高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)
一、函數(shù)的概念
在一個(gè)變化過(guò)程中,發(fā)生變化的量叫變量(數(shù)學(xué)中,變量為x,而y則隨x值的變化而變化),有些數(shù)值是不隨變量而改變的,我們稱它們?yōu)槌A俊?/p>
自變量(函數(shù)):一個(gè)與它量有關(guān)聯(lián)的變量,這一量中的任何一值都能在它量中找到對(duì)應(yīng)的固定值。
因變量(函數(shù)):隨著自變量的變化而變化,且自變量取唯一值時(shí),因變量(函數(shù))有且只有唯一值與其相對(duì)應(yīng)。
函數(shù)值:在y是x的函數(shù)中,x確定一個(gè)值,y就隨之確定一個(gè)值,當(dāng)x取a時(shí),y就隨之確定為b,b就叫做a的函數(shù)值。
二、高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)(精選5篇)
作為一名默默奉獻(xiàn)的教育工作者,總歸要編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是一個(gè)系統(tǒng)化規(guī)劃教學(xué)系統(tǒng)的過(guò)程。我們?cè)撛趺慈懡虒W(xué)設(shè)計(jì)呢?下面是小編收集整理的高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)(精選5篇),僅供參考,大家一起來(lái)看看吧。
高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)1
教學(xué)目標(biāo)
1、通過(guò)對(duì)冪函數(shù)概念的學(xué)習(xí)以及對(duì)冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗(yàn)數(shù)學(xué)概念的形成過(guò)程,培養(yǎng)學(xué)生的抽象概括能力。
2、使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運(yùn)用所學(xué)知識(shí)解決有關(guān)問(wèn)題,培養(yǎng)學(xué)生的靈活思維能力。
3、培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問(wèn)題中的作用。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):冪函數(shù)的性質(zhì)及運(yùn)用
難點(diǎn):冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過(guò)程
教學(xué)方法:
問(wèn)題探究法教具:多媒體
教學(xué)過(guò)程
一、創(chuàng)設(shè)情景,引入新課
問(wèn)題1:如果張紅購(gòu)買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購(gòu)買的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問(wèn)題2:如果正方形的邊長(zhǎng)為a,那么正方形的面積,這里S是a的函數(shù)。
問(wèn)題3:如果正方體的邊長(zhǎng)為a,那么正方體的體積,這里V是a的函數(shù)。
問(wèn)題4:如果正方形場(chǎng)地面積為S,那么正方形的邊長(zhǎng),這里a是S的函數(shù)。
問(wèn)題5:如果某人s內(nèi)騎車行進(jìn)了km,那么他騎車的速度,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個(gè)數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個(gè)函數(shù)解析式有什么共同點(diǎn)嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個(gè)具體代表,如果讓你給他們起一個(gè)名字的話,你將會(huì)給他們起個(gè)什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個(gè)角度)(引入新課,書(shū)寫課題)
二、新課講解
由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w,s=a2,a=s,v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如的函數(shù)稱為冪函數(shù)(powerfunction),其中是自變量,是常數(shù)。
1、冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念)結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別:對(duì)冪函數(shù)來(lái)說(shuō),底數(shù)是自變量,指數(shù)是常數(shù)對(duì)指數(shù)函數(shù)來(lái)說(shuō),指數(shù)是自變量,底數(shù)是常數(shù)例1判別下列函數(shù)中有幾個(gè)冪函數(shù)?
、賧=②y=2x2③y=x④y=x2+x⑤y=-x3⑥⑦⑧⑨(由學(xué)生獨(dú)立思考、回答)
2、冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對(duì)數(shù)函數(shù)研究了哪些內(nèi)容?
(學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)
3、冪函數(shù)的定義域是否與對(duì)數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù)不同,定義域并不完全相同,應(yīng)區(qū)別對(duì)待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時(shí),其表達(dá)式y(tǒng)=x0=1;定義域?yàn)?-∞,0)U(0,+∞),特別強(qiáng)調(diào),當(dāng)x為任何非零實(shí)數(shù)時(shí),函數(shù)的值均為1,圖象是從點(diǎn)(0,1)出發(fā),平行于x軸的兩條射線,但點(diǎn)(0,1)要除外。)
例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x
(學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)對(duì)照比較。引導(dǎo)學(xué)生具體問(wèn)題具體分析,并作簡(jiǎn)單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)
4、上述函數(shù)①y=x②y=③y=x④y=x的單調(diào)性如何?如何判斷?
(學(xué)生思考,引導(dǎo)作圖可得。并加上y=x和y=x-1圖象)接下來(lái),在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯(cuò)誤之處。教師利用幾何畫(huà)板演示。見(jiàn)后附圖1
讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點(diǎn)?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密性。)
教師總評(píng):冪函數(shù)的性質(zhì)
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過(guò)點(diǎn)(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過(guò)原點(diǎn),并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時(shí),圖象在y軸右方無(wú)限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無(wú)限地趨近x軸。
5、通過(guò)觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時(shí),這一類函數(shù)有哪種性質(zhì)?
學(xué)生思考,教師講評(píng):
(1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時(shí),函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。
(2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時(shí),函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習(xí)寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x②y=x③y=x。
例4簡(jiǎn)單應(yīng)用1:比較下列各組中兩個(gè)值的大小,并說(shuō)明理由:
、0.75,0.76;
②(-0.95),(-0.96);
、0.23,0.24;
、0.31,0.31
例5簡(jiǎn)單應(yīng)用2:冪函數(shù)y=(m-3m-3)x在區(qū)間上是減函數(shù),求m的值。
例6簡(jiǎn)單應(yīng)用2:
已知(a+1)<(3-2a),試求a的取值范圍。
課堂小結(jié)
今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?
1、冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別
2、常見(jiàn)冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
布置作業(yè):
課本p.732、3、4、思考5
高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)2
一、教材資料分析
函數(shù)是高中數(shù)學(xué)的重要資料,函數(shù)的表示法是“函數(shù)及其表示”這一節(jié)的主要資料之一。學(xué)習(xí)函數(shù)的表示法,不僅僅是研究函數(shù)本身和應(yīng)用函數(shù)解決實(shí)際問(wèn)題所必須涉及的問(wèn)題,也是加深對(duì)函數(shù)概念理解所必須的。同時(shí),基于高中階段所接觸的許多函數(shù)均可用幾種不一樣的方式表示,因而學(xué)習(xí)函數(shù)的表示也是領(lǐng)悟數(shù)學(xué)思想方法(如數(shù)形結(jié)合、化歸等)、學(xué)會(huì)根據(jù)問(wèn)題需要選擇表示方法的重要過(guò)程。
學(xué)生在學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù)之前,比較習(xí)慣于用解析式表示函數(shù),但這是對(duì)函數(shù)很不全面的認(rèn)識(shí)。在本節(jié)中,從引進(jìn)函數(shù)概念開(kāi)始,就比較注重函數(shù)的不一樣表示方法:解析法、圖象法、列表法。函數(shù)的不一樣表示法能豐富對(duì)函數(shù)的認(rèn)識(shí),幫忙理解抽象的函數(shù)概念。異常是在信息技術(shù)環(huán)境下,能夠使函數(shù)在數(shù)形結(jié)合上得到更充分的表現(xiàn),使學(xué)生更好地體會(huì)這一重要的數(shù)學(xué)思想方法。所以,在研究函數(shù)時(shí),應(yīng)充分發(fā)揮圖象直觀的作用;在研究圖象時(shí)要注意代數(shù)刻畫(huà),以求思考和表述的精確性。
二、教學(xué)目標(biāo)分析
根據(jù)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(實(shí)驗(yàn))和新課改的理念,我從知識(shí)、本事和情感三個(gè)方面制訂教學(xué)目標(biāo)。
1、明確函數(shù)的三種表示方法(圖象法、列表法、解析法),經(jīng)過(guò)具體的實(shí)例,了解簡(jiǎn)單的分段函數(shù)及其應(yīng)用。
2、經(jīng)過(guò)解決實(shí)際問(wèn)題的過(guò)程,在實(shí)際情境中能根據(jù)不一樣的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),發(fā)展學(xué)生思維本事。
3、經(jīng)過(guò)一些實(shí)際生活應(yīng)用,讓學(xué)生感受到學(xué)習(xí)函數(shù)表示的必要性;經(jīng)過(guò)函數(shù)的解析式與圖象的結(jié)合滲透數(shù)形結(jié)合思想。
三、教學(xué)問(wèn)題診斷分析
。1)初中已經(jīng)接觸過(guò)函數(shù)的三種表示法:解析法、列表法和圖象法、高中階段重點(diǎn)是讓學(xué)生在了解三種表示法各自優(yōu)點(diǎn)的基礎(chǔ)上,使學(xué)生會(huì)根據(jù)實(shí)際情境的需要選擇恰當(dāng)?shù)谋硎痉椒。所以,教學(xué)中應(yīng)當(dāng)多給出一些具體問(wèn)題,讓學(xué)生在比較、選擇函數(shù)模型表示方式的過(guò)程中,加深對(duì)函數(shù)概念的整體理解,而不再誤以為函數(shù)都是能夠?qū)懗鼋馕鍪降摹?/p>
。2)分段函數(shù)很多存在,但比較繁瑣。一方面,要加強(qiáng)用分段函數(shù)模型刻畫(huà)實(shí)際問(wèn)題的實(shí)踐,另一方面,還能夠經(jīng)過(guò)動(dòng)畫(huà)模擬,讓學(xué)生體驗(yàn)到,分段函數(shù)的問(wèn)題應(yīng)當(dāng)分段解決,然后再綜合。這也為下一步研究分段函數(shù)的單調(diào)性等性質(zhì)打下伏筆。
四、本節(jié)課的.教法特點(diǎn)以及預(yù)期效果分析
(一)本節(jié)課的教法特點(diǎn)
根據(jù)教學(xué)資料,結(jié)合學(xué)生的具體情景,我采用了學(xué)生自主探究和教師啟發(fā)引導(dǎo)相結(jié)合的教學(xué)方式。在整個(gè)的教學(xué)過(guò)程中讓學(xué)生盡可能地動(dòng)手、動(dòng)腦,調(diào)動(dòng)學(xué)生進(jìn)取性,充分地參與學(xué)習(xí)的全過(guò)程。倡導(dǎo)學(xué)生主動(dòng)參與、樂(lè)于探究、勤于動(dòng)手,逐步培養(yǎng)學(xué)生能夠利用函數(shù)來(lái)處理信息的本事。
(二)本節(jié)課預(yù)期效果
1、經(jīng)過(guò)具體的實(shí)例,讓學(xué)生體會(huì)函數(shù)三種表示法的優(yōu)、缺點(diǎn)。
創(chuàng)造問(wèn)題情景這種情景的創(chuàng)設(shè)以具體事例出發(fā),印象深刻。所以在引入時(shí)先從函數(shù)的三要素入手,強(qiáng)調(diào)要素之一對(duì)應(yīng)關(guān)系,然后給出三個(gè)具體實(shí)例:
。1)炮彈發(fā)射時(shí),距離地面的高度隨時(shí)間變化的情景;
(2)用圖表的形式給出臭氧層空洞的面積與時(shí)間的關(guān)系;
。3)恩格爾系數(shù)的變化情景。
指出每種對(duì)應(yīng)分別以怎樣的形式展現(xiàn)。引出函數(shù)的表示方法這一課題。因?yàn)槲覀冞@節(jié)課的重點(diǎn)是讓學(xué)生在實(shí)際情景中,會(huì)根據(jù)不一樣的需要選擇恰當(dāng)?shù)谋硎痉椒。?huì)選擇的前提是理解,這些完全靠學(xué)生的現(xiàn)實(shí)經(jīng)驗(yàn),讓學(xué)生自我去發(fā)現(xiàn)各自的優(yōu)劣。這為第一道例題打下基礎(chǔ)。
例1經(jīng)過(guò)具體例子,讓學(xué)生用三種不一樣的表示方法來(lái)表示的同一個(gè)函數(shù),進(jìn)一步理解函數(shù)概念。把問(wèn)題交給學(xué)生,學(xué)生獨(dú)立完成,并自我檢查發(fā)現(xiàn)問(wèn)題,加深學(xué)生對(duì)三種表示法的深刻理解。學(xué)生思考函數(shù)表示法的規(guī)定。注意本例的設(shè)問(wèn),此處“y=f(x)”有三種含義,它能夠是解析表達(dá)式,能夠是圖象,也能夠是對(duì)應(yīng)值表。
由于這個(gè)函數(shù)的圖象由一些離散的點(diǎn)組成,與以前學(xué)習(xí)過(guò)的一次函數(shù)、二次函數(shù)的圖象是連續(xù)的曲線不一樣。經(jīng)過(guò)本例,進(jìn)一步讓學(xué)生感受到,函數(shù)概念中的對(duì)應(yīng)關(guān)系、定義域、值域是一個(gè)整體、函數(shù)y=5x不一樣于函數(shù)y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續(xù)的)直線,而后者是5個(gè)離散的點(diǎn)。由此認(rèn)識(shí)到:“函數(shù)圖象既能夠是連續(xù)的曲線,也能夠是直線、折線、離散的點(diǎn),等等!辈⒚鞔_:如何確定一個(gè)圖形是否是函數(shù)圖象方法
2、讓學(xué)生會(huì)根據(jù)不一樣的實(shí)例選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù)
例2用表格法表示了函數(shù)。要“對(duì)這三位運(yùn)動(dòng)員的成績(jī)做一個(gè)分析”不太方便,所以需要改變函數(shù)表示的方法,選擇圖象法比較恰當(dāng)。教學(xué)中,先不必直接把圖象法告訴學(xué)生,能夠讓學(xué)生說(shuō)說(shuō)自我是如何分析的,選擇了什么樣的方法來(lái)表示這三個(gè)函數(shù)、經(jīng)過(guò)比較各種不一樣的表示方法,達(dá)成共識(shí):用圖象法比較好。培養(yǎng)學(xué)生根據(jù)實(shí)際需要選擇恰當(dāng)?shù)暮瘮?shù)表示法的本事。
學(xué)生經(jīng)過(guò)觀察、思考獲得結(jié)論、比如總體水平(朱啟南成績(jī)好)、變化趨勢(shì)(劉天佑的成績(jī)?cè)谥鸩教岣撸、與運(yùn)動(dòng)員的平均分的比較,等等。培養(yǎng)學(xué)生的觀察本事、獲取有用信息的本事。同時(shí)要求學(xué)生注意圖中的虛線不是函數(shù)圖象的組成部分,之所以用虛線連接散點(diǎn),主要是為了區(qū)分這三個(gè)函數(shù),直觀感受三個(gè)函數(shù)的圖象具有整體性,也便于分析成績(jī)情景,加以比較。
3、經(jīng)過(guò)具體的實(shí)例,了解分段函數(shù)及其表示
生活中有很多能夠用分段函數(shù)描述的實(shí)際問(wèn)題,如出租車的計(jì)費(fèi)、個(gè)人所得稅納稅稅額等等。經(jīng)過(guò)例3的教學(xué),讓學(xué)生了解分段函數(shù)及其表示。為了便于學(xué)生理解,給出了實(shí)際情景的模擬。能夠使函數(shù)在數(shù)與形兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生經(jīng)過(guò)函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法。
高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)3
學(xué)習(xí)內(nèi)容:
1、二次函數(shù)的概念;
2、二次函數(shù)的圖象;
3、二次函數(shù)的性質(zhì)。
學(xué)習(xí)要求:
1、理解二次函數(shù)的概念,會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)的圖象,理解二次函數(shù)與拋物線的有關(guān)概念
2、通過(guò)二次函數(shù)的圖象,理解并掌握二次函數(shù)的性質(zhì),會(huì)判斷二次函數(shù)的開(kāi)口方向;會(huì)求頂點(diǎn)坐標(biāo),會(huì)判頂點(diǎn)坐標(biāo),對(duì)稱軸方程;會(huì)判斷并求出最大值或最小值;會(huì)判斷增減性,等等。
3、由圖象能確定a、b、c、△的符號(hào),及判定。
學(xué)習(xí)重點(diǎn):
二次函數(shù)的圖象和性質(zhì)及運(yùn)用。
學(xué)習(xí)難點(diǎn):
二次函數(shù)的圖象的畫(huà)法以及理解y=a(x-h)2+h型拋物線是由拋物線y=ax2平移而得到的。
例題分析
第一階梯
例1、在同一坐標(biāo)系中畫(huà)出下列二次函數(shù)的圖象。
1、2、y=3x2
3、4、y=-3x2
提示:
以上四個(gè)二次函數(shù)我們?cè)诹斜頃r(shí)首先在所列的表正中位置選擇點(diǎn)(0,0),然后再在兩邊找對(duì)應(yīng)的點(diǎn),畫(huà)好圖象后就能發(fā)現(xiàn)首先確定點(diǎn)(0,0)的重要性。
高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)4
一、設(shè)計(jì)思想:
函數(shù)與方程是中學(xué)數(shù)學(xué)的重要內(nèi)容,是銜接初等數(shù)學(xué)與高等數(shù)學(xué)的紐帶,再加上函數(shù)與方程還是中學(xué)數(shù)學(xué)四大數(shù)學(xué)思想之一,是具體事例與抽象思想相結(jié)合的體現(xiàn),在教學(xué)過(guò)程中,我采用了自主探究教學(xué)法。通過(guò)教學(xué)情境的設(shè)置,讓學(xué)生由特殊到一般,有熟悉到陌生,讓學(xué)生從現(xiàn)象中發(fā)現(xiàn)本質(zhì),以此激發(fā)學(xué)生的成就感,激發(fā)學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)熱情。在現(xiàn)實(shí)生活中函數(shù)與方程都有著十分重要的應(yīng)用,因此函數(shù)與方程在整個(gè)高中數(shù)學(xué)教學(xué)中占有非常重要的地位。
二、教學(xué)內(nèi)容分析:
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)》的新增內(nèi)容之一,選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教課書(shū)數(shù)學(xué)I必修本(A版)》第94—95頁(yè)的第三章第一課時(shí)3.1.1方程的根與函數(shù)的的零點(diǎn)。
本節(jié)通過(guò)對(duì)二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個(gè)數(shù)的判斷建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應(yīng)的函數(shù)的情形。它既揭示了初中一元二次方程與相應(yīng)的二次函數(shù)的內(nèi)在聯(lián)系,也引出對(duì)函數(shù)知識(shí)的總結(jié)拓展。之后將函數(shù)零點(diǎn)與方程的根的關(guān)系在利用二分法解方程中(3.1.2)加以應(yīng)用,通過(guò)建立函數(shù)模型以及模型的求解(3.2)更全面地體現(xiàn)函數(shù)與方程的關(guān)系,逐步建立起函數(shù)與方程的聯(lián)系。滲透“方程與函數(shù)”思想。
總之,本節(jié)課滲透著重要的數(shù)學(xué)思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結(jié)合”的思想,教好本節(jié)課可以為學(xué)好中學(xué)數(shù)學(xué)打下一個(gè)良好基礎(chǔ),因此教好本節(jié)是至關(guān)重要的。
三、教學(xué)目標(biāo)分析:
知識(shí)與技能:
1、結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;
2、結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;
3、結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法
情感、態(tài)度與價(jià)值觀:
1、讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問(wèn)題時(shí)的意義與價(jià)值;
2、培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣;
3、使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂(lè)趣與成功感,
教學(xué)重點(diǎn):函數(shù)零點(diǎn)與方程根之間的關(guān)系;連續(xù)函數(shù)在某區(qū)間上存在零點(diǎn)的判定方法。
教學(xué)難點(diǎn):發(fā)現(xiàn)與理解方程的根與函數(shù)零點(diǎn)的關(guān)系;探究發(fā)現(xiàn)函數(shù)存在零點(diǎn)的方法。
四、教學(xué)準(zhǔn)備
導(dǎo)學(xué)案,自主探究,合作學(xué)習(xí),電子交互白板。
五、教學(xué)過(guò)程設(shè)計(jì):
略
六、探索研究(可根據(jù)時(shí)間和學(xué)生對(duì)知識(shí)的接受程度適當(dāng)調(diào)整)
討論:請(qǐng)大家給方程的一個(gè)解的大約范圍,看誰(shuí)找得范圍更。
[師生互動(dòng)]
師:把學(xué)生分成小組共同探究,給學(xué)生足夠的自主學(xué)習(xí)時(shí)間,讓學(xué)生充分研究,發(fā)揮其主觀能動(dòng)性。也可以讓各組把這幾個(gè)題做為小課題來(lái)研究,激發(fā)學(xué)生學(xué)習(xí)潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。
生:分組討論,各抒己見(jiàn)。在探究學(xué)習(xí)中得到數(shù)學(xué)能力的提高。
第五階段設(shè)計(jì)意圖:
一是為用二分法求方程的近似解做準(zhǔn)備
二是小組探究合作學(xué)習(xí)培養(yǎng)學(xué)生的創(chuàng)新能力和探究意識(shí),本組探究題目就是為了培養(yǎng)學(xué)生的探究能力,此組題目具有較強(qiáng)的開(kāi)放性,探究性,基本上可以達(dá)到上述目的。
七、課堂小結(jié):
零點(diǎn)概念
零點(diǎn)存在性的判斷
零點(diǎn)存在性定理的應(yīng)用注意點(diǎn):零點(diǎn)個(gè)數(shù)判斷以及方程根所在區(qū)間
八、鞏固練習(xí)
(略)
高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)5
教學(xué)目標(biāo):
知識(shí)與技能通過(guò)具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行簡(jiǎn)單的應(yīng)用。
過(guò)程與方法能夠類比研究一般函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的過(guò)程與方法,來(lái)研究?jī)绾瘮?shù)的圖象和性質(zhì)。
情感、態(tài)度、價(jià)值觀體會(huì)冪函數(shù)的變化規(guī)律及蘊(yùn)含其中的對(duì)稱性。
教學(xué)重點(diǎn):
重點(diǎn)從五個(gè)具體冪函數(shù)中認(rèn)識(shí)冪函數(shù)的一些性質(zhì)。
難點(diǎn)畫(huà)五個(gè)具體冪函數(shù)的圖象并由圖象概括其性質(zhì),體會(huì)圖象的變化規(guī)律。
教學(xué)程序與環(huán)節(jié)設(shè)計(jì):
材料一:冪函數(shù)定義及其圖象。
一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù)。
冪函數(shù)的定義來(lái)自于實(shí)踐,它同指數(shù)函數(shù)、對(duì)數(shù)函數(shù)一樣,也是基本初等函數(shù),同樣也是一種形式定義的函數(shù),引導(dǎo)學(xué)生注意辨析。
下面我們舉例學(xué)習(xí)這類函數(shù)的一些性質(zhì)。
作出下列函數(shù)的圖象:利用所學(xué)知識(shí)和方法嘗試作出五個(gè)具體冪函數(shù)的圖象,觀察所圖象,體會(huì)冪函數(shù)的變化規(guī)律。
定義域
值域
奇偶性
單調(diào)性
定點(diǎn)
師:引導(dǎo)學(xué)生應(yīng)用畫(huà)函數(shù)的性質(zhì)畫(huà)圖象,如:定義域、奇偶性。
師生共同分析,強(qiáng)調(diào)畫(huà)圖象易犯的錯(cuò)誤。
材料二:冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+)都有定義,并且圖象都過(guò)點(diǎn)(1,1);
(2)時(shí),冪函數(shù)的圖象通過(guò)原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;
(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無(wú)限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無(wú)限地逼近軸正半軸.
例1、求下列函數(shù)的定義域;
例2、比較下列兩個(gè)代數(shù)值的大。
[例3]討論函數(shù)的定義域、奇偶性,作出它的圖象,并根據(jù)圖象說(shuō)明函數(shù)的單調(diào)性。
練習(xí)
1.利用冪函數(shù)的性質(zhì),比較下列各題中兩個(gè)冪的值的大。
2.作出函數(shù)的圖象,根據(jù)圖象討論這個(gè)函數(shù)有哪些性質(zhì),并給出證明。
3.作出函數(shù)和函數(shù)的圖象,求這兩個(gè)函數(shù)的定義域和單調(diào)區(qū)間。
4.用圖象法解方程:
。1)如圖所示,曲線是冪函數(shù)在第一象限內(nèi)的圖象,已知分別取四個(gè)值,則相應(yīng)圖象依次為:
。2)在同一坐標(biāo)系內(nèi),作出下列函數(shù)的圖象,你能發(fā)現(xiàn)什么規(guī)律?
【高中數(shù)學(xué)函數(shù)教學(xué)設(shè)計(jì)】相關(guān)文章:
三角函數(shù)優(yōu)秀教學(xué)設(shè)計(jì)范文12-28
一次函數(shù)的教學(xué)設(shè)計(jì)課件02-17
《集合與函數(shù)》課件設(shè)計(jì)05-08
《對(duì)數(shù)函數(shù)》課件設(shè)計(jì)05-08
三角函數(shù)優(yōu)秀的教學(xué)設(shè)計(jì)模板12-27
最新高中數(shù)學(xué)必修一教學(xué)設(shè)計(jì)12-29
人教版高中數(shù)學(xué)必修一說(shuō)課稿 函數(shù)的概念說(shuō)課稿11-02