1. <rp id="zsypk"></rp>

      2. 八年級(jí)數(shù)學(xué)教案

        時(shí)間:2022-12-28 09:21:46 教案 我要投稿
        • 相關(guān)推薦

        八年級(jí)數(shù)學(xué)教案集錦15篇

          作為一名專為他人授業(yè)解惑的人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案,希望對(duì)大家有所幫助。

        八年級(jí)數(shù)學(xué)教案集錦15篇

        八年級(jí)數(shù)學(xué)教案1

          一、教材分析教材的地位和作用:

          本節(jié)內(nèi)容是第一課時(shí)《軸對(duì)稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動(dòng)經(jīng)歷,從觀察生活中的軸對(duì)稱現(xiàn)象開始,從整體的角度認(rèn)識(shí)軸對(duì)稱的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對(duì)這一節(jié)課的學(xué)習(xí),使學(xué)生從對(duì)圖形的感性認(rèn)識(shí)上升到對(duì)軸對(duì)稱的理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)軸對(duì)稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識(shí)奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

          二、學(xué)情分析

          八年級(jí)學(xué)生有一定的知識(shí)水平,已經(jīng)初步形成了一定觀察能力、語言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實(shí)例和動(dòng)手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對(duì)稱圖形和軸對(duì)稱的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。

          三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定

          根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:

          (一)教學(xué)目標(biāo):

          1、知識(shí)技能

          (1)理解并掌握軸對(duì)稱圖形的概念,對(duì)稱軸;能準(zhǔn)確判斷哪些事物是軸對(duì)稱圖形;找出軸對(duì)稱圖形的對(duì)稱軸.

          (2)理解并掌握軸對(duì)稱的概念,對(duì)稱軸;了解對(duì)稱點(diǎn).

          (3)了解軸對(duì)稱圖形和軸對(duì)稱的聯(lián)系與區(qū)別.

          2、過程與方法目標(biāo)

          經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力、抽象思維和語言表達(dá)能力.

          3、情感、態(tài)度與價(jià)值觀

          通過對(duì)生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),在自主探究、合作交流的過程中,體會(huì)數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對(duì)稱美。

          (二)教學(xué)重點(diǎn):軸對(duì)稱圖形和軸對(duì)稱的有關(guān)概念.

          (三)教學(xué)難點(diǎn):軸對(duì)稱圖形與軸對(duì)稱的聯(lián)系、區(qū)別

          .四、教法和學(xué)法設(shè)計(jì)

          本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征。我選擇的:

          【教法策略】采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動(dòng),激發(fā)學(xué)生探求知識(shí)的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動(dòng)探索問題的積極狀態(tài),使不同層次學(xué)生的知識(shí)水平得到恰當(dāng)?shù)陌l(fā)展和提高。

          【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

          【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀效果,提高課堂效率

          五、說程序設(shè)計(jì):

          新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等數(shù)學(xué)活動(dòng)。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過程進(jìn)行了設(shè)計(jì)。

          (一)、觀圖激趣、設(shè)疑導(dǎo)入。

          出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時(shí)蝴蝶對(duì)蜜蜂說:“咱們長(zhǎng)得真象”,蜜蜂百思不得其解。你能說出為什么長(zhǎng)得象嗎?今天我們就來共同探討這一問題――軸對(duì)稱。

          [設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,

          (二)、實(shí)踐探索、感悟特征.

          《活動(dòng)一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對(duì)稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問題:這些圖形有什么共同特征?是如何對(duì)稱?怎樣才能使對(duì)稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對(duì)稱圖形和對(duì)稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對(duì)軸對(duì)稱圖形概念的理解。

          為了進(jìn)一步認(rèn)識(shí)軸對(duì)稱圖形的特點(diǎn)又出示了一組練習(xí)

          (練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對(duì)稱圖形,若是對(duì)稱圖形的,畫出它的對(duì)稱軸

          [設(shè)計(jì)意圖]通過這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對(duì)稱圖形的概念,而且讓學(xué)生認(rèn)識(shí)到我們常見的圖形,有些是軸對(duì)稱圖形,有些不是軸對(duì)稱圖形。并且還讓學(xué)生認(rèn)識(shí)軸對(duì)稱圖形的對(duì)稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對(duì)稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

          (練習(xí)2)國(guó)家的一個(gè)象征,觀察下面的國(guó)旗,哪些是軸對(duì)稱圖形?試找出它們的對(duì)稱軸。次題進(jìn)一步鞏固了軸對(duì)稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時(shí)通過展示各國(guó)的國(guó)旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識(shí)面。

          (三)、動(dòng)手操作、再度探索新知。

          將一張紙對(duì)折,用筆尖扎出一個(gè)圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對(duì)稱圖形的不同。教學(xué)中注重學(xué)生活動(dòng),鼓勵(lì)學(xué)生親自實(shí)踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動(dòng)手能力,從而引出軸對(duì)稱概念。

          再次引導(dǎo)學(xué)生討論、歸納得出軸對(duì)稱的概念……。之后再結(jié)合動(dòng)畫演示加深對(duì)軸對(duì)稱概念的理解,進(jìn)而引出對(duì)稱軸、對(duì)稱點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識(shí)。

          (四)、鞏固練習(xí)、升華新知。

          出示幾幅圖形,請(qǐng)同學(xué)們辨別哪幅圖形是軸對(duì)稱圖形哪些圖形軸對(duì)稱,

          在這組練習(xí)中讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)眼、動(dòng)腦,充分調(diào)動(dòng)了學(xué)生的各種感官參與學(xué)習(xí),既加深了對(duì)兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對(duì)稱圖形及軸對(duì)稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

          (課件演示)軸對(duì)稱圖形及兩個(gè)圖形成軸對(duì)稱區(qū)別與聯(lián)系

          (五)、綜合練習(xí)、發(fā)展思維。

          1、搶答;觀察周圍哪些事物的形狀是軸對(duì)稱圖形。

          2、判斷:

          生活中不僅有些物體的形狀是軸對(duì)稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對(duì)稱圖形。

          (1)下面的數(shù)字或字母,哪些是軸對(duì)稱圖形?它們各有幾條對(duì)稱軸?

          0123456789ABCDEFGH

          3、像這樣寫法的漢字哪些是軸對(duì)稱圖形?

          口工用中由日直水清甲

          (這幾道題的練習(xí)做到了知識(shí)性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

          (六)歸納小結(jié)、布置作業(yè)

          [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

          六、設(shè)計(jì)說明

          這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過觀察生活中的一些圖案以及動(dòng)畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對(duì)稱圖形與關(guān)于直線成軸對(duì)稱兩個(gè)概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動(dòng)口、動(dòng)手、動(dòng)眼、動(dòng)腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對(duì)本節(jié)課的理解和說明。

        八年級(jí)數(shù)學(xué)教案2

          一、內(nèi)容和內(nèi)容解析

          1.內(nèi)容

          三角形高線、中線及角平分線的概念、幾何語言表達(dá)及它們的畫法.

          2.內(nèi)容解析

          本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動(dòng)手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動(dòng)手操作及解決問題的能力;鼓勵(lì)學(xué)生主動(dòng)參與,體驗(yàn)幾何知識(shí)在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛生活、勇于探索的思想感情。

          理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對(duì)于學(xué)生增長(zhǎng)幾何知識(shí),運(yùn)用幾何知識(shí)解決生活中的有關(guān)問題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識(shí)一個(gè)準(zhǔn)備.

          本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的畫法,難點(diǎn)是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系.

          二、目標(biāo)和目標(biāo)解析

          1.教學(xué)目標(biāo)

          (1)理解三角形的高、中線與角平分線等概念;

          (2)會(huì)用工具畫三角形的高、中線與角平分線;

          2.教學(xué)目標(biāo)解析

          (1)經(jīng)歷畫圖實(shí)踐過程,理解三角形的高、中線與角平分線等概念.

          (2)能夠熟練用幾何語言表達(dá)三角形的高、中線與角平分線的性質(zhì).

          (3)掌握三角形的高、中線與角平分線的畫法.

          (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn).

          三、教學(xué)問題診斷分析

          三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對(duì)邊或?qū)吽诘闹本上.

          三角形的中線的理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對(duì)邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對(duì)邊中點(diǎn).

          三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對(duì)邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.

        八年級(jí)數(shù)學(xué)教案3

          教學(xué)建議

          知識(shí)結(jié)構(gòu)

          重難點(diǎn)分析

          本節(jié)的重點(diǎn)是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

          本節(jié)的難點(diǎn)是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對(duì)比有一定的難度.

          教法建議

          1. 對(duì)于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測(cè)量、論證,實(shí)際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

          2.對(duì)于定理的證明,有條件的教師可考慮利用多媒體課件來進(jìn)行演示知識(shí)的形成及證明過程,效果可能會(huì)更直接更易于理解

          教學(xué)設(shè)計(jì)示例

          一、教學(xué)目標(biāo)

          1.掌握中位線的概念和三角形中位線定理

          2.掌握定理“過三角形一邊中點(diǎn)且平行另一邊的直線平分第三邊”

          3.能夠應(yīng)用三角形中位線概念及定理進(jìn)行有關(guān)的論證和計(jì)算,進(jìn)一步提高學(xué)生的計(jì)算能力

          4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力

          5. 通過一題多解,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣

          二、教學(xué)設(shè)計(jì)

          畫圖測(cè)量,猜想討論,啟發(fā)引導(dǎo).

          三、重點(diǎn)、難點(diǎn)

          1.教學(xué)重點(diǎn):三角形中位線的概論與三角形中位線性質(zhì).

          2.教學(xué)難點(diǎn):三角形中位線定理的證明.

          四、課時(shí)安排

          1課時(shí)

          五、教具學(xué)具準(zhǔn)備

          投影儀、膠片、常用畫圖工具

          六、教學(xué)步驟

          【復(fù)習(xí)提問】

          1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

          2.說明定理的證明思路.

          3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點(diǎn),AM、CN分別交BD于點(diǎn)E、F,如何證明 ?

          分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

          4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)

          【引入新課】

          1.三角形中位線:連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形中位線.

          (結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)

          2.三角形中位線性質(zhì)

          了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).

          如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的中點(diǎn),可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個(gè)結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

          三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

          應(yīng)注意的兩個(gè)問題:①為便于同學(xué)對(duì)定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點(diǎn),即同一個(gè)題設(shè)下有兩個(gè)結(jié)論,第一個(gè)結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個(gè)結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時(shí)可根據(jù)需要來選用其中的結(jié)論(可以單獨(dú)用其中結(jié)論).②這個(gè)定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當(dāng)一個(gè)命題有多種證明方法時(shí),要選用比較簡(jiǎn)捷的方法證明.

          由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

          (l)延長(zhǎng)DE到F,使 ,連結(jié)CF,由 可得AD FC.

          (2)延長(zhǎng)DE到F,使 ,利用對(duì)角線互相平分的四邊形是平行四邊形,可得AD FC.

          (3)過點(diǎn)C作 ,與DE延長(zhǎng)線交于F,通過證 可得AD FC.

          上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

          (證明過程略)

          例 求證:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形.

          (由學(xué)生根據(jù)命題,說出已知、求證)

          已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn).

          求證:四邊形EFGH是平行四邊形.‘

          分析:因?yàn)橐阎c(diǎn)分別是四邊形各邊中點(diǎn),如果連結(jié)對(duì)角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對(duì)邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

          證明:連結(jié)AC.

          ∴ (三角形中位線定理).

          同理,

          ∴GH EF

          ∴四邊形EFGH是平行四邊形.

          【小結(jié)】

          1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

          2.三角形中位線定理及證明思路.

          七、布置作業(yè)

          教材P188中1(2)、4、7

        八年級(jí)數(shù)學(xué)教案4

          教學(xué)目標(biāo)

          理解平行四邊形的定義,能根據(jù)定義探究平行四邊形的性質(zhì).

          教學(xué)思考

          1.通過觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理、交流等數(shù)學(xué)活動(dòng),發(fā)展學(xué)生合情推理能力和動(dòng)手操作能力及應(yīng)用數(shù)學(xué)的意識(shí)與能力.

          2.能夠根據(jù)平行四邊形的性質(zhì)進(jìn)行簡(jiǎn)單的推理和計(jì)算.

          解決問題

          通過平行四邊形性質(zhì)的探索過程,豐富學(xué)生從事數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)與體驗(yàn),能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的推理和計(jì)算,發(fā)展應(yīng)用意識(shí).

          情感態(tài)度

          在應(yīng)用平行四邊形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣,在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).

          重點(diǎn)

          平行四邊形的性質(zhì)的探究和平行四邊形的性質(zhì)的應(yīng)用.

          難點(diǎn)

          平行四邊形的性質(zhì)的應(yīng)用.

          教學(xué)流程安排

          活動(dòng)流程圖

          活動(dòng)內(nèi)容和目的

          活動(dòng)1欣賞圖片,了解生活中的特殊四邊形

          活動(dòng)2剪三角形紙片,拼凸四邊形

          活動(dòng)3理解平行四邊形的概念

          活動(dòng)4探究平行四邊形邊、角的性質(zhì)

          活動(dòng)5平行四邊形性質(zhì)的應(yīng)用

          活動(dòng)6評(píng)價(jià)反思、布置作業(yè)

          熟悉生活中特殊的四邊形,導(dǎo)出課題.

          通過用三角形拼四邊形的過程,滲透轉(zhuǎn)化思想,激發(fā)探索精神.

          掌握平行四邊形的定義及表示方法.

          探究平行四邊形的性質(zhì).

          運(yùn)用平行四邊形的性質(zhì).

          學(xué)生交流,內(nèi)化知識(shí),課后鞏固知識(shí).

          教學(xué)過程設(shè)計(jì)

          問題與情景

          師生行為

          設(shè)計(jì)意圖

        [活動(dòng)1]

          下面的圖片中,有你熟悉的哪些圖形?

         。ǔ鍪緢D片)

          演示圖片,學(xué)生欣賞.

          教師介紹四邊形與我們生活密切聯(lián)系,學(xué)生可再補(bǔ)充列舉.

          從實(shí)例圖片中,抽象出的特殊四邊形,培養(yǎng)學(xué)生的抽象思維.通過舉例,讓學(xué)生感受到數(shù)學(xué)與我們的生活緊密聯(lián)系.

          問題與情景

          師生行為

          設(shè)計(jì)意圖

          [活動(dòng)2]

          拼一拼

          將一張紙對(duì)折,剪下兩張疊放的三角形紙片.將這兩個(gè)三角形相等的一組邊重合,你會(huì)得到怎樣的圖形.

         。1)你拼出了怎樣的凸四邊形?與同伴交流.

          (2)一位同學(xué)拼出了如下圖所示的一個(gè)四邊形,這個(gè)四邊形的對(duì)邊有怎樣的位置關(guān)系?說說你的理由.

          學(xué)生經(jīng)過實(shí)驗(yàn)操作,開展獨(dú)立思考與合作學(xué)習(xí).

          教師深入學(xué)生之中,觀察學(xué)生頻出的方法與過程,接受學(xué)生質(zhì)疑并指導(dǎo)個(gè)別學(xué)生探究.

          教師待學(xué)生充分探究后,請(qǐng)學(xué)生展示拼圖的方法和不同的圖形.并引導(dǎo)學(xué)生分析(2)中的四邊形的邊的位置特征,從而引出本節(jié)課研究的內(nèi)容

        八年級(jí)數(shù)學(xué)教案5

          【教學(xué)目標(biāo)】

          知識(shí)與技能

          能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

          過程與方法

          使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

          情感、態(tài)度與價(jià)值觀

          培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

          【教學(xué)重難點(diǎn)】

          重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

          難點(diǎn):正確地確定多項(xiàng)式的最大公因式.

          關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

          【教學(xué)過程】

          一、回顧交流,導(dǎo)入新知

          【復(fù)習(xí)交流】

          下列從左到右的變形是否是因式分解,為什么?

          (1)2x2+4=2(x2+2);

          (2)2t2-3t+1=(2t3-3t2+t);

          (3)x2+4xy-y2=x(x+4y)-y2;

          (4)m(x+y)=mx+my;

          (5)x2-2xy+y2=(x-y)2.

          問題:

          1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

          2.多項(xiàng)式4x2-x和xy2-yz-y呢?

          請(qǐng)將上述多項(xiàng)式分別寫成兩個(gè)因式的乘積的形式,并說明理由.

          【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

          概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

          二、小組合作,探究方法

          教師提問:多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

          【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的最大公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

          三、范例學(xué)習(xí),應(yīng)用所學(xué)

          例1:把-4x2yz-12xy2z+4xyz分解因式.

          解:-4x2yz-12xy2z+4xyz

          =-(4x2yz+12xy2z-4xyz)

          =-4xyz(x+3y-1)

          例2:分解因式:3a2(x-y)3-4b2(y-x)2

          【分析】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

          解法1:3a2(x-y)3-4b2(y-x)2

          =-3a2(y-x)3-4b2(y-x)2

          =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

          =-(y-x)2[3a2(y-x)+4b2]

          =-(y-x)2(3a2y-3a2x+4b2)

          解法2:3a2(x-y)3-4b2(y-x)2

          =(x-y)2·3a2(x-y)-4b2(x-y)2

          =(x-y)2[3a2(x-y)-4b2]

          =(x-y)2(3a2x-3a2y-4b2)

          例3:用簡(jiǎn)便的方法計(jì)算:

          0.84×12+12×0.6-0.44×12.

          【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

          解:0.84×12+12×0.6-0.44×12

          =12×(0.84+0.6-0.44)

          =12×1=12.

          【教師活動(dòng)】在學(xué)生完成例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

          四、隨堂練習(xí),鞏固深化

          課本115頁練習(xí)第1、2、3題.

          【探研時(shí)空】

          利用提公因式法計(jì)算:

          0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

          五、課堂總結(jié),發(fā)展?jié)撃?/p>

          1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)最大公因式.在找最大公因式時(shí)應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

          2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

          六、布置作業(yè),專題突破

          課本119頁習(xí)題14.3第1、4(1)、6題.

        八年級(jí)數(shù)學(xué)教案6

          教材分析

          1、本小節(jié)內(nèi)容安排在第十四章“軸對(duì)稱”的第三節(jié)。等腰三角形是一種特殊的三角形,它是軸對(duì)稱圖形,可以借助軸對(duì)稱變換來研究等腰三角形的一些特殊性質(zhì)。這一節(jié)的主要內(nèi)容是等腰三角形的性質(zhì)與判定,以及等邊三角形的相關(guān)知識(shí),重點(diǎn)是等腰三角形的性質(zhì)與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據(jù),這也是全章的重點(diǎn)之一。

          2、本節(jié)重在呈現(xiàn)一個(gè)動(dòng)手操作得出概念、觀察實(shí)驗(yàn)得出性質(zhì)、推理證明論證性質(zhì)的過程,學(xué)生通過學(xué)習(xí),既體會(huì)到一個(gè)觀察、實(shí)驗(yàn)、猜想、論證的研究幾何圖形問題的全過程,又能夠運(yùn)用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運(yùn)用知識(shí)和技能解決問題的能力。

          學(xué)情分析

          1、學(xué)生在此之前已接觸過等腰三角形,具有運(yùn)用全等三角形的判定及軸對(duì)稱的知識(shí)和技能,本節(jié)教學(xué)要突出“自主探究”的特點(diǎn),即教師引導(dǎo)學(xué)生通過觀察、實(shí)驗(yàn)、猜想、論證,得出等腰三角形的性質(zhì),讓學(xué)生做學(xué)習(xí)的主人,享受探求新知、獲得新知的樂趣。

          2、在與等腰三角形有關(guān)的一些命題的證明過程中,會(huì)遇到一些添加輔助線的問題,這會(huì)給學(xué)生的學(xué)習(xí)帶來困難。另外,以前學(xué)生證明問題是習(xí)慣于找全等三角形,形成了依賴全等三角形的思維定勢(shì),對(duì)于可直接利用等腰三角形性質(zhì)的問題,沒有注意選擇簡(jiǎn)便方法。

          教學(xué)目標(biāo)

          知識(shí)技能:1、理解掌握等腰三角形的性質(zhì)。

          2、運(yùn)用等腰三角形的性質(zhì)進(jìn)行證明和計(jì)算。

          數(shù)學(xué)思考:1、觀察等腰三角形的對(duì)稱性,發(fā)展形象思維。

          2、通過時(shí)間、觀察、證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。

          情感態(tài)度:引導(dǎo)學(xué)生對(duì)圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運(yùn)用數(shù)學(xué)知識(shí)解決問題的活動(dòng)中獲取成功的體驗(yàn),建立學(xué)習(xí)的自信心。

          教學(xué)重點(diǎn)和難點(diǎn)

          重點(diǎn):等腰三角形的性質(zhì)及應(yīng)用。

          難點(diǎn):等腰三角形的性質(zhì)證明。

        八年級(jí)數(shù)學(xué)教案7

          一、教材分析

          1、特點(diǎn)與地位:重點(diǎn)中的重點(diǎn)。

          本課是教材求兩結(jié)點(diǎn)之間的最短路徑問題是圖最常見的應(yīng)用的之一,在交通運(yùn)輸、通訊網(wǎng)絡(luò)等方面具有一定的實(shí)用意義。

          2、重點(diǎn)與難點(diǎn):結(jié)合學(xué)生現(xiàn)有抽象思維能力水平,已掌握基本概念等學(xué)情,以及求解最短路徑問題的自身特點(diǎn),確立本課的重點(diǎn)和難點(diǎn)如下:

         。1)重點(diǎn):如何將現(xiàn)實(shí)問題抽象成求解最短路徑問題,以及該問題的解決方案。

         。2)難點(diǎn):求解最短路徑算法的程序?qū)崿F(xiàn)。

          3、教學(xué)安排:最短路徑問題包含兩種情況:一種是求從某個(gè)源點(diǎn)到其他各結(jié)點(diǎn)的最短路徑,另一種是求每一對(duì)結(jié)點(diǎn)之間的最短路徑。根據(jù)教學(xué)大綱安排,重點(diǎn)講解第一種情況問題的解決。安排一個(gè)課時(shí)講授。教材直接分析算法,考慮實(shí)際應(yīng)用需要,補(bǔ)充旅游景點(diǎn)線路選擇的實(shí)例,實(shí)例中問題解決與算法分析相結(jié)合,逐步推動(dòng)教學(xué)過程。

          二、教學(xué)目標(biāo)分析

          1、知識(shí)目標(biāo):掌握最短路徑概念、能夠求解最短路徑。

          2、能力目標(biāo):

         。1)通過將旅游景點(diǎn)線路選擇問題抽象成求最短路徑問題,培養(yǎng)學(xué)生的數(shù)據(jù)抽象能力。

         。2)通過旅游景點(diǎn)線路選擇問題的解決,培養(yǎng)學(xué)生的獨(dú)立思考、分析問題、解決問題的能力。

          3、素質(zhì)目標(biāo):培養(yǎng)學(xué)生講究工作方法、與他人合作,提高效率。

          三、教法分析

          課前充分準(zhǔn)備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學(xué)過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學(xué)法”,同時(shí)輔以多媒體課件,以啟發(fā)的方式展開教學(xué)。由于本節(jié)課的內(nèi)容屬于圖這一章的難點(diǎn),考慮學(xué)生的接受能力,注意與學(xué)生溝通,根據(jù)學(xué)生的反應(yīng)控制好教學(xué)進(jìn)度是本節(jié)課成功的關(guān)鍵。

          四、學(xué)法指導(dǎo)

          1、課前上次課結(jié)課時(shí)給學(xué)生布置任務(wù),使其有針對(duì)性的預(yù)習(xí)。

          2、課中指導(dǎo)學(xué)生討論任務(wù)解決方法,引導(dǎo)學(xué)生分析本節(jié)課知識(shí)點(diǎn)。

          3、課后給學(xué)生布置同類型任務(wù),加強(qiáng)練習(xí)。

          五、教學(xué)過程分析

         。ㄒ唬┱n前復(fù)習(xí)(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。

          教學(xué)方法及注意事項(xiàng):

          (1)采用提問方式,注意及時(shí)小結(jié),提問的目的是幫助學(xué)生回憶概念。

         。2)提示學(xué)生“溫故而知新”,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

         。ǘ⿲(dǎo)入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個(gè)點(diǎn)間最短距離的實(shí)際需要,引出本課教學(xué)內(nèi)容“求最短路徑問題”。教學(xué)方法及注意事項(xiàng):

         。1)先講實(shí)例,再指出概念,既可以吸引學(xué)生注意力,激發(fā)學(xué)習(xí)興趣,又可以實(shí)現(xiàn)教學(xué)內(nèi)容的自然過渡。

         。2)此處使用案例教學(xué)法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。

         。ㄈ┲v授新課(25~30分鐘)

          1、求某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑(重點(diǎn))主要采用案例教學(xué)法,提出旅游景點(diǎn)選擇的例子,解決如何選擇代價(jià)小、景點(diǎn)多的路線。

         。1)將實(shí)際問題抽象成圖中求任一結(jié)點(diǎn)到其他結(jié)點(diǎn)最短路徑問題。(3~5分鐘)教學(xué)方法及注意事項(xiàng):

         、僦饕捎弥v授法,將實(shí)際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標(biāo)號(hào)表示某一景點(diǎn),用箭頭表示從某景點(diǎn)到其他景點(diǎn)是否存在旅游線路,并且將旅途費(fèi)用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。

          ②注意示范畫圖只進(jìn)行一部分,讓學(xué)生獨(dú)立思考、自主完成余下部分的轉(zhuǎn)化。

         、奂皶r(shí)總結(jié),原型抽象(景點(diǎn)作為圖的結(jié)點(diǎn),景點(diǎn)間的線路作為圖的邊,旅途費(fèi)用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點(diǎn)到其他各結(jié)點(diǎn)的最短路徑問題。

         、芾枚嗝襟w課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學(xué)做準(zhǔn)備。

          教學(xué)方法及注意事項(xiàng):

         、賳l(fā)式教學(xué),如何實(shí)現(xiàn)按路徑長(zhǎng)度遞增產(chǎn)生最短路徑?

         、诮Y(jié)合案例分析求解最短路徑過程中(重點(diǎn))注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學(xué)生獨(dú)立思考完成。

         。ㄋ模┱n堂小結(jié)(3~5分鐘)

          1、明確本節(jié)課重點(diǎn)

          2、提示學(xué)生,這種方式形成的圖又可以解決哪類實(shí)際問題呢?

         。ㄎ澹┎贾米鳂I(yè)

          1、書面作業(yè):復(fù)習(xí)本次課內(nèi)容,準(zhǔn)備一道備用習(xí)題,靈活把握時(shí)間安排。

          六、教學(xué)特色

          以旅游路線選擇為主線,靈活采用案例教學(xué)、示范教學(xué)、多媒體課件等多種手段輔助教學(xué),使枯燥的理論講解生動(dòng)起來。在順利開展教學(xué)的同時(shí),體現(xiàn)所講內(nèi)容的實(shí)用性,提高學(xué)生的學(xué)習(xí)興趣。

        八年級(jí)數(shù)學(xué)教案8

          一、教學(xué)目標(biāo):

          1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.

          2、會(huì)求一組數(shù)據(jù)的極差.

          二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法

          1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.

          2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).

          三、課堂引入:

          下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對(duì)這兩段時(shí)間的氣溫進(jìn)行比較呢?

          從表中你能得到哪些信息?

          比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法.

          經(jīng)計(jì)算可以看出,對(duì)于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

          這是不是說,兩個(gè)時(shí)段的氣溫情況沒有什么差異呢?

          根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖.

          觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.

          用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

          四、例習(xí)題分析

          本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析

          問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí).問題3答案并不唯一,合理即可。

        八年級(jí)數(shù)學(xué)教案9

          平方差公式

          學(xué)習(xí)目標(biāo):

          1、能推導(dǎo)平方差公式,并會(huì)用幾何圖形解釋公式;

          2、能用平方差公式進(jìn)行熟練地計(jì)算;

          3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號(hào)感,體會(huì)特殊一般特殊的認(rèn)識(shí)規(guī)律.

          學(xué)習(xí)重難點(diǎn):

          重點(diǎn):能用平方差公式進(jìn)行熟練地計(jì)算;

          難點(diǎn):探索平方差公式,并用幾何圖形解釋公式.

          學(xué)習(xí)過程:

          一、自主探索

          1、計(jì)算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

          (3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

          2、觀察以上算式及其運(yùn)算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗(yàn)證你的發(fā)現(xiàn).

          3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?

          4、平方差公式的特征:

          (1)、公式左邊的兩個(gè)因式都是二項(xiàng)式。必須是相同的兩數(shù)的和與差。或者說兩 個(gè)二項(xiàng)式必須有一項(xiàng)完全相同,另一項(xiàng)只有符號(hào)不同。

          (2)、公式中的a與b可以是數(shù),也可以換成一個(gè)代數(shù)式。

          二 、試一試

          例1、利用平方差公式計(jì)算

          (1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

          例2、利用平方差公式計(jì)算

          (1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

          三、合作交流

          如圖,邊長(zhǎng)為a的大正方形中有一個(gè)邊長(zhǎng)為b的小正方形.

          (1)請(qǐng)表示圖中陰影部分的面積.

          (2)小穎將陰影部分拼成了一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)和寬分別是多少?你能表示出它的面積嗎? a a b

          (3)比較(1)(2)的結(jié)果,你能驗(yàn)證平方差公式嗎?

          四、鞏固練習(xí)

          1、利用平方差公式計(jì)算

          (1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

          (3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

          2、利用平方差公式計(jì)算

          (1)803797 (2)398402

          3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

          A.只能是數(shù) B.只能是單項(xiàng)式 C.只能是多項(xiàng)式 D.以上都可以

          4.下列多項(xiàng)式的乘法中,可以用平方差公式計(jì)算的是( )

          A.(a+b)(b+a) B.(-a+b)(a-b)

          C.( a+b)(b- a) D.(a2-b)(b2+a)

          5.下列計(jì)算中,錯(cuò)誤的有( )

         、(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

          ③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

          A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)[來源:中.考.資.源.網(wǎng)WWW.ZK5U.COM]

          6.若x2-y2=30,且x-y=-5,則x+y的值是( )

          A.5 B.6 C.-6 D.-5

          7.(-2x+y)(-2x-y)=______.

          8.(-3x2+2y2)(______)=9x4-4y4.

          9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

          10.兩個(gè)正方形的邊長(zhǎng)之和為5,邊長(zhǎng)之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____.

          11.利用平方差公式計(jì)算:20 19 .

          12.計(jì)算:(a+2)(a2+4)(a4+16)(a-2).

          五、學(xué)習(xí)反思

          我的收獲:

          我的疑惑:

          六、當(dāng)堂測(cè)試

          1、下列多項(xiàng)式乘法中能用平方差公式計(jì)算的是( ).

          (A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

          2、填空:(1)(x2-2)(x2+2)=

          (2)(5x-3y)( )=25x2-9y2

          3、計(jì)算:

          (1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

          4.利用平方差公式計(jì)算

         、1003997 ②14 15

          七、課外拓展

          下列各式哪些能用平方差公式計(jì)算?怎樣用?

          1) (a-b+c)(a-b-c)

          2) (a+2b-3)(a-2b+3)

          3) (2x+y-z+5)(2x-y+z+5)

          4) (a-b+c-d)(-a-b-c-d)

          2.2完全平方公式(1)

        八年級(jí)數(shù)學(xué)教案10

          教學(xué)目標(biāo):

          1、知識(shí)目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對(duì)稱、平移、旋轉(zhuǎn)……,理解簡(jiǎn)單圖案設(shè)計(jì)的意圖。認(rèn)識(shí)和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡(jiǎn)單的圖案。

          2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

          3、情感體驗(yàn)點(diǎn):經(jīng)歷對(duì)典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識(shí),培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

          重點(diǎn)與難點(diǎn):

          重點(diǎn):靈活運(yùn)用軸對(duì)稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。

          難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。

          疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖

          教具學(xué)具準(zhǔn)備:

          提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動(dòng)畫演示。

          教學(xué)過程設(shè)計(jì):

          1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對(duì)象。(展示課本圖3—23)

          明確在欣賞了圖案后,簡(jiǎn)單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對(duì)教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對(duì)稱變換形成(可以讓學(xué)生指出對(duì)軸對(duì)稱及對(duì)稱軸的條數(shù)),而圖(2)可以通過平移形成。

          2、課本

          1 欣賞課本75頁圖3—24的圖案,并分析這個(gè)圖案形成過程。

          評(píng)注:圖案是密鋪圖案的代表,旨在通過對(duì)典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對(duì)稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

          評(píng)注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對(duì)稱變換得到左上圖和右下圖。

          (二)課內(nèi)練習(xí)

          (1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。

          (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對(duì)稱、中心對(duì)稱等方法進(jìn)行圖案設(shè)計(jì),并簡(jiǎn)要說明自己的設(shè)計(jì)意圖。

          (三)議一議

          生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。

          (四)課時(shí)小結(jié)

          本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對(duì)稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡(jiǎn)單的圖案。

          通過今天的學(xué)習(xí),你對(duì)圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識(shí)?(可以利用平移、旋轉(zhuǎn)、軸對(duì)稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)

          八年級(jí)數(shù)學(xué)上冊(cè)教案(五)延伸拓展

          進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。

        八年級(jí)數(shù)學(xué)教案11

          學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。

          學(xué)習(xí)難點(diǎn):認(rèn)識(shí)函數(shù),領(lǐng)會(huì)函數(shù)的意義。

          【自主復(fù)習(xí)知識(shí)準(zhǔn)備】

          請(qǐng)你舉出生活中含有兩個(gè)變量的變化過程,說明其中的常量和變量。

          【自主探究知識(shí)應(yīng)用】

          請(qǐng)看書72——74頁內(nèi)容,完成下列問題:

          1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

          2、 完成書上第73頁的思考,體會(huì)圖形中體現(xiàn)的變量和變量之間的關(guān)系。

          3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

          歸納:一般的,在一個(gè)變化過程中,如果有______變量x和y,并且對(duì)于x的_______,y都有_________與其對(duì)應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

          補(bǔ)充小結(jié):

          (1)函數(shù)的定義:

          (2)必須是一個(gè)變化過程;

          (3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對(duì)它對(duì)應(yīng)。

          三、鞏固與拓展:

          例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

          (1)寫出表示y與x的'函數(shù)關(guān)系式.

          (2)指出自變量x的取值范圍.

          (3) 汽車行駛200千米時(shí),油箱中還有多少汽油?

          【當(dāng)堂檢測(cè)知識(shí)升華】

          1、判斷下列變量之間是不是函數(shù)關(guān)系:

          (1)長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;

          (2)等腰三角形的底邊長(zhǎng)與面積;

          (3)某人的年齡與身高;

          2、寫出下列函數(shù)的解析式.

          (1)一個(gè)長(zhǎng)方體盒子高3cm,底面是正方形,這個(gè)長(zhǎng)方體的體積為y(cm3),底面邊長(zhǎng)為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.

          (2)汽車加油時(shí),加油槍的流量為10L/min.

         、偃绻佑颓埃拖淅镞有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;

          ②如果加油時(shí),油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.

          (3)某種活期儲(chǔ)蓄的月利率為0.16%,存入10000元本金,按國(guó)家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲(chǔ)蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

          (4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

          八年級(jí)變量與函數(shù)(2)數(shù)學(xué)教案的全部?jī)?nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對(duì)性的設(shè)置,希望大家喜歡!

        八年級(jí)數(shù)學(xué)教案12

          一、目的要求

          1、使學(xué)生能畫出正比例函數(shù)與一次函數(shù)的圖象。

          2、結(jié)合圖象,使學(xué)生理解正比例函數(shù)與一次函數(shù)的性質(zhì)。

          3、在學(xué)習(xí)的基礎(chǔ)上,使學(xué)生進(jìn)一步理解正比例函數(shù)和一次函數(shù)的概念。

          二、內(nèi)容分析

          1、對(duì)函數(shù)的研究,在初中階段,只能是初步的。從方法上,是用初等方法,即傳統(tǒng)的初等數(shù)學(xué)的方法,而不是用極限、導(dǎo)數(shù)等高等數(shù)學(xué)的基本工具,并且,比起高中對(duì)函數(shù)的研究,更多地依賴于圖象的直觀,從研究的內(nèi)容上,通常,包括定義域、值域、函數(shù)的變化特征等方面。關(guān)于定義域,只是在開始學(xué)習(xí)函數(shù)概念時(shí),有一個(gè)一般的簡(jiǎn)介,在具體學(xué)習(xí)幾種數(shù)時(shí),就不一一單獨(dú)講述了,關(guān)于值域,初中暫不涉及,至于函數(shù)的變化特征,像上升、下降、極大、極小,以及奇、偶性、周期性,連續(xù)性等,初中只就一次函數(shù)與反比例函效的升降問題略作介紹,其它,在初中都不做為基本教學(xué)要求。

          2、關(guān)于一次函數(shù)圖象是直線的問題,在前面學(xué)習(xí)13、3節(jié)時(shí),利用幾何學(xué)過的角平分線的性質(zhì),對(duì)函數(shù)y=x的圖象是一條直線做了一些說明,至于其它種類的一次函數(shù),則只是在描點(diǎn)畫圖時(shí),從直觀上看出,它們的圖象也都是一條直線,教科書沒有對(duì)這個(gè)結(jié)論進(jìn)行嚴(yán)格的論證,對(duì)于學(xué)生,只要求他們能結(jié)合y=x的圖象以及其它一些一次函數(shù)圖象的實(shí)例,對(duì)這個(gè)結(jié)論有一個(gè)直觀的認(rèn)識(shí)就可以了。

          三、教學(xué)過程

          復(fù)習(xí)提問:

          1、什么是一次函數(shù)?什么是正比例函數(shù)?

          2、在同一直角坐標(biāo)系中描點(diǎn)畫出以下三個(gè)函數(shù)的圖象:

          y=2x y=2x—1 y=2x+1

          新課講解:

          1、我們畫過函數(shù)y=x的圖象,并且知道,函數(shù)y=x的圖象上的點(diǎn)的坐標(biāo)滿足橫坐標(biāo)與縱坐標(biāo)相等的條件,由幾何上學(xué)過的角平分線的性質(zhì),可以判斷,函數(shù)y=x,這是一個(gè)一次函數(shù)(也是正比例函數(shù)),它的圖象是一條直線。

          再看復(fù)習(xí)提問的第2題,所畫出的三個(gè)一次函數(shù)的圖象,從直觀上看,也分別是一條直線。

          一般地,一次函數(shù)的圖象是一條直線。

          前面我們?cè)诋嬕淮魏瘮?shù)的圖象時(shí),采用先列表、描點(diǎn),再連續(xù)的方法、現(xiàn)在,我們明確了一次函數(shù)的圖象都是一條直線。因此,在畫一次函數(shù)的圖象時(shí),只要在坐標(biāo)平面內(nèi)描出兩個(gè)點(diǎn),就可以畫出它的圖象了。

          先看兩個(gè)正比例項(xiàng)數(shù),

          y=0。5x

          與y=—0。5x

          由這兩個(gè)正比例函數(shù)的解析式不難看出,當(dāng)x=0時(shí),

          y=0

          即函數(shù)圖象經(jīng)過原點(diǎn)、(讓學(xué)生想一想,為什么?)

          除了點(diǎn)(0,0)之外,對(duì)于函數(shù)y=0。5x,再選一點(diǎn)(1,0。5),對(duì)于函數(shù)y=—0。5x。再選一點(diǎn)(1,一0。5),就可以分別畫出這兩個(gè)正比例函數(shù)的圖象了。

          實(shí)際畫正比例函數(shù)y=kx(k≠0)的圖象,一般按以以下三步:

         。1)先選取兩點(diǎn),通常選點(diǎn)(0,0)與點(diǎn)(1,k);

         。2)在坐標(biāo)平面內(nèi)描出點(diǎn)(0,o)與點(diǎn)(1,k);

         。3)過點(diǎn)(0,0)與點(diǎn)(1,k)做一條直線、

          這條直線就是正比例函數(shù)y=kx(k≠0)的圖象、

          觀察正比例函數(shù)y=0。5x的圖象、

          這里,k=0、5>0、

          從圖象上看,y隨x的增大而增大、

          再觀察正比例函數(shù)y=—0、5x的圖象。

          這里,k=一0、5<0

          從圖象上看,y隨x的增大而減小

          實(shí)際上,我們還可以從解析式本身的特點(diǎn)出發(fā),考慮正比例函數(shù)的性質(zhì)。

          先看

          y=0。5x

          任取兩對(duì)對(duì)應(yīng)值。 (x1,y1)與(x2,y2),

          如果x1>x2,由k=0。5>0,得

          0。5x1>0。5x2

          即yl>y2

          這就是說,當(dāng)x增大時(shí),y也增大。

          類似地,可以說明的y=—0、5x性質(zhì)。

          從解析式本身特點(diǎn)出發(fā)分析正比例函數(shù)性質(zhì),可視學(xué)生程度考慮是否向?qū)W生介紹。

          一般地,正比例函數(shù)y=kx(k≠0)有下列性質(zhì):

         。1)當(dāng)k>0時(shí),y隨x的增大而增大;

          (2)當(dāng)k<0時(shí),y隨x的增大而減小。

          2、講解教科書13、5節(jié)例1、與畫正比例函數(shù)圖象類似,畫一次函數(shù)圖象的關(guān)鍵是選取適當(dāng)?shù)膬牲c(diǎn),然后連線即可,為了描點(diǎn)方便,對(duì)于一次函數(shù)

          y=kx+b(k,b是常數(shù),k≠0)

          通常選取

         。╫,b)與(—

          兩點(diǎn),

          對(duì)于例l中的一次函效

          y=2x+1與y=—2x+1

          就分別選取

         。╫,1)與(一0、5,2),

          還有

         。0,1)—與(0、5、0)、

          在例1之后,順便指出,一次函數(shù)y=kx+b的圖象,習(xí)慣上也稱為直線) y=kx+b

          結(jié)合例1中的兩個(gè)一次函數(shù)的圖象,就可以得到與正比例函數(shù)類似的關(guān)于一次函數(shù)的兩條性質(zhì)。

          對(duì)于一次函數(shù)的性質(zhì),也可以從一次函數(shù)的解析式分析得出,這與正比例函數(shù)差不多。

          課堂練習(xí):

          教科書13、5節(jié)第一個(gè)練習(xí)第l—2題,在做這兩道練習(xí)時(shí),可結(jié)合實(shí)例進(jìn)一步說明正比例函數(shù)與一次函數(shù)的有關(guān)性質(zhì)。

          課堂小結(jié):

          1、正比例函數(shù)y=kx圖象的畫法:過原點(diǎn)與點(diǎn)(1,k)的直線即所求圖象、

          2。一次函數(shù)y=kx+b圖象的畫法:在y軸上取點(diǎn)(0,6),在x軸上取點(diǎn),0),過這兩點(diǎn)的直線即所求圖象。

          3、正比例函數(shù)y=kx與一次函數(shù)y=kx+b的性質(zhì)(由學(xué)生自行歸納)、

          四、課外作業(yè)

          1、教科書習(xí)題13、5a組第l一3題、

          2、選作教科書習(xí)題13、5b組第1題、

          一次函數(shù)的圖象和性質(zhì)相關(guān)文章:

          多邊形的內(nèi)角和

          相似三角形

          一元二次方程根與系數(shù)關(guān)系

          正方形

          三角形的中位線

          一元二次方程

          探索多邊形內(nèi)角和

          確定一次函數(shù)的表達(dá)式

        八年級(jí)數(shù)學(xué)教案13

          教學(xué)目標(biāo):

          1. 掌握三角形內(nèi)角和定理及其推論;

          2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;

          3.通過對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問題。

          4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)

          5. 通過對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。

          教學(xué)重點(diǎn):

          三角形內(nèi)角和定理及其推論。

          教學(xué)難點(diǎn):

          三角形內(nèi)角和定理的證明

          教學(xué)用具:

          直尺、微機(jī)

          教學(xué)方法:

          互動(dòng)式,談話法

          教學(xué)過程:

          1、創(chuàng)設(shè)情境,自然引入

          把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。

          問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?

          問題2 你能用幾何推理來論證得到的關(guān)系嗎?

          對(duì)于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書課題)

          新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。

          2、設(shè)問質(zhì)疑,探究嘗試

          (1)求證:三角形三個(gè)內(nèi)角的和等于

          讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來,再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個(gè)問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。

          問題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)

          什么角?問題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?

          (把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)

          問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

          其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問題3學(xué)生經(jīng)過思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。

          (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

          學(xué)生回答后,電腦顯示圖表。

          (3)三角形中三個(gè)內(nèi)角之和為定值

          ,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?

          問題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?

          問題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?

          其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。

          這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。

          3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論

          引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程

        八年級(jí)數(shù)學(xué)教案14

          教學(xué)目標(biāo)

          1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法.

          2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題

          教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用

          教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用

          一.引

          小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?

          二.探

          閱讀教材P44至P45

          利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:

          (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?

          (2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?

          (3)你能說出你的做法及其道理嗎?

          (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

          (5)你還能找出其他方法嗎?

          從探究中得到:

          平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

          平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。

          證一證

          平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。

          證明:(畫出圖形)

          平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。

        八年級(jí)數(shù)學(xué)教案15

          《正方形》教學(xué)設(shè)計(jì)

          教學(xué)內(nèi)容分析:

          ⑴學(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。

         、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對(duì)正方形的研究。

         、菍(duì)本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識(shí)的聯(lián)系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識(shí),進(jìn)一步發(fā)展學(xué)生的推理能力。

          學(xué)生分析

         、艑W(xué)生在小學(xué)初步認(rèn)識(shí)了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識(shí)基礎(chǔ)。

         、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對(duì)于證明,學(xué)生的思維能力還不成熟,有待于提高。

          教學(xué)目標(biāo):

         、胖R(shí)與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會(huì)利用性質(zhì)與判定進(jìn)行簡(jiǎn)單的說理。

          ⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運(yùn)用提高學(xué)生的推理能力。

         、乔楦袘B(tài)度與價(jià)值觀:在學(xué)習(xí)中體會(huì)正方形的完美性,通過活動(dòng)獲得成功的喜悅與自信。

          重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡(jiǎn)單的推理。

          難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能

          教學(xué)方法:類比與探究

          教具準(zhǔn)備:可以活動(dòng)的四邊形模型。

          一、教學(xué)分析

          (一)教學(xué)內(nèi)容分析

          1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》九年級(jí)上冊(cè)(人民教育出版社)

          2.本課教學(xué)內(nèi)容的地位、作用,知識(shí)的前后聯(lián)系

          《中心對(duì)稱圖形》是新人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對(duì)稱和軸對(duì)稱圖形”、“旋轉(zhuǎn)和中心對(duì)稱”后的一種對(duì)稱圖形,因此涉及歸納、類比等思想方法,對(duì)激發(fā)學(xué)生探索精神和創(chuàng)新意識(shí)等方面都有重要意義。

          3.本課教學(xué)內(nèi)容的特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn)

          本節(jié)課主要介紹中心對(duì)稱圖形的概念、中心對(duì)稱圖形的識(shí)別、中心對(duì)稱圖形與軸對(duì)稱圖形與中心對(duì)稱的比較、中心對(duì)稱圖形的性質(zhì)。為使學(xué)生感受、理解知識(shí)的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對(duì)稱圖形引出中心對(duì)稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實(shí)驗(yàn)、歸納、類比等方法探究中心對(duì)稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對(duì)中心對(duì)稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動(dòng)過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識(shí)的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。

          (二)教學(xué)對(duì)象分析

          1.學(xué)生所在地區(qū)、學(xué)校及班級(jí)的特色

          我授課的班級(jí)是西安市閻良區(qū)振興中學(xué)九年級(jí)一班,作為九年級(jí)的學(xué)生,在圖形的對(duì)稱方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀察、猜想、實(shí)驗(yàn)、歸納、類比等研究圖形對(duì)稱變換的能力;班級(jí)學(xué)生具有個(gè)性活潑,思維活躍,對(duì)各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動(dòng),學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個(gè)體差異較大,并且班級(jí)中已出現(xiàn)分化現(xiàn)象。

          2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn)

          班級(jí)學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個(gè)人見解并且具有一定的合作交流、共同探討的意識(shí)與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強(qiáng)學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂趣。

          教學(xué)過程

          一:復(fù)習(xí)鞏固,建立聯(lián)系。

          【教師活動(dòng)

          問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?

         、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。

          【學(xué)生活動(dòng)

          學(xué)生回憶,并舉手回答,對(duì)于填空題,讓更多的學(xué)生參與,說出更多的答案。

          【教師活動(dòng)

          評(píng)析學(xué)生的結(jié)果,給予表揚(yáng)。

          總結(jié)性質(zhì)從邊角對(duì)角線考慮,在填空時(shí)也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。

          演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。

          二:動(dòng)手操作,探索發(fā)現(xiàn)。

          活動(dòng)一:拿出一張矩形紙片,拉起一角,使其寬AB落在長(zhǎng)AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?

          【學(xué)生活動(dòng)

          學(xué)生拿出自備矩形紙片,動(dòng)手操作,不難發(fā)現(xiàn)它是正方形。

          設(shè)置問題:①什么是正方形?

          觀察發(fā)現(xiàn),從活動(dòng)中體會(huì)。

          【教師活動(dòng)】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。

          【學(xué)生活動(dòng)】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。

          設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?

          【學(xué)生活動(dòng)】

          小組討論,分組回答。

          【教師活動(dòng)】

          總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個(gè)角是直角)的菱形是正方形。

          設(shè)置問題③正方形有那些性質(zhì)?

          【學(xué)生活動(dòng)】

          小組討論,舉手搶答。

          【教師活動(dòng)

          表揚(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對(duì)角線平分一組對(duì)角

          活動(dòng)二:拿出活動(dòng)一得到的正方形折一折,正方形是軸對(duì)稱圖形嗎?有幾條對(duì)稱軸?

          學(xué)生活動(dòng)

          折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對(duì)稱圖形。

          教師活動(dòng)

          演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號(hào)內(nèi)容,出示一下問題:你還可以怎樣填空?

          ()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。

          學(xué)生活動(dòng)

          小組充分交流,表達(dá)不同的意見。

          教師活動(dòng)

          評(píng)析活動(dòng),總結(jié)發(fā)現(xiàn):

          一組鄰邊相等的矩形是正方形,對(duì)角線互相平分的矩形是正方形;

          有一個(gè)角是直角的菱形是正方形,對(duì)角線相等的菱形是正方形,;

          有一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形,對(duì)角線相等且互相平分的平行四邊形是正方形;

          四邊相等且有一角是直角的四邊形是正方形,對(duì)角線相等且互相垂直平分的四邊形是正方形。

          以上是正方形的判定方法。

          正方形是一個(gè)多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?

          學(xué)生交流,感受正方形

          三,應(yīng)用體驗(yàn),推理證明。

          出示例一:正方形ABCD的兩條對(duì)角線AC,BD交與O,AB長(zhǎng)4cm,求AC,AO長(zhǎng),及的度數(shù)。

          方法一解:∵四邊形ABCD是正方形

          ∴∠ABC=90°(正方形的四個(gè)角是直角)

          BC=AB=4cm(正方形的四條邊相等)

          ∴=45°(等腰直角三角形的底角是45°)

          ∴利用勾股定理可知,AC===4cm

          ∵AO=AC(正方形的對(duì)角線互相平分)

          ∴AO=×4=2cm

          方法二:證明△AOB是等腰直角三角形,即可得證。

          學(xué)生活動(dòng)

          獨(dú)立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板上,共同交流。

          教師活動(dòng)

          總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評(píng)析解題步驟,表揚(yáng)突出學(xué)生。

          出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?

          學(xué)生活動(dòng)

          小組交流,分析題意,整理思路,指名口答。

          教師活動(dòng)

          說明思路,從已知出發(fā)或者從已有的判定加以選擇。

          四,歸納新知,梳理知識(shí)。

          這一節(jié)課你有什么收獲?

          學(xué)生舉手談?wù)撟约旱氖斋@。

          請(qǐng)把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。

          發(fā)表評(píng)論

          教學(xué)目標(biāo):

          情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。

          能力目標(biāo):能利用等腰梯形的性質(zhì)解簡(jiǎn)單的幾何計(jì)算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

          認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

          教學(xué)重點(diǎn)、難點(diǎn)

          重點(diǎn):等腰梯形性質(zhì)的探索;

          難點(diǎn):梯形中輔助線的添加。

          教學(xué)課件:PowerPoint演示文稿

          教學(xué)方法:?jiǎn)l(fā)法、

          學(xué)習(xí)方法:討論法、合作法、練習(xí)法

          教學(xué)過程:

          (一)導(dǎo)入

          1、出示圖片,說出每輛汽車車窗形狀(投影)

          2、板書課題:5梯形

          3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

          結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對(duì)邊平行另以組對(duì)邊不平行的四邊形是梯形。

          5、指出圖形中各部位的名稱:上底、下底、腰、高、對(duì)角線。(投影)

          6、特殊梯形的分類:(投影)

          (二)等腰梯形性質(zhì)的探究

          【探究性質(zhì)一】

          思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

          猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

          如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

          想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

          等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個(gè)內(nèi)角相等。

          【操練】

         。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

         。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)

          【探究性質(zhì)二】

          如果連接等腰梯形的兩條對(duì)角線,圖中有哪幾對(duì)全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

          如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

          等腰梯形性質(zhì):等腰梯形的兩條對(duì)角線相等。

          【探究性質(zhì)三】

          問題一:延長(zhǎng)等腰梯形的兩腰,哪些三角形是軸對(duì)稱圖形?為什么?對(duì)稱軸呢?(學(xué)生操作、作答)

          問題二:等腰梯是否軸對(duì)稱圖形?為什么?對(duì)稱軸是什么?(重點(diǎn)討論)

          等腰梯形性質(zhì):同以底上的兩個(gè)內(nèi)角相等,對(duì)角線相等

         。ㄈ┵|(zhì)疑反思、小結(jié)

          讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

          學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對(duì)角線、對(duì)稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

        【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

        八年級(jí)數(shù)學(xué)教案11-13

        八年級(jí)數(shù)學(xué)教案12-26

        八年級(jí)上冊(cè)數(shù)學(xué)教案07-26

        八年級(jí)上冊(cè)數(shù)學(xué)教案12-23

        八年級(jí)數(shù)學(xué)教案(15篇)12-29

        八年級(jí)數(shù)學(xué)教案15篇12-22

        八年級(jí)數(shù)學(xué)教案變化的魚06-11

        八年級(jí)上冊(cè)數(shù)學(xué)教案人教版07-26

        最新人教版八年級(jí)數(shù)學(xué)教案08-26

        八年級(jí)上冊(cè)數(shù)學(xué)教案北師大版07-26

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>