是小編幫大家整理的有理數(shù)的乘方教案,歡迎閱讀與收藏。

        有理數(shù)的乘方教案

        有理數(shù)的乘方教案1

          教學目標:

          1、知識與技能:

          了解科學記數(shù)法的意義,會用科學記數(shù)法表示絕對值比較大的數(shù)。

          2、過程與方法:

          在科學記數(shù)法中,其中a是整數(shù)位只有一位的數(shù),n是原數(shù)的整數(shù)位數(shù)減1。

          重點、難點:

          1、重點:用科學記數(shù)法表示絕對值較大的數(shù)。

          2、難點:熟練用科學記數(shù)法表示絕對值較大的數(shù)。

          教學過程:

          一、創(chuàng)設情景,導入新課

          太陽的半徑大約是696000千米;光的速度大約是300000000米/秒。這些數(shù)讀、寫都有困難,可把696000記作6.96×105,這就是科學記數(shù)法。

          二、合作交流,解讀探究

          1、填空

          = , = , =

          2.8×= ,2.8×= ,2.8×=

          2、學生探究:從前面的填空可知:

          100=, 1000=, 10000=280=2.8×,2800=2.8×,28000=2.8×

          從上面你能發(fā)現(xiàn)什么規(guī)律嗎?

          (1)10的指數(shù)比原數(shù)的整數(shù)位少1,一個數(shù)可以寫成一個整數(shù)位數(shù)只有一位的數(shù)與10的n次冪相乘的形式。

          三、應用遷移,鞏固提高

          1、做一做:課本P44例2

          解答見教材,注意10的指數(shù)比原數(shù)的整數(shù)位少1

          2、科學記數(shù)法:把一個絕對值大于10的數(shù)記成的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫做科學記數(shù)法。

          3、做一做:用科學記數(shù)法表示下列各數(shù):

          (1) 108000;(2)-3200000

          兩生上臺練習,指出學生存在的錯誤,如對科學記數(shù)法中a的'要求理解的錯誤。

          4、P44練習第1、2、3題

          四、總結反思

          用科學記數(shù)法表示時要注意:(1)a是整數(shù)位只有一位的數(shù),(2)10的指數(shù)n比原數(shù)的整數(shù)位數(shù)少1。

          五、作業(yè):P45習題1.6A組第3、4、5題

        有理數(shù)的乘方教案2

          一、 學什么

          1、 知道乘方運算與乘法運算的關系,會進行有理數(shù)的乘方運算。

          2、 知道底數(shù)、指數(shù)和冪的概念,會求有理數(shù)的正整數(shù)指數(shù)冪。

          二、 怎樣學

          歸納概念

          n個a相乘aaa= ,讀作: 。 其中n表示因數(shù)的個數(shù)。

          求 相同因數(shù)的積的運算叫作乘方。乘方運算的結果叫冪。

          例1:計算

          (1)26 (2)73 (3)(3)4 (4)(4)3

          例2:(1) ( )5 (2)( )3 (3)( )4

          【想一想】1.(1)10,(1)7,( )4,( )5是正數(shù)還是負數(shù)?

          2.負數(shù)的冪的符號如何確定?

          思考題:1、(a2)2+(b+3)2=0,求a和b的值。

          2、計算 ( 2)20 09 +(2)20xx

          3、在右 邊的33的方格中,現(xiàn)在以兩種不同的方式往方格內(nèi)放硬幣,一種每格放100枚,三 學怎樣

          1.某種細菌在培養(yǎng)過程中,細菌每半小時分裂一次(由分裂成兩個),經(jīng)過兩個小時,這 種細菌由1個可分裂成( )

          A 8個 B 16個 C 4個 D 32個

          2.一根長1cm的.繩子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的繩子長度為( )

          A ( )3m B ( )5m C( )6m D( )12 m

          3.(3.4)3,(3.4)4,(3.4)5的從小到大的順序是 。

          4.計 算

          (1)(3)3 (2)(0.8)2 (3)02004 (4 )12004

          (5)104 (6)( )5 (7)-( )3 (8) 43

          (9)32(3)3+(2)223 (10)-18(3)2

          5.已知(a2)2+|b5|=0,求(a)3( b)2.

          2.6有理數(shù)的乘方(第2課時)

          一、學什么

          會用科學計數(shù)法表示絕對值較大的數(shù)。

          二、怎樣學

          定義:一般地,一個大于10的數(shù)可以寫成 的形式,其中 ,n是正整數(shù),這種記數(shù)法稱為科學記數(shù)法。

          例題教學

          例1:1972年3月美國發(fā)射的先驅者10號,是人類發(fā)往太陽系外的第一艘人造太空探測器。截至20xx年12月人們最后一次收到它發(fā)回的信號時,它已飛離地球1220000000 0km。用科學記數(shù)法表示這個距離。

          例2:用科學記數(shù)法表示下列各數(shù)。

          (1)10000000 (2) 57000000 (3) 123000 0000 00

          例3.寫出下列用科學記數(shù)法表示的數(shù)的原數(shù)。

          2.31105 3.001104

          1.28103 8.3456108

          思考:比較大小

          (1)9.2531010 與1.0021011

          (2)7.84109與1.01101 0

          學怎 樣

          1.用科學記數(shù)法表示314160000得 ( )

          A.3.1416108 B. 3.1416109 C. 3.1416101 0 D. 3.1416104

          2.稀土元素有獨特的性能和廣泛的應用,我國的稀土資源總儲藏量約為1050000000噸,是全世界稀土資源最豐富的國家,將1050000000噸用科學記數(shù)法表示為( )

          A.1.051010噸 B. 1.05109噸 C.1.051 08噸 D. 0.105101 0噸

          3.人類的遺傳物質是DNA,DNA是很 大的鏈,最短的22號染色體也長達30000000個核苷酸,3000000 0用科學記數(shù)法表示為 ( )

          A.3108 B. 3107 C.3106 D. 0.3108

          4.第五次全國人口普查結果表示:我國的總人口已達到13億。請用科學記數(shù)法表示13億為 。

          5 .比較大。

          10.9 108 1.11010 ; 1.11108 9.99107 .

          6.用科學記數(shù)法表示下列各數(shù)。

          (1)32000 (2) -80000000 000 (3)2895.8 (4)- 389999900000000

        有理數(shù)的乘方教案3

          【回顧思考】

          1、請認真閱讀課本P41-50,并把你認為重要的概念、法則和例題劃出。

          2、請合上課本,試著回答下列問題:

          (1)說說什么是乘方?什么是冪?有什么符號法則?

          (2)在做有理數(shù)的混合運算時運算順序怎樣?

          (3)舉例說明什么是科學記數(shù)法?

          (4)舉例說明如何確定一個數(shù)的有效數(shù)字?

          【基礎訓練】

          一、填空:

          1、根據(jù)乘方的意義,(-3)4=;-34=.

          2、的平方等于它本身;的立方等于它本身。

          3、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=。

          4、若(a-1)2+︳b+2︳=0,那么a+b=。

          5、地球上的海洋面積用科學計數(shù)法表示為3.61×108平方千米,原來的數(shù)是。

          6、一天有8.64×104秒,一年按365天計算,一年約有秒(保留3個有效數(shù)字)

          一、填空:

          1、若x20xx=1,則x20xx+2005=。

          2、平方等于1/16的數(shù)是,立方等于-27的`數(shù)是,立方后是本身的數(shù)有。

          3、當n為奇數(shù)時,1+(-1)n=;當n為偶數(shù)時,1+(-1)n=。

          4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。

          5、若每人每天浪費水0.32升,那么100萬人每天浪費的水為多少升。用科學記數(shù)法表示為升。

          6、由四舍五入得到的近似數(shù)0.8080有個有效數(shù)字,分別是,它精確到位。

          7、3.16×106原數(shù)為,精確到位。

          8、寫出3,-9,27,-81,243,…這行數(shù)的第n個數(shù)。

          二、選擇:

          1、若規(guī)定a⊕b=(a+1)b,則1⊕3的值為()

          (A)1(B)3(C)6(D)8

          2、(-2)11+(-2)10的值是()

          (A)-2(B)(-2)21(C)0(D)-210

          3、下列語句中,正確的個數(shù)是()

          ①任何小于1的有理數(shù)都大于它的平方

         、跊]有平方得-9的數(shù)

          二、選擇:

          1、下列各組數(shù)中,不相等的是()

          (A)(-3)2與-32(B)(-3)2與32(C)(-2)3與-23(D)∣-2∣3與∣-23∣

          2、(-2)11+(-2)10的值是()

          (A)-2(B)(-2)21(C)0(D)-210

          3、下列各式中正確的是()

          (A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3與∣a3∣

          4、人類的遺傳物質是DNA,他是一個很長的鏈,最短的也長達30000000個核苷酸。這個數(shù)用科學記數(shù)法表示為()

          (A)3×106(B)0.3×107(C)3×107(D)0.3×108

          5、用四舍五入法按要求對0.05019分別取近似值,其中錯誤的是()

          (A)0.1(精確到0.1)(B)0.05(精確到百分位)

          (C)0.05(精確到千分位)(D)0.0502(精確到0.0001)

          三、計算:

          1、8+(-3)2×(-2)

          2、100÷(-2)2-(-2)÷(-2/3)

          3、(-0.25)20xx×(-4)20xx×(-1)20xx

          列方程解應用題的基本關系量:

          (1)行程問題:速度×時間=路程順水速度=靜水速度—水流速度逆水速度=靜水速度—水流速度

          (2)工程問題:工作效率×工作時間=工作量

          (3)濃度問題:溶液×濃度=溶質

          (4)銀行利率問題:免稅利息=本金×利率×時間

        有理數(shù)的乘方教案4

          一、素質教育目標

          (一)知識教學點

          1.理解有理數(shù)乘方的意義.

          2.掌握有理數(shù)乘方的運算.

          (二)能力訓練點

          1.培養(yǎng)學生觀察、分析、比較、歸納、概括的能力.

          2.滲透轉化思想.

          (三)德育滲透點:培養(yǎng)學生勤思、認真和勇于探索的精神.

          (四)美育滲透點

          把記成,顯示了乘方符號的簡潔美.

          二、學法引導

          1.教學方法:引導探索法,嘗試指導,充分體現(xiàn)學生主體地位.

          2.學生學法:探索的性質→練習鞏固

          三、重點、難點、疑點及解決辦法

          1.重點:運算.

          2.難點:運算的符號法則.

          3.疑點:①乘方和冪的區(qū)別.

         、谂c的區(qū)別.

          四、課時安排

          1課時

          五、教具學具準備

          投影儀、自制膠片.

          六、師生互動活動設計

          教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.

          七、教學步驟

          (一)創(chuàng)設情境,導入 新課

          師:在小學我們已經(jīng)學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

          生:可以記作,讀作的四次方.

          師:呢?

          生:可以記作,讀作的五次方.

          師:(為正整數(shù))呢?

          生:可以記作,讀作的次方.

          師:很好!把個相乘,記作,既簡單又明確.

          【教法說明】教師給學生創(chuàng)設問題情境,鼓勵學生積極參與,大大調(diào)動了學生學習的積極性.同時,使學生認識到數(shù)學的發(fā)展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.

          師:在小學對底數(shù),我們只能取正數(shù).進入中學以后我們學習了有理數(shù),那么還可取哪些數(shù)呢?請舉例說明.

          生:還可取負數(shù)和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

          非常好!對于中的,不僅可以取正數(shù),還可以取0和負數(shù),也就是說可以取任意有理數(shù),這就是我們今天研究的課題:(板書).

          【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據(jù)初一學生的認知水平,分層逐步說明可以取正數(shù),可以取零,可以取負數(shù),最后總結出可以取任意有理數(shù).

          (二)探索新知,講授新課

          1.求個相同因數(shù)的積的運算,叫做乘方.

          乘方的結果叫做冪,相同的因數(shù)叫做底數(shù),相同的因數(shù)的個數(shù)叫做指數(shù).一般地,在中,取任意有理數(shù),取正整數(shù).

          注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

          鞏固練習(出示投影1)

         。1)在中,底數(shù)是__________,指數(shù)是___________,讀作__________或讀作___________;

         。2)在中,-2是__________,4是__________,讀作__________或讀作__________;

         。3)在中,底數(shù)是_________,指數(shù)是__________,讀作__________;

          (4)5,底數(shù)是___________,指數(shù)是_____________.

          【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區(qū)別表示底數(shù)是-2,指數(shù)是4的冪;而表示底數(shù)是2,指數(shù)是4的.冪的相反數(shù).為后面的計算做鋪墊.通過第(4)小題指出一個數(shù)可以看作這個數(shù)本身的一次方,如5就是,指數(shù)1通常省略不寫.

          師:到目前為止,對有理數(shù)業(yè)說,我們已經(jīng)學過幾種運算?分別是什么?其運算結果叫什么?

          學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

          生:到目前為止,已經(jīng)學習過五種運算,它們是:

          運算:加、減、乘、除、乘方;

          運算結果:和、差、積、商、冪;

          教師對學生的回答給予評價并鼓勵.

          【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養(yǎng)學生歸納、總結的能力.

          師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

          學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

          【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算.向學生滲透轉化的思想.

          2.練習:(出示投影2)

          計算:1.(1)2, (2), (3), (4).

          2.(1),,,.

         。2)-2,,.

          3.(1)0, (2), (3), (4).

          學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

          師:請同學們觀察、分析、比較這三組題中,每組題中底數(shù)、指數(shù)和冪之間有什么聯(lián)系?

          先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

          生:正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),零的任何次冪都是零.

          師:請同學們繼續(xù)觀察與,與中,底數(shù)、指數(shù)和冪之間有何聯(lián)系?你能得出什么結論呢?

          學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

          生:互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等.

          師:請同學思考一個問題,任何一個數(shù)的偶次冪是什么數(shù)?

          生:任何一個數(shù)的偶次冪是非負數(shù).

          師:你能把上述結論用數(shù)學符號表示嗎?

          生:(1)當時,(為正整數(shù));

         。2)當

         。3)當時,(為正整數(shù));

          (4)(為正整數(shù));

          (為正整數(shù));

         。檎麛(shù),為有理數(shù)).

          【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創(chuàng)造發(fā)揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

        有理數(shù)的乘方教案5

          三維目標

          一、知識與技能

          掌握有理數(shù)混合運算的順序,能正確地進行有理數(shù)的加、減、乘、除、乘方的混合運算。

          二、過程與方法

          通過例題學習,發(fā)展學生觀察、歸納、猜想、推理等能力。

          三、情感態(tài)度與價值觀

          體驗獲得成功的'感受、增加學習自信心。

          教學重、難點與關鍵

          1.重點:能正確地進行有理數(shù)的加、減、乘、除、乘方的混合運算。

          2.難點:靈活應用運算律,使計算簡單、準確。

          3.關鍵:明確題目中各個符號的意義,正確運用運算法則。

          四、課堂引入

          1.我們已經(jīng)學習了哪幾種有理數(shù)的運算?

          2.有理數(shù)的乘方法則是什么?

          五、新授

          下面的算式里有哪幾種運算?

          3+5022(-)-1 ①

          這個算式里,含有有理數(shù)的加、減、乘、除、乘方五種運算,按怎樣的順序進行運算?

          有理數(shù)的混合運算,應按以下運算順序進行:

          1.先乘方,再乘除,最后加減;

          2.同級運算,從左往右進行;

          3.如果有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。

          例如上面①式

          3+5022(-)-1

          =3+504(-)-1

          =3+50(-)-1

          =3--1

          =-

          例3:計算:(1)2(-3)3-4(-3)+15;

          (2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。

          分析:分清運算順序,先乘方,再做中括號內(nèi)的運算,接著做乘除,最后做加減。計算時,特別注意符號問題。

          解:(1)原式=2(-27)-(-12)+15

          =-54+12+15

          =-27

          (2)原式=-8+(-3)(16+2)-9(-2)

          =-8+(-3)18-(-4.5)

          =-8-54+4.5=-57.5

          例4:觀察下面三行數(shù):

          -2,4,-8,16,-32,64,①

          0,6,-6,18,-30,66, ②

          -1,2,-4,8,-16,32, ③

          (1)第①行數(shù)按什么規(guī)律排列?

          (2)第②、③行數(shù)與第①行數(shù)分別有什么關系?

          (3)取每行數(shù)的第10個數(shù),計算這三個數(shù)的和。

          分析:(1)第行數(shù),從符號看負、正相隔,奇數(shù)項為負數(shù),偶數(shù)項為正數(shù),從絕對值看,它們都是2的乘方。

        有理數(shù)的乘方教案6

          學習目標

          知識與技能:使學生理解并掌握有理數(shù)的乘方,冪,底數(shù),指數(shù)的概念及意義;正確進行有理數(shù)的乘方運算。

          過程與方法:經(jīng)歷探索乘方有關規(guī)律的過程,領會重要的數(shù)學建模思想,歸納思想,形成數(shù)感,符號感,發(fā)展抽象思維。

          情感態(tài)度價值觀:

        鼓勵猜想,倡導參與,學會傾聽,建立自信心。

          學習重點:理解有理數(shù)乘方的意義和表示,會進行乘方運算。

          學習難點:冪,底數(shù),指數(shù)的概念及其表示。處理好負數(shù)的乘方運算。用乘方解決有關實際學習重點問題。

          學習方法:

        探究歸納法

          過程設計:

          一自主研學

          1求n個()的運算叫做乘方,乘方的結果叫做()

          2在式子an(n為正整數(shù))中,()叫底數(shù),()叫指數(shù),()叫冪。

          3負數(shù)的奇次冪是(),負數(shù)的偶次冪是(),正數(shù)的任何次冪(),0的任何次冪()。

          二合作互學

          知識點1:有關乘方的概念

          1(--3)4表示的意義是(),,底數(shù)是(),指數(shù)是(),結果是()

          243的底數(shù)是()指數(shù)是(),表示的意義是(),結果等于()。

          知識點2乘方的運算

          3計算0.0012=();(--?)=()

          知識點3乘方的讀法

          4(--2)5讀作();---25讀作()

          教學引入

          師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

          動畫演示:

          場景一:正方形折疊演示

          師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的'長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

          [學生活動:各自測量。]

          鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。

          講授新課

          找一兩個學生表述其結論,表述是要注意糾正其語言的規(guī)范性。

          動畫演示:

          場景二:正方形的性質

          師:這些性質里那些是矩形的性質?

          [學生活動:尋找矩形性質。]

          動畫演示:

          場景三:矩形的性質

          師:同樣在這些性質里尋找屬于菱形的性質。

          [學生活動;尋找菱形性質。]

          動畫演示:

          場景四:菱形的性質

          師:這說明正方形具有矩形和菱形的全部性質。

          及時提出問題,引導學生進行思考。

          師:根據(jù)這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

          [學生活動:積極思考,有同學做躍躍欲試狀。]

          師:請同學們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

          學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:

          “有一組鄰邊相等的矩形叫做正方形!

          “有一個角是直角的菱形叫做正方形。”

          “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”

          [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

          師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。

          三自覺練學

          1(--3)3=(),--52=()

          2立方等于8的數(shù)是(),平方等于16的數(shù)是()

          3一個數(shù)的平方等于這個數(shù)本身,此數(shù)為(),一個數(shù)的立方等于這個數(shù)本身,此數(shù)為(),一個數(shù)的平方等于這個數(shù)的立方,此數(shù)為()。

          4(--3×5)2=();--(--2)4=()

          5(--1)20xx=()

          6下列說法正確的是()

          A一個有理數(shù)的平方是非負數(shù)。B一個有理數(shù)的平方是正數(shù)。

          C一個有理數(shù)的平方大于這個數(shù)。D一個有理數(shù)的平方大于這個數(shù)的相反數(shù)。

          7把--(--?)(--?)(--?)(--?)寫成乘方的形式是()

          8下列各對數(shù)中,值相等的是()

          A--32與--23B--23與(--2)3C--32與(--3)2D(--3)×2與--3×22

          9計算下列各題

          (1)(--?)3(2)--(--3)3(3)8×(--?)2

          (4)(--1)100×(--1)3(5)(--?)3×(--16)

          10閱讀材料并解決問題

          你能比較兩個數(shù)20112012和20122011的大小嗎?

          為了解決這個問題,先把問題一般化,即比較nn+1和(n+1)n(n為大于1的正數(shù))的大小。然后從分析n=1,n=2,,n=3~~這些簡單情況入手發(fā)現(xiàn)規(guī)律,猜想一般結論。

          (1)計算比較

          12--------2123-------3234--------4345-------5456---------65

          (2)從上面各小題結果歸納,可以猜想什么結論?

          (3)根據(jù)歸納猜想的結論比較20112012和20122011的大小。

        有理數(shù)的乘方教案7

          教學目標

          1?理解有理數(shù)乘方的概念,掌握有理數(shù)乘方的運算;

          2?培養(yǎng)學生的觀察、比較、分析、歸納、概括能力,以及學生的探索精神;

          3?滲透分類討論思想?

          教學重點和難點

          重點:有理數(shù)乘方的運算?

          難點:有理數(shù)乘方運算的符號法則?

          課堂教學過程設計

          一、從學生原有認知結構提出問題

          在小學我們已經(jīng)學習過aa,記作a2,讀作a的平方(或a的二次方);aaa作a3,讀作a的立方(或a的三次方);那么,aaaa可以記作什么?讀作什么?aaaaa呢?

          在小學對于字母a我們只能取正數(shù)?進入中學后,我們學習了有理數(shù),那么a還可以取哪些數(shù)呢?請舉例說明?

          二講授新課

          1?求n個相同因數(shù)的積的運算叫做乘方?

          2?乘方的結果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?

          一般地,在an中,a取任意有理數(shù),n取正整數(shù)?

          應當注意,乘方是一種運算,冪是乘方運算的結果?當an看作a的n次方的結果時,也可以讀作a的n次冪。

          3.我們知道,乘方和加、減、乘、除一樣,也是一種運算, 就是表示n個a相乘,所以可以利用有理數(shù)的乘法運算來進行有理數(shù)乘方的運算?

          例1 計算:

          (1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;

          (3)0,02,03,04?

          教師指出:2就是21,指數(shù)1通常不寫?讓三個學生在黑板上計算?

          引導學生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關系?

          (1)模向觀察

          正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?

          (2)縱向觀察

          互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?

          (3)任何一個數(shù)的偶次冪都是什么數(shù)?

          任何一個數(shù)的偶次冪都是非負數(shù)?

          你能把上述的結論用數(shù)學符號語言表示嗎?

          當a0時,an0(n是正整數(shù));

          當a

          當a=0時,an=0(n是正整數(shù))?

          (以上為有理數(shù)乘方運算的'符號法則)

          a2n=(-a)2n(n是正整數(shù));

          =-(-a)2n-1(n是正整數(shù));

          a2n0(a是有理數(shù),n是正整數(shù))?

          例2 計算:

          (1)(-3)2,(-3)3,[-(-3)]5;

          (2)-32,-33,-(-3)5;

          (3) , ?

          讓三個學生在黑板上計算?

          教師引導學生縱向觀察第(1)題和第(2)題的形式和計算結果,讓學生自己體會到,(-a)n的底數(shù)是-a,表示n個(-a)相乘,-an是an的相反數(shù),這是(-a)n與-an的區(qū)別?

          教師引導學生橫向觀察第(3)題的形式和計算結果,讓學生自己體會到,寫分數(shù)的乘方時要加括號,不然就是另一種運算了?

          課堂練習

          計算:

          (1) , , ,- , ;

          (2)(-1)20xx,322,-42(-4)2,-23(-2)3;

          (3)(-1)n-1?

          三、小結

          讓學生回憶,做出小結:

          1?乘方的有關概念?2?乘方的符號法則?3?括號的作用?

          四、作業(yè)

          1?計算下列各式:

          (-3)2;(-2)3;(-4)4; ;-0.12;

          -(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?

          2?填表:

          3?a=-3,b=-5,c=4時,求下列各代數(shù)式的值:

          (1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?

          4?當a是負數(shù)時,判斷下列各式是否成立?

          (1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= .

          5*?平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?

          6*?若(a+1)2+|b-2|=0,求a20xxb3的值?

          課堂教學設計說明

          1?數(shù)學教學的重要目的是發(fā)展智力,提高能力,而發(fā)展智力、提高能力的核心是發(fā)展學生的思維能力?教學中,既要注重羅輯推理能力的培養(yǎng),又重注重觀察、歸納等合情推理能力的培養(yǎng)?因此,根據(jù)教學內(nèi)容和學生的認知水平,我們再一次把培養(yǎng)學生的觀察、歸納等能力列入了教學目標?

          2?數(shù)學發(fā)展的歷史告訴我們,數(shù)學的發(fā)展是從三個方面前進的:第一是不斷的推廣;第二是不斷的精確化;第三是不斷的逼近?在引入新時,要盡可能使學生的學習方式與數(shù)池家的研究方式類似,不斷進行推廣.a2是由計算正方形面積得到的,a3是由計算正方體的體積得到的,而a4,a5,,an是學生通過類推得到的?

          推廣后的結果是還要有嚴密的定義,讓學生從更高的觀點看自己推廣的結果?一般來說,一個概念或一個公式形成后,要對其字母的意義、相互的關系、應用的范圍逐項分析?在an中,a取任意有理數(shù),n取正整數(shù)的說明還是必要的,要培養(yǎng)學生這種良好的學習習慣?

          3?把學生做鞏固性練習和總結運算規(guī)律放在一起進行,其效果就遠遠超出了鞏固性練習的初衷?

          我們知道,學生必須通過自己的探索才能學會數(shù)學和會學數(shù)學,與其說學習數(shù)學,不如說體驗數(shù)學、做數(shù)學?始終給學生以創(chuàng)造發(fā)揮的機會,讓學生自己在學習中扮演主動角色,教師不代替學生思考,把重點放在教學情境的設計上?例如,通過實際計算,讓學生自己休會到負數(shù)與分數(shù)的乘方要加括號?

          4?有理數(shù)的乘方中反映出來的數(shù)學思想主要是分類討論思想,在例1中,精心設計了三組計算題,引導學生從底數(shù)大于零、等于零、小于零分析、歸納、概括出有理數(shù)乘方的符號法則,使學生在潛移默化中形成分類討論思想?符號語言的使用,優(yōu)化了表示分類討論思想的形式,尤其是負數(shù)的奇次冪和偶次冪是大分類中的小分類,用符號語言就更加明顯?在練習中讓學生完成問題(-1)n-1,進一步鞏固了分類討論思想,使這種思想得以落實?

        有理數(shù)的乘方教案8

          一、知識與技能

          (1)正確理解乘方、冪、指數(shù)、底數(shù)等概念。

          (2)會進行有理數(shù)乘方的運算。

          二、過程與方法

          通過對乘方意義的理解,培養(yǎng)學生觀察比較、分析、歸納概括的能力,滲透轉化思想。

          三、情感態(tài)度與價值觀

          培養(yǎng)探索精神,體驗小組交流、合作學習的重要性。

          教學重、難點與關鍵

          1.重點:正確理解乘方的意義,掌握乘方運算法則。

          2.難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算。

          3.關鍵:弄清底數(shù)、指數(shù)、冪等概念,注意區(qū)別-an與(-a)n的意義。

          四、課堂引入

          1.幾個不等于零的有理數(shù)相乘,積的符號是怎樣確定的?

          幾個不等于零的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)確定,當負因數(shù)的個數(shù)為奇數(shù)時,積為負;當負因數(shù)的個數(shù)為偶數(shù)時,積為正。

          2.正方形的邊長為2,則面積是多少?棱長為2的正方體,則體積為多少?

          五、新授

          邊長為a的正方形的面積是aa,棱長為a的`正方體的體積是aaa.

          aa簡記作a2,讀作a的平方(或二次方)。

          aaa簡記作a3,讀作a的立方(或三次方)。

          一般地,幾個相同的因數(shù)a相乘,記作an.即aaa. 這種求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪。

          在an中,a叫底數(shù),n叫做指數(shù),當an看作a的n次方的結果時,也可以讀作a的n次冪。

        【有理數(shù)的乘方教案】相關文章:

        《有理數(shù)的乘方》教學設計02-13

        有理數(shù)及其運算復習的教案設計03-19

        有理數(shù)的乘法教學設計(通用11篇)09-29

        《左傳》教案10-24

        存貨教案02-28

        愛蓮說的經(jīng)典教案03-20

        《牧場上的家教案》經(jīng)典教案設計03-20

        茶花賦教案04-06

        《什么蟲》教案01-08

        《文化苦旅》教案02-27

        用戶協(xié)議
        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>