八年級數(shù)學(xué)上冊《勾股定理的應(yīng)用》教學(xué)設(shè)計反思
在教學(xué)工作者實際的教學(xué)活動中,往往需要進(jìn)行教學(xué)設(shè)計編寫工作,教學(xué)設(shè)計是對學(xué)業(yè)業(yè)績問題的解決措施進(jìn)行策劃的過程。那么問題來了,教學(xué)設(shè)計應(yīng)該怎么寫?下面是小編為大家收集的八年級數(shù)學(xué)上冊《勾股定理的應(yīng)用》教學(xué)設(shè)計反思,僅供參考,歡迎大家閱讀。
教學(xué)目標(biāo)具體要求:
1.知識與技能目標(biāo):會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。
3.情感態(tài)度與價值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;通過有關(guān)勾股定理的歷史講解,對學(xué)生進(jìn)行德育教育。
重點:
勾股定理的應(yīng)用
難點:
勾股定理的應(yīng)用
教案設(shè)計
一、知識點講解
知識點1:(已知兩邊求第三邊)
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長?
知識點2:
利用方程求線段長
1、如圖,公路上A,B兩點相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,
。1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?
。2)DE與CE的位置關(guān)系
。3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?
利用方程解決翻折問題
2、如圖,用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長BC為10cm.當(dāng)折疊時,頂點D落在BC邊上的點F處(折痕為AE).想一想,此時EC有多長?
3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點B與點D重合,折痕為EF,求DE的長。
4.如圖,將一個邊長分別為4、8的矩形形紙片ABCD折疊,使C點與A點重合,則EF的長是多少?
5、折疊矩形ABCD的一邊AD,折痕為AE,且使點D落在BC邊上的點F處,已知AB=8cm,BC=10cm,以B點為原點,BC為x軸,BA為y軸建立平面直角坐標(biāo)系。求點F和點E坐標(biāo)。
6、邊長為8和4的矩形OABC的兩邊分別在直角坐標(biāo)系的x軸和y軸上,若沿對角線AC折疊后,點B落在第四象限B1處,設(shè)B1C交x軸于點D,求(1)三角形ADC的面積,(2)點B1的坐標(biāo),(3)AB1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
(2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。
。3)在ABC中,a:b:c=1:1:,那么ABC的確切形狀是_____________。
2.如圖,正方形ABCD中,邊長為4,F(xiàn)為DC的中點,E為BC上一點,CE=BC,你能說明∠AFE是直角嗎?
變式:如圖,正方形ABCD中,F(xiàn)為DC的中點,E為BC上一點,且CE=BC,你能說明∠AFE是直角嗎?
3.一位同學(xué)向西南走40米后,又走了50米,再走30米回到原地。問這位同學(xué)又走了50米后向哪個方向走了
二、課堂小結(jié)
談一談你這節(jié)課都有哪些收獲?
應(yīng)用勾股定理解決實際問題
三、課堂練習(xí)以上習(xí)題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。
針對本班學(xué)生的特點,學(xué)生知識水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復(fù)習(xí)引入
對上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強調(diào)易錯點。由于學(xué)生的注意力集中時間較短,學(xué)生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法
活動一:用對媒體展示搬運工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書。整個活動以學(xué)生為主體,教師及時的引導(dǎo)和強調(diào)。
活動二:解決例二梯子滑落的`問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。
活動三:學(xué)生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動中發(fā)展了學(xué)生的探究意識和合作交流的習(xí)慣;體會勾股定理的應(yīng)用價值,讓學(xué)生體會到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
二、鞏固練習(xí),熟練新知
通過測量旗桿活動,發(fā)展學(xué)生的探究意識,培養(yǎng)學(xué)生動手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的經(jīng)驗和感受。
在教學(xué)設(shè)計的實施中,也存在著一些問題:
1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動,使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強的學(xué)生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設(shè)計中轉(zhuǎn)接的快,未給學(xué)困生充分的時間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學(xué)生課堂展示的評價方式應(yīng)體現(xiàn)生評生,師評生,及評價的針對性和及時性。
【八年級數(shù)學(xué)上冊《勾股定理的應(yīng)用》教學(xué)設(shè)計反思】相關(guān)文章:
人教版數(shù)學(xué)八年級上冊教學(xué)設(shè)計模板01-28
初中數(shù)學(xué)教學(xué)設(shè)計與反思12-23
初中數(shù)學(xué)教學(xué)設(shè)計與反思12-23
《勾股定理逆定理》的優(yōu)秀教學(xué)反思(精選5篇)12-28
八年級上冊生物教學(xué)反思01-23
八年級上冊歷史教學(xué)反思01-26