- 相關(guān)推薦
人教版五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思(通用10篇)
作為一名人民老師,我們要有一流的教學能力,借助教學反思我們可以快速提升自己的教學能力,那么你有了解過教學反思嗎?下面是小編整理的人教版五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思,希望能夠幫助到大家。
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 1
簡單的內(nèi)容中蘊藏著復雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學生在學因數(shù)時,對于求一個數(shù)的因數(shù),及理解一個數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個數(shù)的因數(shù)的個數(shù)是有限的,感覺很清楚,明白。在學倍數(shù)時,對求一個數(shù)的倍數(shù)及理解一個數(shù)的倍數(shù)中最小的是它本身,沒有最大的.倍數(shù)也認為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習不少學生開始猶豫、混淆。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學生判斷為對。練習中:18是的倍數(shù),個別學生選擇了18、36、54……針對這種情況,我調(diào)整了練習,組織學生研究了以下幾個問題:
1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。
2、觀察比較,會打消列問題:一個數(shù)的因數(shù)和它本身的關(guān)系,
3、為什么一個數(shù)的因數(shù)的個數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。
通過對這幾個問題的討論,多數(shù)學生較好的區(qū)分了一個數(shù)的因數(shù)和倍數(shù)
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 2
教學《倍數(shù)與因數(shù)》,這是一個非常枯燥的課題,但我巧妙地運用課文中的情景圖與學生的生活實際聯(lián)系,通過水果店各種水果的單價所顯示的數(shù)進行分類,得出自然數(shù)、整數(shù)、小數(shù)、分數(shù)和負數(shù),使學生體會生活中各種不同的數(shù)。為了讓學生理解倍數(shù)與因數(shù)的含意,教學過程中,我立足體現(xiàn)一個“實”字,讓學生從算式中找出能整除的.算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過舉例去驗證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識的規(guī)律。學生在學習中實實在在經(jīng)歷了一個探究的過程。“動腦筋出教室”這一游戲的設(shè)計,學生在積極參與探討、質(zhì)疑、創(chuàng)造的教學活動,既鞏固了知識,又享受了數(shù)學思維的快樂。
在授課時,我體驗到了學生的快樂。當學生用自己的學號說整除、因數(shù)、倍數(shù)之間的關(guān)系時,由于像順口溜,很有趣。每個學生都很感興趣,說得很努力。原來,數(shù)學也很有趣……
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 3
不知不覺,我們又進行了第二單元的學習。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。
1、以往認識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù)。現(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
2、以往數(shù)學教材中,概念教學的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的`倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分數(shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學習,改變了概念多而集中,抽象程度過高的現(xiàn)象。
3、以往求最大公約數(shù),最小公倍數(shù)時,采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵方法多樣化,不把它作為正式的內(nèi)容教學,而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學生的思維差異。
可見,編者為體現(xiàn)新課標精神對本部分內(nèi)容作了精心的調(diào)整,煞費苦心,可是學完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學習內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強。知道了什么是因數(shù)和倍數(shù),也會找一個數(shù)的因數(shù)和倍數(shù)了,那么就應該從找因數(shù)和個數(shù)問題上學習質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學習內(nèi)容設(shè)計較好,開門見山讓學生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學習?蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 4
這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學設(shè)計上的反思和一些初淺的想法。
本單元內(nèi)容在編排上與老教材有較大的差異,比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學化定義,降低學生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學重點是求一個數(shù)的因數(shù),在學生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學例題“找出18的因數(shù)”時,我先放手讓學生自己找,學生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學習活動環(huán)節(jié)中,我留給了學生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標。特別是用除法找因數(shù)的學生,正是因為他們意識到了因數(shù)與倍數(shù)之間的整除關(guān)系的本質(zhì),才會想到用除法來解決問題,我也不由得佩服這些孩子對知識的遷移能力。在這個環(huán)節(jié)的處理上,教材的本意是先由教師提出“想一想,幾和幾相乘得18?”引導學生從因數(shù)的概念,用乘法來找因數(shù),而我考慮到本班孩子的學情(絕大多數(shù)學生能夠運用所學知識,找到求因數(shù)的方法),如教師一開始就引導學生:想幾和幾相乘,勢必會造成先入為主,妨礙學生創(chuàng)造性的思維活動?用已有的經(jīng)驗自主建構(gòu)新知是提高學生學習能力的.有效途徑,讓學生獨立思考、自主探索、促思(促進學生思維發(fā)展)、提能(提高學習能力)是我的教學策略主要內(nèi)容。至于這兩種方法孰重孰輕,的確難以定論。實際上,對于數(shù)字較小的數(shù)(口訣表內(nèi)的),用乘法來求因數(shù)還是比較容易,但是超出口訣表范圍的數(shù)用除法則更能顯示出它的優(yōu)勢,如求54的因數(shù)有哪些?學生要直接找出2和幾相乘得54,3和幾相乘得54,4和幾相乘得54,顯然加大了思維難度,如用除法不是更簡單直接一些嗎?學生的學習潛力是巨大的,教師是學生學習的引領(lǐng)者,因此教師的觀念和行為決定了學生的學習方式和結(jié)果,所以我認為教師要專研教材,充分利用教材,根據(jù)學生的實際情況,創(chuàng)造性地使用教材,為學生能力的發(fā)展提供素材和創(chuàng)造條件,真正實現(xiàn)學生學習的主體地位。
學生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數(shù)這也正是本課教學的難點。所以在學生交流匯報時,我結(jié)合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學生么隨著流程的進行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細節(jié)的教學,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節(jié),無論于學生、于課堂都是有利無弊的。
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 5
本節(jié)課是第二單元的第一課時,第二單元的教學內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進行教學,學生理解起來有一定的難度。加強對概念間相互關(guān)系的梳理,引導學生從本質(zhì)上理解概念,避免死記硬背。還有要引導學生用聯(lián)系的.觀點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。
今天這節(jié)課的教學的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學生感受到了數(shù)學與生活的聯(lián)系,初步學會從數(shù)學的角度去觀察事物、思考問題,激發(fā)對數(shù)學的興趣,又幫助學生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學習如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時,我還出示了一個除法的算式,讓學生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
找出一個數(shù)的因數(shù)要做到不重復和不遺漏,有些學生還不能找全,沒有掌握方法,我在今后的教學中還要注意對學困生的輔導。
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 6
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學語言給“整除”下定義,而是利用一個簡單的'實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學生初次接觸,對于學生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕捉生活與數(shù)學之間的聯(lián)系,幫助學生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學,我特別注意下面幾個細節(jié)來幫助學生理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓學生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。
二是要學生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復強調(diào),幫助孩子們認真理解辨析,所以學生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 7
《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復習課分以下四部分。
1、先從自然數(shù)入手,由自然數(shù)的概念讓學生總結(jié)自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學生把自然數(shù)分成奇數(shù)和偶數(shù)。點名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。
2、由偶數(shù)都是2的倍數(shù),復習2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學生邊復習老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結(jié)同時能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學生列舉乘法或除法算式,準確表達倍數(shù)與因數(shù)的關(guān)系,加深了學生對倍數(shù)與因數(shù)相互依存關(guān)系的理解和認識。
3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的.個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復習什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點名學生板演,教師巡視。指出錯誤。
4、帶領(lǐng)學生一起做練習,讓學生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習的設(shè)計不僅緊緊圍繞教學重點,而且注意到了練習的層次性、趣味性。
不足之處是我缺乏個性化的語言評價激活學生的情感,以后需多努力。
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 8
《因數(shù)和倍數(shù)》是人教版小學數(shù)學五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學后教”的模式,達到課堂的高效,在課堂中我做了以下的嘗試。
一、領(lǐng)會意圖,做到用教材教。
我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運用教材,讓每個細節(jié)都能發(fā)揮它應有的作用。如教材是利用了一個簡單的實物圖(2行飛機,每行6架;3行飛機,每行4架)引出了要研究的'兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。
但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機,你可以怎樣去排列?”學生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導?磥盱`活的運用教材,深放領(lǐng)會意圖,才能使教學更為輕松、高效!
二、模式運用,做到靈活自然。
模式是一種思想或是引子,面對不同的課型,我們應該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機械的。只要是能促進學生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應該想方設(shè)法,在不知不覺中體現(xiàn)出來。
如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計已經(jīng)能夠體現(xiàn)學生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學生進入到下面的學習中呢?而沒有必要非要設(shè)計出兩個“自學指導”讓學生按步就搬地往下走,而且讓學生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學例1再學例2的方式更容易讓學生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導更有效!
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 9
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。(1)新課標教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學習,而是反其道而行之,通過乘法算式來導入新知。(2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認真研讀教材,通過學習了解到以下信息:簽于學生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的'含義已經(jīng)有了比較清楚的認識,不出現(xiàn)整除的定義并不會對學生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
雖然學生已接觸過整除與有余數(shù)的除法,但我班學生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學時,補充了兩道判斷題請學生辨析:11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?
特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補了未進行整除概念教學的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進行了對比。
五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思 10
《因數(shù)和倍數(shù)》是一節(jié)概念課。教學時我首先以拼圖比賽為素材,讓學生動手操作快速把12個小正方形擺出一個長方形,再讓學生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學生已有的數(shù)學知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學,我覺得還是收到了預設(shè)的效果。
能不重復、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學難點。在教學中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學生說出方法后,為了讓學生探索出找一個因數(shù)的方法,我讓學生自己找一找15的因數(shù)有哪些。預設(shè)在匯報時,能借此解決如何有序、不重復、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強加給學生,而是以男女生比賽的形式,讓學生分別找16、18的所有因數(shù)。由于部分學生運用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復就是遺漏,這樣在比較中,不重復、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學生就能夠很好地接受并掌握。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學生自主探索、自主學習起到了很好的.促進作用。
最后引導學生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學生的情感,學生的思維不斷活躍起來。借助這一學習熱情讓學生自己探索找一個數(shù)的倍數(shù)的方法,學生學習興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。
由于本節(jié)課的容量比較大,練習題設(shè)計綜合性比較強,學生學得并不輕松,還存在一小部分學生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應努力改進教學手段,提高學困生的學習效率。
【五年級數(shù)學下冊因數(shù)和倍數(shù)教學反思】相關(guān)文章:
《因數(shù)和倍數(shù)》數(shù)學教學反思02-09
因數(shù)和倍數(shù)教學反思10-26
因數(shù)和倍數(shù)教學反思07-02
因數(shù)和倍數(shù)的教學反思02-14
倍數(shù)和因數(shù)的教學反思03-06
因數(shù)和倍數(shù)教學反思03-19