《二次函數(shù)y=ax2+bx+c 的圖象》教學(xué)設(shè)計(jì)
教學(xué)目標(biāo):
1、使學(xué)生進(jìn)一步理解二次函數(shù)的基本性質(zhì);
2、滲透解析幾何,數(shù)形結(jié)合,函數(shù)等數(shù)學(xué)思想。培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題解決問(wèn)題,及邏輯思維的能力。
3、使學(xué)生參與教學(xué)過(guò)程,通過(guò)主體的積極思維,體驗(yàn)感悟數(shù)學(xué)。逐步建立數(shù)學(xué)的觀念,培養(yǎng)學(xué)生獨(dú)立地獲取知識(shí)的能力。
教學(xué)重點(diǎn):
初步理解數(shù)形結(jié)合的數(shù)學(xué)思想
教學(xué)難點(diǎn):
初步理解數(shù)形結(jié)合的數(shù)學(xué)思想
教學(xué)用具:
微機(jī)
教學(xué)方法:
探究式、小組合作學(xué)習(xí)
教學(xué)過(guò)程:
例1、已知:拋物線y=x2-(m2-1)x-2m2-2
⑴求證:無(wú)論m取什么實(shí)數(shù),拋物線與x軸一定有兩個(gè)交點(diǎn)
、苖取什么實(shí)數(shù)時(shí),兩交點(diǎn)間距離最短?是多少?
解:
△ =(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴拋物線與x軸有兩個(gè)交點(diǎn)
問(wèn)題:為什么說(shuō)當(dāng)△>0時(shí),拋物線y =ax2+bx+c與x軸有兩個(gè)交點(diǎn)。(能否從數(shù)和形兩方面說(shuō)明)
設(shè)計(jì)意圖:在課堂上創(chuàng)設(shè)讓學(xué)生說(shuō)數(shù)學(xué)的機(jī)會(huì),學(xué)會(huì)合作學(xué)習(xí),以達(dá)到①經(jīng)驗(yàn)共享,在思維的碰撞中共同提高。②學(xué)會(huì)合作,消除個(gè)人中心。③發(fā)現(xiàn)自我,提高參與度。④弘揚(yáng)個(gè)體的主體性,形成健康,豐富的個(gè)性。
數(shù):點(diǎn)在曲線上,點(diǎn)的坐標(biāo)滿足曲線的方程。反之,曲線方程的每一個(gè)實(shí)數(shù)解對(duì)應(yīng)的點(diǎn)都在曲線上。拋物線與x軸的交點(diǎn),既在拋物線上,又在x軸上。所以交點(diǎn)的坐標(biāo)既滿足拋物線的解析式,也滿足x軸的解析式。設(shè)交點(diǎn)坐標(biāo)為(x,y)
∴
這樣交點(diǎn)問(wèn)題就轉(zhuǎn)化成求這個(gè)二元二次方程組的解。代入y =0,消去y,轉(zhuǎn)化成ax2+bx+c=0這個(gè)一元二次方程求根問(wèn)題。根據(jù)以前學(xué)過(guò)的知識(shí),當(dāng)△>0時(shí), ax2+bx+c=0有兩個(gè)不相等的實(shí)根。∴y =ax2+bx+c
y =0
有兩個(gè)不等的實(shí)數(shù)解
∴拋物線與x軸交于兩個(gè)不同的點(diǎn)。
形:頂點(diǎn)在x軸上方,且開(kāi)口向下;蛘唔旤c(diǎn)在x軸下方,且開(kāi)口向上。
設(shè)計(jì)意圖:滲透解析幾何的基本思想
使學(xué)生掌握轉(zhuǎn)化思想使學(xué)生在解題過(guò)程當(dāng)中,感知數(shù)學(xué)的直觀性和形式化這二重性。掌握數(shù)形結(jié)合,分類討論的思想方法。逐步學(xué)會(huì)數(shù)學(xué)的思維。
轉(zhuǎn)化成代數(shù)語(yǔ)言為:
小結(jié):第一種方法,根據(jù)解析幾何的基本思想。將求曲線的交點(diǎn)問(wèn)題,轉(zhuǎn)化成求方程組的解的問(wèn)題。
第二種方法,借助于圖象思考問(wèn)題,比較直觀。發(fā)現(xiàn)規(guī)律后,再用數(shù)學(xué)的符號(hào)語(yǔ)言將其形式化。這既體現(xiàn)了數(shù)學(xué)中的數(shù)形結(jié)合的思想方法,也是探索解數(shù)學(xué)問(wèn)題的一般方法。
思考:試從數(shù)、形兩方面說(shuō)明拋物線與x軸的交點(diǎn)個(gè)數(shù)與判別 式的符號(hào)的關(guān)系。
設(shè)計(jì)意圖:數(shù)學(xué)學(xué)習(xí)是一個(gè)再創(chuàng)造的過(guò)程,不能等同于數(shù)學(xué)知識(shí)的匯集,而要讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的創(chuàng)造過(guò)程。使主體積極地參與到學(xué)習(xí)中去。以數(shù)學(xué)知識(shí)為載體,揭示出蘊(yùn)涵于其中的數(shù)學(xué)思想方法,逐步形成數(shù)學(xué)觀念。
、苖取什么實(shí)數(shù)時(shí),兩交點(diǎn)間距離最短?是多少?
解:設(shè)二次函數(shù)與x軸的兩交點(diǎn)為(x1,0),(x2,0)
解法㈠ 由⑴可知m為任何實(shí)數(shù)時(shí), 都有△>0
解①
∴ x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴當(dāng)m =0時(shí),兩交點(diǎn)最小距離為3
這里兩交點(diǎn)間距離是m的函數(shù)
設(shè)計(jì)意圖:培養(yǎng)學(xué)生的問(wèn)題意識(shí)。在解題過(guò)程當(dāng)中,發(fā)現(xiàn)問(wèn)題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),將其一般化,形式化,解決問(wèn)題,體會(huì)數(shù)學(xué)問(wèn)題解決的一般方法。培養(yǎng)學(xué)生獨(dú)立地獲取數(shù)學(xué)知識(shí)的'能力。滲透函數(shù)思想
問(wèn)題: 觀察本題兩交點(diǎn)間距離與判別式的值之間有何異同?具有一般的規(guī)律嗎?如何說(shuō)明。
設(shè)x1、x2 為ax2+bx+c =0的兩根
可以推出:
還可以理解為頂點(diǎn)到x軸距離最短。
設(shè)計(jì)意圖:在對(duì)比、分析中,明確概念,揭示知識(shí)間的聯(lián)系,幫助學(xué)生建立良好的認(rèn)知結(jié)構(gòu)。
小結(jié):觀察這道題的結(jié)論,我們猜測(cè)出規(guī)律,將其一般化,推導(dǎo)出這個(gè)公式,這是學(xué)習(xí)數(shù)學(xué)知識(shí)的一般方法。
解法㈡:用十字相乘法或求根公式法求根。
思考:一元二次方程與二次函數(shù)的關(guān)系。
思考:求m取什么實(shí)數(shù)時(shí),y =x2-(m2-1)x -2 m2-2被直線y =2所截得的線段最短?是多少?
練習(xí):
觀察函數(shù) 的圖象,回答:
。1)y>0時(shí),x的取值范圍如何?
。2)y=0時(shí),x取什么值?
。1)y<0時(shí),x的取值范圍如何?
小結(jié):數(shù)與形是數(shù)學(xué)中相互依賴的兩個(gè)方面。圖形比較直觀,可以啟發(fā)思路;而數(shù)學(xué)的嚴(yán)格證明也是必不可少的。直觀性和形式化是數(shù)學(xué)的兩重性。
探究活動(dòng)
探究問(wèn)題:
欣欣日用品零售商店,從某公司批發(fā)部每月按銷售合同以批發(fā)單價(jià)每把8元購(gòu)進(jìn)雨傘(數(shù)量至少為100把),欣欣商店根據(jù)銷售記錄,這批雨傘以零售單價(jià)每把為14元出售時(shí),月銷售量為100把。如果零售單價(jià)每降價(jià)0。1元 , 月銷售量就要增加5把。
(1) 欣欣日用品零售商店以零售單價(jià)14元出售時(shí),一個(gè)月的利潤(rùn)為多少元?
(2) 欣欣日用品零售商店為了擴(kuò)大銷售記錄,現(xiàn)實(shí)行降價(jià)銷售,問(wèn)分別降價(jià)0。2元、0。8元、1。2元、1。6元、2。4元、3元時(shí)的利潤(rùn)是多少?
(3) 欣欣日用品零售商店實(shí)行降價(jià)銷售后,問(wèn)降價(jià)多少元時(shí)利潤(rùn)最大?最大利潤(rùn)為多少元?
(4) 現(xiàn)在該公司的批發(fā)部為了再次擴(kuò)大這種雨傘的銷售量,給零售商制定如下優(yōu)惠措施:如果零售商每月從批發(fā)部購(gòu)進(jìn)雨傘的數(shù)量超過(guò)100把,其超過(guò)100把的部分每把按原價(jià)九五折(即百分之95)付費(fèi),但零售價(jià)每把不能低于10元。欣欣日用品零售商店應(yīng)將這種雨傘的零售單價(jià)定為每把多少元出售時(shí),才能使這種雨傘的月銷售利潤(rùn)最大?最大月銷售利潤(rùn)是多少元?(銷售利潤(rùn)=銷售款額—進(jìn)貨款額)
解:(1)(14—8) (元)
。2)638元、728元、748元、792元、792元、750元。
。3)設(shè)降價(jià) 元時(shí)利潤(rùn)最大,最大利潤(rùn)為 元
=
=
=
∴ 當(dāng) 時(shí), 有最大值
元
。4)設(shè)降價(jià) 元時(shí)利潤(rùn)最大,利潤(rùn)為 元
。ㄆ渲 )。
化簡(jiǎn),得 。
,
∴ 當(dāng) 時(shí), 有最大值。
∴ 。
【《二次函數(shù)y=ax2+bx+c 的圖象》教學(xué)設(shè)計(jì)】相關(guān)文章:
數(shù)學(xué)教案設(shè)計(jì):二次函數(shù)y=ax2+bx+c 的圖象06-13
二次函數(shù)y=ax2+bx+c的圖象相關(guān)練習(xí)題06-14
《二次函數(shù)的圖象和性質(zhì)》教學(xué)設(shè)計(jì)05-17
二次函數(shù)的圖象和性質(zhì)教學(xué)設(shè)計(jì)05-17
二次函數(shù)圖象教學(xué)反思01-03
余弦函數(shù)圖象教學(xué)設(shè)計(jì)05-17