高二上冊數(shù)學(xué)教案2022模板
作為一位杰出的老師,時常需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。教案應(yīng)該怎么寫呢?下面是小編為大家整理的高二上冊數(shù)學(xué)教案2022模板,供大家參考借鑒,希望可以幫助到有需要的朋友。
高二上冊數(shù)學(xué)教案2022模板1
一、教學(xué)目標(biāo):
(1)了解隨機事件、必然事件、不可能事件的概念;
(2)了解隨機事件在大量重復(fù)試驗時,它的發(fā)生所呈現(xiàn)的規(guī)律性;
(3)了解概率的統(tǒng)計定義及概率的性質(zhì);
(4)利用概率知識正確理解現(xiàn)實生活中的實際問題、
二、重點與難點:
(1)教學(xué)重點:
1、事件的分類;
2、概率的定義;
3、概率的性質(zhì)
(2)教學(xué)難點:隨機事件的發(fā)生所呈現(xiàn)的規(guī)律性、
三、學(xué)法與教學(xué)用具:
1、引導(dǎo)學(xué)生對身邊的事件加以注意、分析,結(jié)果可定性地分為三類事件:必然事件,不可能事件,隨機事件;通過觀察實驗數(shù)據(jù),讓學(xué)生無意識地發(fā)現(xiàn)隨機事件的某一結(jié)果發(fā)生的規(guī)律性;
2、教學(xué)用具:硬幣一枚,計算機及多媒體教學(xué)、
四、教學(xué)過程
(一)、介紹概率論的由來。(問題引入) 概率論產(chǎn)生于十七世紀(jì),,但數(shù)學(xué)家們思考概率論問題的源泉,卻來自于賭博。傳說早在1654年,有一個賭徒向當(dāng)時的數(shù)學(xué)家提出一個使他苦惱了很久的問題:“兩個賭徒相約賭若干局,誰先贏 3局就算贏,全部賭本就歸誰。但是當(dāng)其中一個人贏了 2局,另一個人贏了1局的時候,由于某種原因,賭博終止了。
問:賭本應(yīng)該如何分法才合理 " 這位數(shù)學(xué)家是當(dāng)時著名的數(shù)學(xué)家,但這個問題卻讓他苦苦思索了三年,三年后,荷蘭著名的數(shù)學(xué)家企圖自己解決這一問題,結(jié)果寫成了《論賭博中的計算》一書,這就是概率論最早的一部著作。
我們知道賭博中有贏有輸,可能贏也可能輸,F(xiàn)實生活中也一樣,有些事情一定會發(fā)生,有些事情不一定發(fā)生,有些事情可能發(fā)生也可有不發(fā)生。那么在數(shù)學(xué)中如何定義這些事情?
(二)、新課講授
1、學(xué)生自學(xué)第132 頁的內(nèi)容,回答下列問題:
、偈录殖扇悾
②這三類事件的主要區(qū)別 板書: 事件的分類:必然事件:在一定條件下必然要發(fā)生的事件; 不可能事件:在一定條件下不可能發(fā)生的事件; 隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件。
練習(xí): (1)判斷下列事件是什么事件 (1)導(dǎo)體通電時,發(fā)熱; (2)拋一石塊,下落; (3)在標(biāo)準(zhǔn)大氣壓下且溫度低于00C時,冰融化; (4)在常溫下,鐵熔化; (5)擲一枚硬幣,出現(xiàn)正面向上; (6)姚明投籃一次,進球。 (2)課本第 134 頁 的練習(xí)1
2、(幻燈片顯示):硬幣、乒乓球質(zhì)量檢查、種子發(fā)芽三個實驗數(shù)據(jù),學(xué)生通過觀察發(fā)現(xiàn)概率的存在規(guī)律:在一次試驗中,隨機事件的發(fā)生與否不是確定的,但是隨試驗次數(shù)的不斷增加,它的發(fā)生就會呈現(xiàn)一種規(guī)律性,即:它發(fā)生的頻率越來越接近于某個常數(shù),并在這個數(shù)
數(shù)附近擺動。
板書:(概率的定義)一般地,在大量重復(fù)進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這個常數(shù)叫做事件A的概率,記為P(A)。
3、根據(jù)概率定義推導(dǎo)隨機事件概率的性質(zhì)
板書:( )mPAn ? ,其中,0( )1PA?? 讓學(xué)生思考( )0( )1PAPA??和分別表示什么含義?
鞏固練習(xí):課本第134 頁的練習(xí)2、3 補充練習(xí)(幻燈片顯示)
4、課堂小結(jié): ①學(xué)生小結(jié):總結(jié)歸納本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點、難點。 ②教師補充完善,(幻燈片顯示教學(xué)目標(biāo)、教學(xué)重點、難點)
5、補充練習(xí): 隨機事件由事件發(fā)生概率的大小分為大概率事件和小概率事件。 (1)舉出一個小概率事件的例子。如:買一張彩票中特等獎。 (2)舉出一個大概率事件的例子。如:買一張彩票沒中獎。 (3)大家都知道“守株待兔”的故事吧?你會像農(nóng)夫一樣嗎?為什么? (4)為什么彩票中獎概率那么小,還有那么多人買?
板書設(shè)計:
一、隨機事件的概率
1、事件的分類:
2、概率的定義:
3、概率的性質(zhì)
二、概率性質(zhì)推導(dǎo)過程:
練習(xí)1 練習(xí)2 練習(xí)3 補充練習(xí)
高二上冊數(shù)學(xué)教案2022模板2
一、教學(xué)內(nèi)容分析
圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象、恰當(dāng)?shù)乩脁x解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。
二、學(xué)生學(xué)習(xí)情況分析
我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達能力也略顯不足。
三、設(shè)計思想
由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情、在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率、
四、教學(xué)目標(biāo)
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用xx解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣、
五、教學(xué)重點與難點:
教學(xué)重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學(xué)難點:
巧用圓錐曲線xx解題
六、教學(xué)過程設(shè)計
【設(shè)計思路】
開門見山,提出問題
例題:
(1)已知a(-2,0),b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是()。
(a)橢圓(b)雙曲線(c)線段(d)不存在
(2)已知動點m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是()。
(a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線
【設(shè)計意圖】
定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。
為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準(zhǔn)備了兩道練習(xí)題。
【學(xué)情預(yù)設(shè)】
估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|入手,考慮通過適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個距離公式。
在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實軸長為,焦距為。以深化對概念的理解。
高二上冊數(shù)學(xué)教案2022模板3
【教學(xué)目標(biāo)】
1、會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
2、能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
3、提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
【教學(xué)重難點】
教學(xué)重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
教學(xué)難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
【教學(xué)過程】
1、情景導(dǎo)入
教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。
2、展示目標(biāo)、檢查預(yù)習(xí)
3、合作探究、交流展示
(1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。
在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進行分類
(4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
(5)讓學(xué)生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
4、質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
高二上冊數(shù)學(xué)教案2022模板4
一、內(nèi)容和內(nèi)容解析
1、內(nèi)容
本節(jié)課主要內(nèi)容是讓學(xué)生了解在客觀世界中要認(rèn)識客觀現(xiàn)象的第一步就是通過觀察或試驗取得觀測資料,然后通過分析這些資料來認(rèn)識此現(xiàn)象、如何取得有代表性的觀測資料并能夠正確的加以分析,是正確的認(rèn)識未知現(xiàn)象的基礎(chǔ),也是統(tǒng)計所研究的基本問題、
2、內(nèi)容解析
本節(jié)課是高中階段學(xué)習(xí)統(tǒng)計學(xué)的第一節(jié)課,統(tǒng)計是研究如何合理收集、整理、分析數(shù)據(jù)的學(xué)科,它可以為人們制定決策提供依據(jù)、學(xué)生在九年義務(wù)階段已經(jīng)學(xué)習(xí)了收集、整理、描述和分析數(shù)據(jù)等處理數(shù)據(jù)的基本方法、在高中學(xué)習(xí)統(tǒng)計的過程中還將逐步讓學(xué)生體會確定性思維與統(tǒng)計思維的差異,注意到統(tǒng)計結(jié)果的隨機性特征,統(tǒng)計推斷是有可能錯的,這是由統(tǒng)計本身的性質(zhì)所決定的統(tǒng)計有兩種、一種是把所有個體的信息都收集起來,然后進行描述,這種統(tǒng)計方法稱為描述性統(tǒng)計,例如我國進行的人口普查、但是在很多情況下我們無法采用描述性統(tǒng)計對所有的個體進行調(diào)查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來推斷總體的特征,這稱為推斷性統(tǒng)計、例如有的產(chǎn)品數(shù)量非常的大或者有的產(chǎn)品的質(zhì)量檢查是破壞性的統(tǒng)計和概率的基礎(chǔ)知識已經(jīng)成為一個未來公民的必備常識、
抽樣調(diào)查是我們收集數(shù)據(jù)的一種重要途徑,是一種重要的、科學(xué)的非全面調(diào)查方法、它根據(jù)調(diào)查的目的和任務(wù)要求,按照隨機原則,從若干單位組成的事物總體中,抽取部分樣本單位來進行調(diào)查、觀察,用所得到的調(diào)查標(biāo)志的數(shù)據(jù)來推斷總體、其中蘊涵了重要的統(tǒng)計思想——樣本估計總體、而樣本代表性的好壞直接影響統(tǒng)計結(jié)論的準(zhǔn)確性,所以抽樣過程中,考慮的最主要原則為:保證樣本能夠很好地代表總體、而隨機抽樣的出發(fā)點是使每個個體都有相同的機會被抽中,這是基于對樣本數(shù)據(jù)代表性的考慮、
本節(jié)課重點:能從現(xiàn)實生活或其他學(xué)科中提出具有一定價值的統(tǒng)計問題,理解隨機抽樣的必要性與重要性、
二、目標(biāo)和目標(biāo)解析
1、目標(biāo)
(1)通過對具體的案例分析,逐步學(xué)會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題,
(2)結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;
(3)以問題鏈的.形式深刻理解樣本的代表性、
2、目標(biāo)解析
本章章頭圖列舉了我國水資源缺乏問題、土地沙漠化問題等情境,提出了學(xué)習(xí)統(tǒng)計的意義、同時通過具體的實例,使學(xué)生能夠嘗試從實際問題中發(fā)現(xiàn)統(tǒng)計問題,提出統(tǒng)計問題、讓學(xué)生養(yǎng)成從現(xiàn)實生活或其他學(xué)科中發(fā)現(xiàn)問題、提出問題的習(xí)慣,培養(yǎng)學(xué)生發(fā)現(xiàn)問題與提出問題的能力與意識、
對某個問題的調(diào)查最簡單的方法就是普查,但是這種方法的局限性很大,出于費用和時間的考慮,有時一個精心設(shè)計的抽樣方案,其實施效果甚至可以勝過普查,在這個過程中讓學(xué)生逐步體會到隨機抽樣的必要性和重要性、抽樣調(diào)查,就是通過從總體中抽取一部分個體進行調(diào)查,借以獲得對整體的了解、為了使由樣本到總體的推斷有效,樣本必須是總體的代表,否則就可能出現(xiàn)方便樣本、由此在對實例的分析過程中探討獲取能夠代表總體的樣本的方法,得到隨機樣本的概念,逐步理解樣本的代表性與統(tǒng)計推斷結(jié)論可靠性之間的關(guān)系、
三、教學(xué)問題診斷分析
學(xué)生在九年義務(wù)教育階段已有對統(tǒng)計活動的認(rèn)識,并學(xué)習(xí)了統(tǒng)計圖表、收集數(shù)據(jù)的方法,但對于如何抽樣更能使樣本代表總體的意識還不強;在以前的學(xué)習(xí)中,學(xué)生的學(xué)習(xí)內(nèi)容以確定性數(shù)學(xué)學(xué)習(xí)為主;學(xué)生對全面調(diào)查,即普查有所了解,它在經(jīng)驗上更接近確定性數(shù)學(xué),而隨機抽樣學(xué)習(xí)則要求學(xué)生通過對具體問題的解決,能體會到統(tǒng)計中的重要思想——樣本估計總體以及統(tǒng)計結(jié)果的不確定性、學(xué)生已有知識經(jīng)驗與本節(jié)要達成的教學(xué)目標(biāo)之間還有很大的差距、主要的困難有:對樣本估計總體的思想、對統(tǒng)計結(jié)果的“不確定性”產(chǎn)生懷疑,對統(tǒng)計的科學(xué)性有所質(zhì)疑;對抽樣應(yīng)該具有隨機性,每個樣本的抽取又都落實在某個人的具體操作上不理解,因此教學(xué)中要通過具體實例的研究給學(xué)生釋疑、
在教學(xué)過程中,可以鼓勵學(xué)生從自己的生活中提出與典型案例類似的統(tǒng)計問題,如每天完成家庭作業(yè)所需的時間,每天的體育鍛煉時間,學(xué)生的近視率,一批電燈泡的壽命是否符合要求等等、在學(xué)生提出這些問題后,要引導(dǎo)學(xué)生考慮問題中的總體是什么,要觀測的變量是什么,如何獲取樣本,通過這樣一個教學(xué)過程,更能激起學(xué)生的學(xué)習(xí)興趣,能學(xué)有所用,拉近知識與實踐的距離,培養(yǎng)學(xué)生從現(xiàn)實生活或其他學(xué)科中提出具有一定價值的統(tǒng)計問題的能力、在這個過程中提升學(xué)生對統(tǒng)計抽樣概念的理解,初步培養(yǎng)學(xué)生運用統(tǒng)計思想表述、思考和理解現(xiàn)實世界中的問題能力,這樣教學(xué)效果可能會更佳、
根據(jù)這一分析,確定本課時的教學(xué)難點是:如何使學(xué)生真正理解樣本的抽取是隨機的,隨機抽取的樣本將能夠代表總體、
四、教學(xué)支持條件分析
準(zhǔn)備一些隨機抽樣成功或失敗的事例,利用實物投影或放映的多媒體設(shè)備輔助教學(xué)、
五、教學(xué)過程設(shè)計
(一)感悟數(shù)據(jù)、引入課題
問題1:請同學(xué)們看章頭圖中的有關(guān)沙漠化和缺水量的數(shù)據(jù),你有什么感受?
師生活動:讓學(xué)生充分思考和探討,并逐步引導(dǎo)學(xué)生產(chǎn)生質(zhì)疑:這些數(shù)據(jù)是怎么來的?
設(shè)計意圖:通過一些數(shù)據(jù)讓學(xué)生充分感受我們生活在一個數(shù)字化時代,要學(xué)會與數(shù)據(jù)打交道,養(yǎng)成對數(shù)據(jù)產(chǎn)生的背景進行思考的習(xí)慣、
問題2:我發(fā)現(xiàn)我們班級有很多的同學(xué)都是戴眼鏡的,誰能告訴我我們班的近視率?
普查:為了一定的目的而對考察對象進行的全面調(diào)查稱為普查、
總體:所要考察對象的全體稱為總體(population)
個體:組成總體的每一個考察對象稱為個體(individual)
普查是我們進行調(diào)查得到全部信息的一種方式,比如我國10年一次的人口普查等、
設(shè)計意圖:通過與學(xué)生比較貼近的案例入手,讓學(xué)生體會到統(tǒng)計是從日常生活中產(chǎn)生的
(二)操作實踐、展開課題
問題3:如果我想了解榆次二中所有高一學(xué)生的近視率,你打算怎么做呢?
抽樣調(diào)查:從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查(samplinginvestigation)、
樣本:從總體中抽取的一部分個體叫做總體的一個樣本(sample)、
師生活動:以四人小組為單位進行討論,每個小組派一個代表匯報方案、
設(shè)計意圖:從這個問題中引出抽樣調(diào)查和樣本的概念,使學(xué)生對于如何產(chǎn)生樣本進行一定的思考,同時也使學(xué)生認(rèn)識到樣本選擇的好壞對于用樣本估計總體的精確度是有所不同的
列舉:一個的案例
高二上冊數(shù)學(xué)教案2022模板5
一、教學(xué)過程
1、復(fù)習(xí)。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2、新課。
先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):
教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標(biāo)時,他先選擇xA3,后選擇xA,作出來的點的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學(xué)再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學(xué)們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?
(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。
師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?
師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?
生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。
師:能說說是關(guān)于哪條直線對稱嗎?
生6:我還沒找出來。
學(xué)生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。
師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。
(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)
教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),也不是函數(shù)的圖象。
最后教師與學(xué)生一起總結(jié):
點(x,y)與點(y,x)關(guān)于直線y=x對稱;
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。
二、反思與點評
1、在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點時,不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進行教學(xué)。
2、荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念。
計算機作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學(xué)生思維的目的的話,這樣的教學(xué)中,計算機最多只是一種普通的直觀工具而已。
在本節(jié)課的教學(xué)中,計算機更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當(dāng)前計算機用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計算機作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。
3、在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計不甚妥當(dāng),本來是想要學(xué)生回答兩個函數(shù)圖象對稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。
高二上冊數(shù)學(xué)教案2022模板6
教學(xué)目標(biāo)
1、使學(xué)生了解反函數(shù)的概念;
2、使學(xué)生會求一些簡單函數(shù)的反函數(shù);
3、培養(yǎng)學(xué)生用辯證的觀點觀察、分析解決問題的能力。
教學(xué)重點
1、反函數(shù)的概念;
2、反函數(shù)的求法。
教學(xué)難點
反函數(shù)的概念。
教學(xué)方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);
第二張:本課時作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。
教學(xué)過程
1、講授新課
(檢查預(yù)習(xí)情況)
師:這節(jié)課我們來學(xué)習(xí)反函數(shù)(板書課題)§2、4、1反函數(shù)的概念。
同學(xué)們已經(jīng)進行了預(yù)習(xí),對反函數(shù)的概念有了初步的了解,誰來復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?
生:(略)
(學(xué)生回答之后,打出幻燈片A)。
師:反函數(shù)的定義著重強調(diào)兩點:
(1)根據(jù)y=f(x)中x與y的關(guān)系,用y把x表示出來,得到x=φ(y);
(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應(yīng)。
師:應(yīng)該注意習(xí)慣記法是由記法改寫過來的。
師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?
生:一一映射確定的函數(shù)才有反函數(shù)。
(學(xué)生作答后,教師板書,若學(xué)生答不來,教師再予以必要的啟示)。
師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)
在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請同學(xué)們談一下,函數(shù)y=f(x)與它的反函數(shù)y=f–1(x)兩者之間,定義域、值域存在什么關(guān)系呢?
生:(學(xué)生作答,教師板書)函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。
師:從反函數(shù)的概念可知:函數(shù)y=f(x)與y=f–1(x)互為反函數(shù)。
從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)將x=f–1(y)改寫成y=f–1(x),即對調(diào)x=f–1(y)中的x、y。
(3)指出反函數(shù)的定義域。
下面請同學(xué)自看例1
2、課堂練習(xí)課本P68練習(xí)1、2、3、4。
3、課時小結(jié)
本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。
【高二上冊數(shù)學(xué)教案】相關(guān)文章:
高二數(shù)學(xué)教案07-04
人教版高二數(shù)學(xué)教案08-24
高二數(shù)學(xué)教案范文03-10
高二語文上冊作文02-18
高二數(shù)學(xué)教案精選總結(jié)5篇分享08-27
高二英語上冊教學(xué)計劃11-16
高二英語上冊教學(xué)計劃08-02
高二上冊英語作文10-26
初中初二上冊數(shù)學(xué)教案01-13