1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)必修三教案

        時間:2021-09-25 11:20:11 教案 我要投稿

        高一數(shù)學(xué)必修三教案

          作為一名無私奉獻(xiàn)的老師,就不得不需要編寫教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么什么樣的教案才是好的呢?下面是小編精心整理的高一數(shù)學(xué)必修三教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

        高一數(shù)學(xué)必修三教案

        高一數(shù)學(xué)必修三教案1

          教學(xué)目標(biāo)

          1.使學(xué)生了解奇偶性的概念,回會利用定義判定簡單函數(shù)的奇偶性。

          2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和非凡到一般的思想方法。

          3.在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神。

          教學(xué)重點,難點

          重點是奇偶性概念的形成與函數(shù)奇偶性的判定

          難點是對概念的熟悉

          教學(xué)用具

          投影儀,計算機(jī)

          教學(xué)方法

          引導(dǎo)發(fā)現(xiàn)法

          教學(xué)過程

          一.引入新課

          前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì)。從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì)。

          對稱我們大家都很熟悉,在生活中有很多對稱,在數(shù)學(xué)中也能發(fā)現(xiàn)很多對稱的問題,大家回憶一下在我們所學(xué)的內(nèi)容中,非凡是函數(shù)中有沒有對稱問題呢?

          (學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)

          結(jié)合圖象提出這些對稱是我們在初中研究的關(guān)于軸對稱和關(guān)于原點對稱問題,而我們還曾研究過關(guān)于軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函數(shù)圖象關(guān)于軸對稱的嗎?

          學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱。最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律。

          二.講解新課

          2.函數(shù)的奇偶性(板書)

          教師從剛才的圖象中選出,用計算機(jī)打出,指出這是關(guān)于軸對稱的圖象,然后問學(xué)生初中是怎樣判定圖象關(guān)于軸對稱呢?(由學(xué)生回答,是利用圖象的翻折后重合來判定)此時教師明確提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?

          學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進(jìn)而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立。最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。

         。1)偶函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù)。(板書)

         。ńo出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步熟悉)

          提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)

          學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。

          (2)奇函數(shù)的定義:假如對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù)。(板書)

         。ㄓ捎谠诙x形成時已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)

          例1。判定下列函數(shù)的奇偶性(板書)

         。1);(2);

          (3);;

         。5);(6)。

         。ㄒ髮W(xué)生口答,選出12個題說過程)

          解:(1)是奇函數(shù)。(2)是偶函數(shù)。

         。3),是偶函數(shù)。

          前三個題做完,教師做一次小結(jié),判定奇偶性,只需驗證與之間的關(guān)系,但對你們的回答我不滿足,因為題目要求是判定奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函數(shù)的問題呢?

          學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等。如即可說明它不是偶函數(shù)。(從這個問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)

          從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當(dāng)時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。

          教師由此引導(dǎo)學(xué)生,通過剛才這個題目,你發(fā)現(xiàn)在判定中需要注重些什么?(若學(xué)生發(fā)現(xiàn)不了定義域的特征,教師可再從定義啟發(fā),在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應(yīng)關(guān)于原點對稱,再提出定義域關(guān)于原點對稱是函數(shù)具有奇偶性的什么條件?

          可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論。

          (3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)

          由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明。

          經(jīng)學(xué)生思考,可找到函數(shù)。然后繼續(xù)提問:是不是具備這樣性質(zhì)的函數(shù)的解析式都只能寫成這樣呢?能證實嗎?

          例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來完成)

          證實:既是奇函數(shù)也是偶函數(shù),=,且,= ,即證后,教師請學(xué)生記住結(jié)論的同時,追問這樣的函數(shù)應(yīng)有多少個呢?學(xué)生開始可能認(rèn)為只有一個,經(jīng)教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數(shù)的定義域,如,,,,它們顯然是不同的函數(shù),但它們都是既是奇函數(shù)也是偶函數(shù)。由上可知函數(shù)按其是否具有奇偶性可分為四類

          (4)函數(shù)按其是否具有奇偶性可分為四類:(板書)

          例3。判定下列函數(shù)的奇偶性(板書)

         。1);(2);(3)。

          由學(xué)生回答,不完整之處教師補充。

          解:(1)當(dāng)時,為奇函數(shù),當(dāng)時,既不是奇函數(shù)也不是偶函數(shù)。

          (2)當(dāng)時,既是奇函數(shù)也是偶函數(shù),當(dāng)時,是偶函數(shù)。

          (3)當(dāng)時,于是,

          當(dāng)時,,于是=,

          綜上是奇函數(shù)。

          教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。

          三. 小結(jié)

          1.奇偶性的概念

          2.判定中注重的問題

          四.作業(yè)略

          五.板書設(shè)計

          2.函數(shù)的奇偶性例1.例3.

         。1)偶函數(shù)定義

         。2)奇函數(shù)定義

         。3)定義域關(guān)于原點對稱是函數(shù)例2。 小結(jié)

          具備奇偶性的必要條件

         。4)函數(shù)按奇偶性分類分四類

          探究活動

         。1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證實之嗎?

         。2)判定函數(shù)在上的單調(diào)性,并加以證實。

          在此基礎(chǔ)上試?yán)眠@個函數(shù)的`單調(diào)性解決下面的問題:

        高一數(shù)學(xué)必修三教案2

          教學(xué)目標(biāo)

          1。了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實和判定的基本方法。

         。1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。

          (2)能從數(shù)和形兩個角度熟悉單調(diào)性和奇偶性。

         。3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。

          2。通過函數(shù)單調(diào)性的證實,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想。

          3。通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。

          教學(xué)建議

          一、知識結(jié)構(gòu)

         。1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。

         。2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。

          二、重點難點分析

         。1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實。

         。2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫。單調(diào)性的證實是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學(xué)中的難點。

          三、教法建議

         。1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。

          (2)函數(shù)單調(diào)性證實的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。

          函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。

        高一數(shù)學(xué)必修三教案3

          教學(xué)目標(biāo):

          1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。

          2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。

          3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。

          教學(xué)重點、難點:

          1、重點:指數(shù)函數(shù)的圖像和性質(zhì)

          2、難點:底數(shù)a的變化對函數(shù)性質(zhì)的影響,突破難點的關(guān)鍵是利用多媒體動感顯示,通過顏色的區(qū)別,加深其感性認(rèn)識。

          教學(xué)方法:

          引導(dǎo)——發(fā)現(xiàn)教學(xué)法、比較法、討論法

          教學(xué)過程:

          一、事例引入

          T:上節(jié)課我們學(xué)習(xí)了指數(shù)的運算性質(zhì),今天我們來學(xué)習(xí)與指數(shù)有關(guān)的函數(shù)。什么是函數(shù)?

          S:————————

          T:主要是體現(xiàn)兩個變量的關(guān)系。我們來考慮一個與醫(yī)學(xué)有關(guān)的例子:大家對“非典”應(yīng)該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機(jī)體內(nèi)不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:

          C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,——————。一個這樣的球菌分裂x次后,得到的球菌的個數(shù)y與x的函數(shù)關(guān)系式是:y =2 x)

          S,T:(討論)這是球菌個數(shù)y關(guān)于分裂次數(shù)x的函數(shù),該函數(shù)是什么樣的形式(指數(shù)形式),

          從函數(shù)特征分析:底數(shù)2是一個不等于1的正數(shù),是常量,而指數(shù)x卻是變量,我們稱這種函數(shù)為指數(shù)函數(shù)——點題。

          二、指數(shù)函數(shù)的定義

          C:定義:函數(shù)y = a x(a>0且a≠1)叫做指數(shù)函數(shù),x∈R。。

          問題1:為何要規(guī)定a > 0且a ≠1?

          S:(討論)

          C:(1)當(dāng)a<0時,a x有時會沒有意義,如a=﹣3時,當(dāng)x=

          就沒有意義;

          (2)當(dāng)a=0時,a x有時會沒有意義,如x= — 2時,

         。3)當(dāng)a = 1時,函數(shù)值y恒等于1,沒有研究的必要。

          鞏固練習(xí)1:

          下列函數(shù)哪一項是指數(shù)函數(shù)()

          A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= —2 x

        【高一數(shù)學(xué)必修三教案】相關(guān)文章:

        高一數(shù)學(xué)必修3映射教案03-22

        《登高》優(yōu)質(zhì)課教案(人教版高一必修三)12-06

        《登高》說課稿(人教版高一必修三)12-06

        高一數(shù)學(xué)必修四學(xué)習(xí)方法08-04

        高一數(shù)學(xué)必修一學(xué)習(xí)方法三大要點12-06

        高一必修三語文第三單元作文07-28

        高一語文必修一《雨巷》教案12-04

        《勸學(xué)》導(dǎo)學(xué)案(人教版高一必修三)12-06

        高一語文必修三材料作文10-17

        高一語文必修三的作文09-22

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>