簡(jiǎn)單的線性規(guī)劃問(wèn)題一課的教學(xué)反思
關(guān)于簡(jiǎn)單的線性規(guī)劃問(wèn)題一課的教學(xué)反思
澄邁中學(xué) 高一數(shù)學(xué)
一 教學(xué)內(nèi)容分析:
本節(jié)內(nèi)容在教材中有著重要的地位與作用,線性規(guī)劃是利用數(shù)學(xué)為工具來(lái)研究一定的人、財(cái)、物、時(shí)、空等資源在一定的條件下,如何精打細(xì)算巧安排,用最少的資源,取得最大的經(jīng)濟(jì)效益,這一部分內(nèi)容體現(xiàn)了數(shù)學(xué)的工具性、應(yīng)用性,同時(shí)滲透了化歸,數(shù)形結(jié)合的數(shù)學(xué)思維和解決實(shí)際問(wèn)題的`一種重要的解題方法——數(shù)學(xué)建模法。
二 學(xué)生學(xué)習(xí)情況分析:
把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并結(jié)合出解答是本節(jié)的重點(diǎn)和難點(diǎn),對(duì)許多學(xué)生來(lái)說(shuō),解數(shù)學(xué)應(yīng)用題的最常見(jiàn)的困難是不會(huì)持實(shí)際問(wèn)題轉(zhuǎn)化或數(shù)學(xué)問(wèn)題,即不會(huì)建模,對(duì)學(xué)生而言,解決應(yīng)用問(wèn)題的障礙主要有三類(lèi):①不能正確理解題意思,弄清各元素之間的關(guān)系;②不能弄清問(wèn)題的主次關(guān)系,因而抓不住問(wèn)題的本質(zhì),無(wú)法建立數(shù)學(xué)模型;③孤立考慮單個(gè)問(wèn)題情境,不能多聯(lián)想。
三 設(shè)計(jì)思想:
注意學(xué)生的探究過(guò)程,讓學(xué)生體驗(yàn)探究問(wèn)題的成就感,一切以學(xué)生的探究活動(dòng)為主,以問(wèn)題是驅(qū)動(dòng),激發(fā)學(xué)生學(xué)習(xí)樂(lè)趣。
四 教學(xué)目標(biāo):
1、使學(xué)生了解線性規(guī)劃的意義以及約束條件、目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等基本概念;了解線性規(guī)劃問(wèn)題的圖解法,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
2、通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力等。滲透集合,化歸,數(shù)形結(jié)合的數(shù)學(xué)思想,提問(wèn)“建!焙徒鉀Q實(shí)際問(wèn)題的能力。
五 教學(xué)重點(diǎn)和難點(diǎn):
教學(xué)重點(diǎn):求線性目標(biāo)函數(shù)的最值問(wèn)題,培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識(shí),即線性規(guī)劃在實(shí)際生活中的應(yīng)用。
教學(xué)難點(diǎn):把實(shí)際問(wèn)題轉(zhuǎn)化為線性規(guī)劃問(wèn)題,并結(jié)合出解答。
六 教學(xué)過(guò)程:
。ㄒ唬﹩(wèn)題引入
某工廠用A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一會(huì)一件甲產(chǎn)品使用4個(gè)A配件耗時(shí)1個(gè)小時(shí),每生產(chǎn)一件乙產(chǎn)品使用4個(gè)B配件耗時(shí)2小時(shí),該廠每天最多可以配件廠獲得16個(gè)A配件和12個(gè)B配件,按每天工作8小時(shí)計(jì)算,該廠所有可能的月生產(chǎn)安排是什么?由學(xué)生列出不等關(guān)系,并畫(huà)出平面區(qū)域,由此引入新課。
。ǘ﹩(wèn)題深入,推進(jìn)新課
、僖I(lǐng)學(xué)生自主探索引入問(wèn)題中的實(shí)際問(wèn)題,怎樣安排才有意義?
②若生產(chǎn)一件甲產(chǎn)品獲利2萬(wàn)元,生產(chǎn)一件乙產(chǎn)品獲利3萬(wàn)元,采用哪種生產(chǎn)安排利潤(rùn)最大?
設(shè)計(jì)意圖:
由實(shí)際問(wèn)題出發(fā)激發(fā)學(xué)生學(xué)習(xí)興趣,在探究過(guò)程中,看似簡(jiǎn)單的問(wèn)題,學(xué)生容易抓不住問(wèn)題的主干,需要適時(shí)的引導(dǎo)。
(三)揭示必本質(zhì) 深化認(rèn)識(shí)
提出問(wèn)題:
、 上述探索的問(wèn)題中,Z的幾何意義是什么?結(jié)合圖形說(shuō)明
②結(jié)合以上探究,理解什么是目標(biāo)函數(shù)?線性目標(biāo)函數(shù)?什么是線性規(guī)劃?弄清什么是可行域解?可行域?最優(yōu)解?
、勰隳芨鶕(jù)以上探究總結(jié)出解決線性規(guī)劃問(wèn)題的一般步驟嗎?
(四)應(yīng)用示例
【簡(jiǎn)單的線性規(guī)劃問(wèn)題一課的教學(xué)反思】相關(guān)文章:
《簡(jiǎn)單線性規(guī)劃問(wèn)題》教學(xué)反思06-17
簡(jiǎn)單的線性規(guī)劃問(wèn)題教學(xué)反思三篇06-25
簡(jiǎn)單的線性規(guī)劃問(wèn)題教學(xué)反思(通用3篇)04-04
簡(jiǎn)單的線性規(guī)劃問(wèn)題教學(xué)反思范文(通用3篇)04-04
簡(jiǎn)單的線性規(guī)劃問(wèn)題檢測(cè)試題08-14
簡(jiǎn)單的線性規(guī)劃02-28
《簡(jiǎn)單的線性規(guī)劃》教學(xué)設(shè)計(jì)范文04-11