數(shù)學教學除法的反思
學生初步學習除數(shù)是兩位數(shù)的筆算除法,用四舍五入把除數(shù)看作和它接近的整十數(shù)進行試商后,在練習中發(fā)現(xiàn)學生試商時困難較大,于是我決定給學生補充一點商9和5的小竅門,具體操如下:
一、筆算下面各題,做完后仔細觀察,看看你有什么新發(fā)現(xiàn)?
423÷47219÷22317÷35589÷59516÷53
筆算豎式如下:
99999
4742322219353175958953516
423198315531477
02125839
(3)學生交流發(fā)現(xiàn)了什么?
生1:商都是9
生2:被除數(shù)都是三位數(shù),除數(shù)都是兩位數(shù),商都是一位數(shù)。
生3:被除數(shù)的前兩位都不夠除。
生4:被除數(shù)的最高位和除數(shù)的最高位數(shù)相同。
師:大家發(fā)現(xiàn)了這么多共同點?那這些被除數(shù)與除數(shù)都不一樣,為什么商卻都是9?這里是不是有什么機密讓我們去找一找?
學生先是一陣沉默,漸漸有學生舉手了。
生1:我知道他們的被除數(shù)了除數(shù)的最高位數(shù)一樣,商一定是9。
這名權威學生一言其他學生不再做聲。
師:是樣的嗎?怎樣才知道對不對?
生:我們每人動手舉一個例子,看是不是他說的那樣。
學生馬上動起手來,只聽有的學生說對,有的學生說不對?我讓認為不對學生把自己的例子說出來讓大家看看問題出在哪。
生:800÷80396÷39它們的商9小,應商10。
師:對呀。用剛才那位學生說的舉出的例子說明不了問題。
生:不對,我舉得第二位數(shù)字比被除數(shù)的第二位數(shù)字大,也就是前兩位不夠除,商必須商在個位上,而他的例子前兩位數(shù)夠除,所以不對。
生:我同意他說的,我們先做的那幾個式子除數(shù)比被除數(shù)的前兩位數(shù)大,商在個位上。
師:看來,這一點很重要,那我們重新來驗證。
學生又一次沉津在規(guī)律地驗證中,我也準備在這里把商9的規(guī)律來個小結,進行下一環(huán)節(jié)?蓪W生并不想放過這個問題,只見又有幾名學生舉手想表達什么,我只好先把自己的.想法放一放,讓他們先來:
生:我覺得還是不行。
聽這話我當時也為之一震,不會吧,課前我還舉例子驗證過,問題會出在哪?還是先聽聽學生是怎么說的。
生(接著說):我舉得例子是312÷39,商9大應商8,
生2(迫不及待地說):我的也是商9大應商8,我的例子是512÷57。
還沒等我回過神,一個學生就高高舉起手,嘴里說:“我,我,我知道問題在那!
生3:我們先做的那幾個式子和的現(xiàn)在的式子,除數(shù)和被除數(shù)的第二位數(shù)相差不超過5,所以商9,而他們兩個舉的例子第二位上的數(shù)相差超過了5,就只能商8。
學生都在重新審視這個問題時,我也迅速對黑板上所有的式進行了排查,還真是這名學生所說,我笑了,說:“對于剛才的探討過程你想說什么?”
生:我知道什么情況下商9,商9必需符合(1)被除數(shù)與除數(shù)最高位上的數(shù)相同;(2)除數(shù)比被除的前兩位數(shù)大,并且左起第二位上的數(shù)字相差不超過5。
生:我還知道被除數(shù)與除數(shù)最高位上的數(shù)相同;并且當除數(shù)比被除的前兩位數(shù)大,當左起第二位上的數(shù)字相差超過5時就商8。
……
[學生從發(fā)現(xiàn)問題——驗證——再發(fā)現(xiàn)問題——再驗證——又發(fā)現(xiàn)問題還不完善到重新審視問題,終于獲得什么情況下商9的知識。而且還讓我也意外的收獲到商8的情況。在這個過程中學生的實話實說,雖出乎意料,但我并沒有不知所措,而是明知山有虎,偏向虎山行,結果精彩的事實說明學生的潛能是無限的。學生們親身經(jīng)歷探索數(shù)學奧秘的過程,感受到了探索和發(fā)現(xiàn)的東趣,獲得了成功的體驗。同時也讓我認識自己在備課上不足:備課上沒有盡心,表現(xiàn)在對知識探究的完善上,如果本節(jié)課不是學生的執(zhí)著探究和驗證,我是不會想到商8這種情況。]
二、學生自主探究商5的規(guī)律
做一做,想一想,你發(fā)現(xiàn)了什么?
8643522117341789648378391
有了商9規(guī)律的探究,這一次學生沒有那么急于去說,而自己不動生色地在“觀察——發(fā)現(xiàn)——驗證”中,把符合商5的條件總結好了,才舉手和大家交流自己獲得的知識。
反思:
在本課時的教學活動中,面對商9的“竅門”,不是告訴學生商9的條件,然后讓他們去死記、重復練習,而是引導學生主動探索研究,以“做”而非“聽”“看”的方式介入學習活動。在規(guī)律的探索中,給學生充分的活動時間,確保每一名學生都有探索的機會。學生探索算法時,我充分做好旁觀者的主導角色,適時適度的指導參與學生的探索活動。學生通過自己的活動找到了規(guī)律,得到了答案,這時,學生既有交流的內容,也有交流的需要。
【數(shù)學教學除法的反思】相關文章:
筆算除法的數(shù)學教學反思02-23
數(shù)學筆算除法教學反思10-20
乘法與除法的數(shù)學教學反思10-23