高一上學期數(shù)學教學工作計劃匯總五篇
日子在彈指一揮間就毫無聲息的流逝,前方等待著我們的是新的機遇和挑戰(zhàn),為此需要好好地寫一份計劃了。相信大家又在為寫計劃犯愁了?下面是小編幫大家整理的高一上學期數(shù)學教學工作計劃6篇,歡迎閱讀與收藏。
高一上學期數(shù)學教學工作計劃 篇1
一、指導思想:
使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。 3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。 6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(A版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現(xiàn)基礎性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。 2.問題性:以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。 3.科學性與思想性:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。 4.時代性與應用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設情境,加強數(shù)學活動,發(fā)展應用意識。
三、教法分析:
1. 選取與內(nèi)容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結(jié)論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
四、學情分析:
兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜
歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。 6、重視數(shù)學應用意識及應用能力的培養(yǎng)。
六、教學進度安排
高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高一數(shù)學組上學期教學工作計劃,希望大家喜歡。
高一上學期數(shù)學教學工作計劃 篇2
一.指導思想:
(1)隨著素質(zhì)教育的深入展開,《新課程標準》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設服務,必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現(xiàn)代化建設和進一步學習現(xiàn)代化科學技術所需要的數(shù)學知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數(shù)學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3) 根據(jù)數(shù)學的學科特點,加強學習目的性的教育,提高學生學習數(shù)學的自覺心和興趣,培養(yǎng)學生良好的學習習慣,實事求是的科學態(tài)度,頑強的學習毅力和獨立思考、探索創(chuàng)新的精神。
(4) 使學生具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,理解數(shù)學中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養(yǎng),又要滲透有關高考的思想方法,為三年的學習做好準備。
二.學情分析:
我校高一學生在數(shù)學學習上存在不少問題,這些問題主要表現(xiàn)在以下方面: 1、進一步學習條件不具備.高中數(shù)學與初中數(shù)學相比,知識的深度、
廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學習主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預習,對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內(nèi)容。不知道或不明確學習數(shù)學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、對自己學習數(shù)學的好差(或成敗)不了解,更不會去進行反思總結(jié),甚至根本不關心自己的成敗。
4、不能計劃學習行動,不會安排學習生活,更不能調(diào)節(jié)控制學習行為,不能隨時監(jiān)控每一步驟,對學習結(jié)果不會正確地自我評價。
5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學生數(shù)學學習興趣不濃厚,不具備應用數(shù)學的意識和能力,對數(shù)學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉(zhuǎn)化為數(shù)學問題的能力,缺乏準確運用數(shù)學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發(fā)散性等。所有這些都嚴重制約著學生數(shù)學成績的提高
三、教學目標與要求
必修1,主要涉及兩章內(nèi)容:
第一章:集合
通過本章學習,使學生感受到用集合表示數(shù)學內(nèi)容時的簡潔性、準確性,幫助學生學會用集合語言表示數(shù)學對象,為以后的學習奠定基礎。
1.了解集合的含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學思想方法;
6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數(shù)學知識的過程中,培養(yǎng)學生的思維能力。
第二章:函數(shù)的概念與基本初等函數(shù)Ⅰ
教學本章時應立足于現(xiàn)實生活從具體問題入手,以問題為背景,按照“問題情境—數(shù)學活動—意義建構(gòu)—數(shù)學理論—數(shù)學應用—回顧反思”的'順序結(jié)構(gòu),引導學生通過實驗、觀察、歸納、抽象、概括,數(shù)學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數(shù)是探索自然現(xiàn)象、社會現(xiàn)象基本規(guī)律的工具和語言,學會用函數(shù)的思想、變化的觀點分析和解決問題,達到培養(yǎng)學生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學習和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識表述、刻畫事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì),掌握對數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)時描述客觀世界變化規(guī)律的重要數(shù)學模型;
第三章:函數(shù)的應用
函數(shù)的應用是學習函數(shù)的一個重要方面,學生學習函數(shù)的應用,目的就
是利用已有的函數(shù)知識分析問題和解決問題.通過函數(shù)的應用,對完善函數(shù)思想,激發(fā)學生應用數(shù)學的意識,培養(yǎng)分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助。
1.了解函數(shù)與方程之間的關系;會用二分法求簡單方程的近似解;了解函數(shù)模型及其意義;
2.培養(yǎng)學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創(chuàng)新意識與探究能力、數(shù)學建模能力以及數(shù)學交流的能力。
必修4:主要涉及三章內(nèi)容:
第一章:三角函數(shù)
通過本章學習,有助于學生認識三角函數(shù)與實際生活的緊密聯(lián)系,以及三角函數(shù)在解決實際問題中的廣泛應用,從中感受數(shù)學的價值,學會用數(shù)學的思維方式觀察、分析現(xiàn)實世界、解決日常生活和其他學科學習中的問題,發(fā)展數(shù)學應用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關系及誘導公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章:平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數(shù)學和物理中的一些問題,發(fā)展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數(shù)量積的含義,會用平面向量的數(shù)量積解決有關角度和垂直的問題。
第三章:三角恒等變換
通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一上學期數(shù)學教學工作計劃 篇3
(一)教學目標
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結(jié)果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質(zhì)與內(nèi)涵,增強學生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價值觀
通過集合的并集與交集運算法則的發(fā)現(xiàn)、完善,增強學生運用數(shù)學知識和數(shù)學思想認識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學的應用價值.
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認識符號之間的區(qū)別與聯(lián)系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結(jié)合.
(四)教學過程
教學環(huán)節(jié) 教學內(nèi)容 師生互動 設計意圖
提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實數(shù)加法運算,探究集合能否進行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數(shù)},
B = {x | x是無理數(shù)},
C = {x | x是實數(shù)}.
師:兩數(shù)存在大小關系,兩集合存在包含、相等關系;實數(shù)能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合并構(gòu)成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規(guī)律用數(shù)學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運用數(shù)形結(jié)合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質(zhì) ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老師要求學生對性質(zhì)進行合理解釋. 培養(yǎng)學生數(shù)學思維能力.
形成概念 自學提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
②交集運算具有的運算性質(zhì)呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 并總結(jié)交集的性質(zhì).
生:①A∩A = A;
、贏∩ = ;
、跘∩B = B∩A;
、蹵∩ ,A∩ .
師:適當闡述上述性質(zhì).
自學輔導,合作交流,探究交集運算. 培養(yǎng)學生的自學能力,為終身發(fā)展培養(yǎng)基本素質(zhì).
應用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學開運動會,設
A = {x | x是新華中學高一年級參加百米賽跑的同學},
B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2 設平面內(nèi)直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系. 學生上臺板演,老師點評、總結(jié).
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2 解:平面內(nèi)直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學生的動手實踐能力.
歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質(zhì):①A∩A = A,A∪A = A,
、贏∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結(jié)
老師點評、闡述 歸納知識、構(gòu)建知識網(wǎng)絡
課后作業(yè) 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = – 1左側(cè).
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數(shù)軸上點x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數(shù)時,A∩B 與A∩C = 同時成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設A∩C = 相矛盾,故不適合.
當a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數(shù)a = –2.
例4 設集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.
當x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
高一上學期數(shù)學教學工作計劃 篇4
一 設計思想:
函數(shù)與方程是中學數(shù)學的重要內(nèi)容,是銜接初等數(shù)學與高等數(shù)學的紐帶,再加上函數(shù)與方程還是中學數(shù)學四大數(shù)學思想之一,是具體事例與抽象思想相結(jié)合的體現(xiàn),在教學過程中,我采用了自主探究教學法。通過教學情境的設置,讓學生由特殊到一般,有熟悉到陌生,讓學生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學生的成就感,激發(fā)學生的學習興趣和學習熱情。在現(xiàn)實生活中函數(shù)與方程都有著十分重要的應用,因此函數(shù)與方程在整個高中數(shù)學教學中占有非常重要的地位。
二 教學內(nèi)容分析:
本節(jié)課是《普通高中課程標準》的新增內(nèi)容之一,選自《普通高中課程標準實驗教課書數(shù)學I必修本(A版)》第94—95頁的第三章第一課時3。1。1方程的根與函數(shù)的的零點。
本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應的函數(shù)的情形。它既揭示了初中一元二次方程與相應的二次函數(shù)的內(nèi)在聯(lián)系,也引出對函數(shù)知識的總結(jié)拓展。之后將函數(shù)零點與方程的根的關系在利用二分法解方程中(3。1。2)加以應用,通過建立函數(shù)模型以及模型的求解(3。2)更全面地體現(xiàn)函數(shù)與方程的關系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。
總之,本節(jié)課滲透著重要的數(shù)學思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學好中學數(shù)學打下一個良好基礎,因此教好本節(jié)是至關重要的。
三 教學目標分析:
知識與技能:
1。結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;
2。結(jié)合零點定義的探究,掌握方程的實根與其相應函數(shù)零點之間的等價關系;
3。結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間 的方法
情感、態(tài)度與價值觀:
1。讓學生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;
2。培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣;
3。使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感
教學重點:函數(shù)零點與方程根之間的關系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。
教學難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。
四 教學準備
導學案,自主探究,合作學習,電子交互白板。
五 教學過程設計:略
六、探索研究(可根據(jù)時間和學生對知識的接受程度適當調(diào)整)
討論:請大家給方程的一個解的大約范圍,看誰找得范圍更。
[師生互動]
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發(fā)揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發(fā)學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。
生:分組討論,各抒己見。在探究學習中得到數(shù)學能力的提高
第五階段設計意圖:
一是為用二分法求方程的近似解做準備
二是小組探究合作學習培養(yǎng)學生的創(chuàng)新能力和探究意識,本組探究題目就是為了培養(yǎng)學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
七、課堂小結(jié):
零點概念
零點存在性的判斷
零點存在性定理的應用注意點:零點個數(shù)判斷以及方程根所在區(qū)間
八、鞏固練習(略)
小編為大家提供的高一上學期數(shù)學教學計劃格式,大家仔細閱讀了嗎?最后祝同學們學習進步。
高一上學期數(shù)學教學工作計劃 篇5
一、學生狀況分析
學生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
二、教材簡析
使用人教版《普通高中課程標準實驗教科書?數(shù)學(A版)》,教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關系,體現(xiàn)基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應用);必修2有四章(空間幾何體;點線平面間的位置關系;直線與方程;圓與方程)。
三、教學任務
本期授課內(nèi)容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學質(zhì)量目標
1、獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結(jié)論的本質(zhì),體會數(shù)學思想和方法。
2、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3、提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4、發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5、提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6、具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數(shù)學新課標精神,樹立新的教學理念,以“雙基”教學為主要內(nèi)容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數(shù)學能力都得到提高和發(fā)展。
分層推進措施
1、重視學生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學生,增強學生學習數(shù)學興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學活動、故事、提問、師生交流等方式激發(fā)學生學習興趣,注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力和解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié)(引入、探究、例析、反饋),針對不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學方法,把學生被動接受知識轉(zhuǎn)化主動學習知識。
6、重視數(shù)學應用意識及應用能力的培養(yǎng)。
【高一上學期數(shù)學教學工作計劃】相關文章:
高一上學期數(shù)學的教學反思07-14
高一上學期數(shù)學教學工作計劃10-17
高一上學期數(shù)學教學計劃03-29
高一上學期數(shù)學教學計劃06-27
高一上學期數(shù)學教學計劃04-30
高一上學期數(shù)學教學工作計劃范文01-21
高一上學期數(shù)學教學工作計劃范文04-01
高一上學期數(shù)學教學計劃教案06-14