1. <rp id="zsypk"></rp>

      2. 《圓錐的體積》優(yōu)秀教學(xué)設(shè)計

        時間:2024-03-13 10:27:21 教學(xué)設(shè)計 我要投稿

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計

          作為一名專為他人授業(yè)解惑的人民教師,總不可避免地需要編寫教學(xué)設(shè)計,借助教學(xué)設(shè)計可以更好地組織教學(xué)活動。教學(xué)設(shè)計應(yīng)該怎么寫才好呢?以下是小編為大家收集的《圓錐的體積》優(yōu)秀教學(xué)設(shè)計,僅供參考,大家一起來看看吧。

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計1

          【教材分析】

          本節(jié)課屬于空間與圖形知識的教學(xué),是小學(xué)階段幾何知識的重難點部分,是小學(xué)學(xué)習(xí)立體圖形體積計算的飛躍,通過這部分知識的教學(xué),可以發(fā)展學(xué)生的空間觀念、想象能力,較深入地理解幾何體體積推導(dǎo)方法的新領(lǐng)域,為學(xué)生進一步學(xué)習(xí)幾何知識奠定良好的基礎(chǔ)。本節(jié)內(nèi)容是在學(xué)生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎(chǔ)上進行教學(xué)的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導(dǎo)學(xué)生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結(jié)”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學(xué)生建立空間觀念,還能培養(yǎng)學(xué)生抽象的邏輯思維能力,激發(fā)學(xué)生的想象力。

          【設(shè)計理念】

          數(shù)學(xué)課程標(biāo)準(zhǔn)中指出:應(yīng)放手讓學(xué)生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結(jié)過程中掌握知識、發(fā)展空間觀念,從而提高學(xué)生自主解決問題的能力。

          【教學(xué)目標(biāo)】

          1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。

          2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結(jié)論——實踐運用”探索過程,獲得圓錐體積的推導(dǎo)過程和學(xué)習(xí)的方法。

          3、情感、態(tài)度與價值觀:培養(yǎng)學(xué)生勇于探索的求知精神,感受到數(shù)學(xué)來源于生活,能積極參與數(shù)學(xué)活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習(xí)慣。

          【教學(xué)重點】圓錐體積公式的理解,并能運用公式求圓錐的體積。

          【教學(xué)難點】圓錐體積公式的推導(dǎo)

          【學(xué)情分析】

          學(xué)生已學(xué)習(xí)了圓柱的體積計算,在教學(xué)中采用放手讓學(xué)生操作、小組合作探討的.形式,讓學(xué)生在研討中自主探索,發(fā)現(xiàn)問題并運用學(xué)過的圓柱知識遷移到圓錐,得出結(jié)論。所以對于新的知識教學(xué),他們一定能表現(xiàn)出極大的熱情。

          【教法學(xué)法】試驗探究法小組合作學(xué)習(xí)法

          【教具學(xué)具準(zhǔn)備】多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)

          【教學(xué)課時】2課時

          【教學(xué)流程】

          第一課時

          一、回顧舊知識

          1、你能計算哪些規(guī)則物體的體積?

          2、你能說出圓錐各部分的名稱嗎?

          【設(shè)計意圖】通過對舊知識的回顧,進一步為學(xué)習(xí)新知識作好鋪墊。

          二、創(chuàng)設(shè)情景激發(fā)激情

          展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?

          【設(shè)計意圖】以生活中的數(shù)學(xué)的形式進行設(shè)置情景,引疑激趣遷移,激發(fā)學(xué)生好奇心和求知欲。(揭示課題:圓錐的體積)

          三、試驗探究合作學(xué)習(xí)(探討圓柱與圓錐體積之間的關(guān)系)

          探究一:(分組試驗)圓柱與圓錐的底和高各有什么關(guān)系?

          1、猜想:猜想它們的底、高之間各有什么關(guān)系?

          2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結(jié)果;

          3、小組匯報試驗結(jié)論,集體評議:(注意匯報出試驗步驟和結(jié)論)

          4、教師介紹數(shù)學(xué)專用名詞:等底等高

          【設(shè)計意圖】通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。

          探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關(guān)系?

          1、大膽猜想:等底等高圓柱與圓錐體積之間的關(guān)系

          2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關(guān)系?邊試驗邊記錄試驗數(shù)據(jù)(教師巡視指導(dǎo)每組的試驗)

          3、小組匯報試驗結(jié)論(提醒學(xué)生匯報出試驗步驟)

          教學(xué)預(yù)設(shè):

         。1)圓椎的體積是圓柱體積的3倍;

         。2)圓錐的體積是圓柱體積的三分之一;

         。3)當(dāng)?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。

          4、通過學(xué)生匯報的試驗結(jié)論,分析歸納總結(jié)試驗結(jié)論。

          5、你能用字母表示出它們的關(guān)系嗎?要求圓錐的體積必須知道什么條件呢?(學(xué)生反復(fù)朗讀公式)

          【設(shè)計意圖】通過學(xué)生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結(jié)論的過程,充分調(diào)動學(xué)生主動探索的意識,激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的動手能力,突破了本課的難點,突出了教學(xué)的重點。

          探究三:(伸展試驗---演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關(guān)系。

          1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關(guān)系?

          2、觀察老師的試驗,你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關(guān)系嗎?

          3、學(xué)生通過觀看試驗匯報結(jié)論。

          4、教師引導(dǎo)學(xué)生分析歸納總結(jié)圓錐體積是圓柱體積的三分之一所存在的條件。

          5、結(jié)合探究二和探究三,進一步引導(dǎo)學(xué)生掌握圓錐的體積公式。

          【設(shè)計意圖】通過教師課件演示試驗,進一步讓學(xué)生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學(xué)生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學(xué)生的觀察能,分析能力,邏輯思維能力等,進一步讓學(xué)生從感性認識上升到了理性認識。

          四、實踐運用提升技能

          1、判斷題:【題目內(nèi)容見多媒體展示】獨立思考---抽生匯報---說明理由---師生評議

          2、口答題:【題目內(nèi)容見多媒體展示】獨立思考---抽生匯報---學(xué)生評議

          3、拓展運用:【課本例題3】學(xué)生分析題意---小組合作解答---學(xué)生解答展示---師生評議

          【設(shè)計意圖】通過判斷題、口答題題型的訓(xùn)練,及時檢查學(xué)生對所學(xué)知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學(xué)生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。

          五、談?wù)勈斋@:這節(jié)課你學(xué)到了什么呢?

          六、課堂作業(yè):

          1、做在書上作業(yè):練習(xí)四第4、7題

          2、坐在作業(yè)本上作業(yè):練習(xí)四第3題

          【課后反思】

          【板書設(shè)計】附后

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計2

          一、教學(xué)內(nèi)容:

          六年制小學(xué)數(shù)學(xué)教材第十二冊第25-26頁

          二、教學(xué)目標(biāo):

          1、知識技能目標(biāo):

          使學(xué)生探索并初步掌握圓錐體積的計算方法和推導(dǎo)過程;使學(xué)生會應(yīng)用公式計算圓錐的體積并解決一些實際問題。

          2、思維能力目標(biāo):

          提高學(xué)生實踐操作、觀察比較、抽象概括及邏輯推斷的能力,發(fā)展空間觀念。

          3、情感態(tài)度目標(biāo):

          培養(yǎng)學(xué)生的合作意識和探究意識;使學(xué)生獲得成功的體驗,體驗數(shù)學(xué)與生活的聯(lián)系。

          三、教學(xué)重點、難點:

          重點:使學(xué)生初步掌握圓錐體積的計算方法并解決一些實際問題。

          難點:探索圓錐體積方法和推導(dǎo)過程。

          教學(xué)過程:

          一、質(zhì)疑引入

          1、圓錐有什么特征?指名學(xué)生回答。

          2、說一說圓柱體積的計算公式。

         。1)已知s、h求v

         。2)已知r、h求v

         。3)已知d、h求v

          3、我們已經(jīng)認識了圓錐又學(xué)過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學(xué)習(xí)圓錐體積的計算。

          板書課題:圓錐的體積

          二、新課

         。ㄒ唬┙虒W(xué)圓錐體積的計算公式

          1、師:請大家回憶一下,我們是怎樣得到圓柱體積的計算公式的?

          指名學(xué)生敘述圓柱體積的計算公式的推導(dǎo)過程:(學(xué)生:圓柱---轉(zhuǎn)化長方體-長方體的體積公式——推導(dǎo)圓柱體公式)

          2、教師:那么圓錐的體積該怎樣求呢?能不能也通過學(xué)過的圖形來求呢?

          先讓學(xué)生討論,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

          〈1〉學(xué)生獨立操作

          讓兩名學(xué)生到講臺上做實驗其他學(xué)生觀察,拿出等底等高的圓柱和圓錐各1個,比圓柱體積多的水。先在圓錐里裝滿水,然后倒入圓柱。看幾次正好把圓柱裝滿?

          〈2〉教師教具演示鞏固學(xué)生的操作效果,cai課件演示

          a、屏幕上出示等底、等高

          b、等底、不等高

          c、等高、不等底

          實驗報告單

          實驗器材

          實驗結(jié)果

          等底不等高的圓錐、圓柱

          等高不等底的圓錐、圓柱

          等底等高的圓錐、圓柱

          〈3〉引導(dǎo)學(xué)生發(fā)現(xiàn):

          圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的1/3(板書)

          用字母表示圓錐的體積公式.v錐=1/3sh

          做一做:

          填空:

          等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的(),圓錐的體積是圓柱的體積的()已知圓錐的體積是9立方分米,圓柱的體積是();如果圓柱的體積是12立方分米,那么圓錐的體積是()。

          (二)運用公式,嘗試練習(xí)

          1、要求圓錐的體積,必須知道哪兩個條件?為什么要乘1/3?

          試一試:

          一個圓錐體,底面積是19平方米,高是12分米。這個圓錐的體積是多少?

          2、思考:求圓錐的體積,還可能出現(xiàn)那些情況?

          (如果已知圓錐的'高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)

          練一練

          3、求下面的體積。(只列式不計算)

         。1)底面半徑是2厘米,高3厘米。

          3.14×22×3

         。2)底面直徑是6分米,高6分米。

          3.14×(6÷2)2×6

          (3)底面周長是12.56厘米,高是6厘米

          3.14×(12.56÷6.28)2×6

          2、求下面各圓錐的體積如圖(單位厘米)

         。1)底面直徑是8分米,高9分米(2)底面半徑3分米和高7分米

          通過公式我們發(fā)現(xiàn)計算圓錐的。體積所必須的條件可以是底面積和高

          a、底面積和高

          b、底面半徑和高

          c、底面直徑和高

          d、底面周長和高

          三、鞏固練習(xí)

          1、判斷:

         、拧A錐的體積等于圓住體積的1/3。()

          ⑵把一個圓柱切成一個圓錐,這個圓錐的體積是圓柱體積的1/3()

         、菆A柱的體積比和它等底等高圓錐的體積大2倍。()

         、且粋圓柱與一個圓錐的底面積和體積相等,那么圓錐的高是圓柱高的

          2、填空

         、乓粋圓錐與一個圓柱等底等高,已知圓錐的體積是18立方米,圓柱的體積是()。

         、埔粋圓錐與一個圓柱等底等體積,已知圓柱的高是12厘米,圓錐的高是()。

         、且粋圓錐與一個圓柱等高等體積,已知圓柱的底面積是314平方米,圓錐的底面積是()。

          3、拓展練習(xí)

          工地上有一些沙子,堆起來近似于一個圓錐,通過測量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))

         。ㄒ龑(dǎo)學(xué)生說出怎樣測量沙堆的底面的周長、直徑、和高。)

          用兩根竹竿平行地放在沙堆兩側(cè),測得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計3

          一、教學(xué)目標(biāo)

          1、知識與技能

          理解圓錐體積公式的推導(dǎo)過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

          2、過程與方法

          通過操作、實驗、觀察等方式,引導(dǎo)學(xué)生進行比較、分析、綜合、猜測,在感知的基礎(chǔ)上加以判斷、推理來獲取新知識。

          3、情感態(tài)度與價值觀

          滲透知識是“互相轉(zhuǎn)化”的辨證思想,養(yǎng)成善于猜測的習(xí)慣,在探索合作中感受教學(xué)與我的生活的密切聯(lián)系,讓學(xué)生感受探究成功的快樂。

          二、教學(xué)重、難點

          重點:掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。

          難點:理解圓錐體積公式的推導(dǎo)過程。

          三、教具學(xué)具

          不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。

          四、教學(xué)流程

          (一)創(chuàng)設(shè)情境,提出問題

          師:五一節(jié)放假期間,老師帶著自己的小外甥去商場購物,正巧商場在搞冰淇淋促銷活動。促銷的冰淇淋有三種(課件出示三個大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請同學(xué)們幫老師參考一下買哪一種合算?

          生:我選擇底面最大的;

          生:我選擇高是最高的;

          生:我選擇介于二者之間的。

          師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?

          生:只要求出冰淇淋的體積就可以了。

          師:冰淇淋是個什么形狀?(圓錐體)

          生:你會求嗎?

          師:通過這節(jié)課的學(xué)習(xí),相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。

         。ǘ┰O(shè)疑激趣,探求新知

          師:那么你能想辦法求出圓錐的體積嗎?

         。▽W(xué)生猜想求圓錐體積的方法。)

          生:我們可以利用求不規(guī)則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。

          師:如果這樣,你覺得行嗎?

          教師根據(jù)學(xué)生的回答做出最后的評價;

          生:老師,我們前面學(xué)過把圓轉(zhuǎn)化成長方形來研究,我想圓錐是不是也可以這樣做呢?

          師:大家猜一猜圓錐體可能會轉(zhuǎn)化成哪一種圖形,你的根據(jù)是什么?

          小組中大家商量。

          生:我們組認為可以將圓錐轉(zhuǎn)化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。

          師:此種方法是否可行?

          學(xué)生進行評價。

          師:哪個小組還有更好的辦法?

          生:我們組認為:圓錐體轉(zhuǎn)化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯(lián)系。如果將圓錐轉(zhuǎn)化成圓柱,就更容易進行研究。)

          師:既然大家都認為圓錐與圓柱的聯(lián)系最為密切,請各組先拿出學(xué)具袋的圓錐與圓柱,觀察比較他們的底與高的大小關(guān)系。

          1、各小組進行觀察討論。

          2、各小組進行交流,教師做適當(dāng)?shù)陌鍟?/p>

          通過學(xué)生的交流出現(xiàn)以下幾種情況:一是圓柱與圓錐等底不等高;二是圓柱與圓錐等高不等底;三是圓柱與圓錐不等底不等高;四是圓柱與圓錐等底等高。

          3、師啟發(fā)談話:現(xiàn)在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關(guān)系的一組呢?(小組討論)

          4、小組交流,在此環(huán)節(jié)著重讓學(xué)生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。

          師:我們大家一致認為應(yīng)該選擇等底等高的一組,那么我們就跟求圓柱體的'體積一樣,就用“底面積×高”來表示圓錐體的體積行不行?為什么?

          師:圓錐體的體積小,那你猜測一下這兩個形體的體積的大小有什么樣的關(guān)系?

          生:大約是圓柱的一半。

          生:……

          師:到底誰的意見正確呢?

          師:下面請同學(xué)們?nèi)艘唤M利用你桌子的學(xué)具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關(guān)系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標(biāo)明確,才能更好的合作。開始吧!

          要求:1、實驗材料,任選沙、米、水中的一種。

          2、實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。

         。ㄉM行實驗操作、小組交流)

          師:1、誰來匯報一下,你們組是怎樣做實驗的?

          2、通過做實驗,你們發(fā)現(xiàn)它們有什么關(guān)系?

          生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。

          生:我們利用空圓錐裝滿米到入空圓柱,三次倒?jié)M。圓錐的體積是等底等高圓柱的體積的1/3。)

          師:同學(xué)們得出這個結(jié)論非常重要,其他組也是這樣的嗎?生略

          師:請看大屏幕,看數(shù)學(xué)小博士是怎樣做的?(課件演示)

          齊讀結(jié)論:

          師:你能根據(jù)剛才我們的實驗和課件演示的情況,也給圓錐的體積寫一個公式?

         。ㄐ〗M討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則v圓錐=sh÷3即v圓錐=1/3sh

          師:同學(xué)們剛才我們得到了圓錐的體積公式,(請看課件)你能求出三種冰淇淋的體積?

         。ㄠ!三種冰淇淋的體積原來一樣大)

          五、聯(lián)系生活,拓展運用

          本練習(xí)共有三個層次:

          1、基本練習(xí)

         。1)判斷對錯,并說明理由。

          圓柱的體積相當(dāng)于圓錐體積的3倍。()

          一個圓柱木料,把它加工成最大的圓錐,削去的部分的體積和圓錐的體積比是()

          一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。()

         。2)計算下面圓錐的體積。(單位:厘米)

          s=25.12 h=2.5

          r=4, h=6

          2、變形練習(xí)

          出示學(xué)校沙堆:我班數(shù)學(xué)小組的同學(xué)利用課余時間測量了那堆沙子,得到了以下信息:底面半徑:2米,底面直徑4米,底面周長12.56米,底面積:12.56平方米,高1.2米,(1)、你能根據(jù)這些信息,用不同的方法計算出這堆沙子的體積嗎?

          (2)、找一找這些計算方法有什么共同的特點?v錐=1/3sh

         。3)、準(zhǔn)備把這堆沙填在一個長3米,寬1、5米的沙坑里,請同學(xué)們算一算能填多深?

          3、拓展練習(xí)

          一個近似圓錐形的煤堆,測得它的底面周長是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?

          活動五:整理歸納,回顧體驗

         。ㄍㄟ^小結(jié)展示學(xué)生個性,學(xué)生在學(xué)習(xí)中的自我體驗,使孩子情感態(tài)度,價值觀得到升華。)

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計4

          教學(xué)目的:使學(xué)生初步掌握圓錐體積的計算公式。

          并能運用公式正確地計算圓錐的體積,發(fā)展學(xué)生的空間觀念。

          教學(xué)難點:圓錐的體積應(yīng)用

          學(xué)具準(zhǔn)備:等底等高的圓柱和圓錐,水和沙,多媒體課件

          教學(xué)時間:一課時

          教學(xué)過程:

          一、復(fù)習(xí)

          1、圓錐有什么特征?(課件出示)

          使學(xué)生進一步熟悉圓錐的特征:底面,側(cè)面,高和頂點。

          2、圓柱體積的計算公式是什么?

          指名學(xué)生回答,并板書公式:“圓柱的體積=底面積×高”。同時滲透轉(zhuǎn)化方法在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。

          二、導(dǎo)人新課

          出示一個圓錐形的谷堆,給出底面直徑和高,讓學(xué)生思考如何求它的.體積。

          板書課題:圓錐的體積

          三、新課

          1、教學(xué)圓錐體積的計算公式。

          師:請大家回億一下,我們是怎樣得到圓柱體積的計算公式的?

          指名學(xué)生敘述圓柱體積計算公式的推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。

          師:那么圓錐的體積該怎樣求呢?能不能也通過已學(xué)過的圖形來求呢?

          先讓學(xué)生討論一下用什么方法求,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式。

          教師拿出等底等高的圓柱和圓錐各一個,“大家看,這個圓錐和圓柱有什么共同的地方?”

          然后通過演示后,指出:“這個圓錐和圓柱是等底等高的,下面我們通過實驗,看看它們之間的體積有什么關(guān)系?”

          學(xué)生分組實驗。

          匯報實驗結(jié)果。先在圓錐里裝滿水,然后倒入圓柱。正好3次可以倒?jié)M。

          多指名說

          接著,教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的。請大家注意觀察,看看能夠倒幾次正好把圓柱裝滿?

          問:把圓柱裝滿一共倒了幾次?

          生:3次。

          師:這說明了什么?

          生:這說明圓錐的體積是和它等底等高的圓柱的體積的。

          多找?guī)酌瑢W(xué)說。

          板書:圓錐的體積=1/3 ×圓柱體積

          師:圓柱的體積等于什么?

          生:等于“底面積×高”。

          師:那么,圓錐的體積可以怎樣表示呢?

          引導(dǎo)學(xué)生想到可以用“底面積×高”來替換“圓柱的體積”,于是可以得到圓錐體積的計算公式。

          板書:圓錐的體積= 1/3 ×底面積×高

          師:用字母應(yīng)該怎樣表示?

          然后板書字母公式:V=1/3 SH

          師:在這個公式里你覺得哪里最應(yīng)該注意?

          教學(xué)例1課件出示)一個圓錐的零件,底面積是19平方厘米,高是12厘米。這個零件的體積是多少?

          1/3×19×12=76((立方厘米))

          答:這個零件體積是76立方厘米。

          做一做:課件出示,學(xué)生回答后,教師訂正。

          1、一個圓錐的底面積是25平方分米,高是9分米,它的體積是多少?

          2、已知圓錐的底面半徑r和高h,如何求體積V?

          3、已知圓錐的底面直徑d和高h,如何求體積V?

          4、已知圓錐的底面周長C和高h,如何求體積V?

          5、一個圓錐的底面直徑是20厘米,高是9厘米,它的體積是多少?

          例2課件出示)在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)

          判斷:課件出示,學(xué)生回答后,教師訂正。

          1、圓柱體的體積一定比圓錐體的體積大( )

          2、圓錐的體積等于和它等底等高的圓柱體積的 ( ) 。

          3、正方體、長方體、圓錐體的體積都等于底面積×高。 ( )

          4、等底等高的圓柱和圓錐,如果圓柱體的體積是27立方米,那么圓錐的體積是9立方米( )

          四、教師小結(jié)。

          這節(jié)課我們學(xué)習(xí)了哪些知識?你還有什么問題嗎?

          五、作業(yè)。課本練習(xí)

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計5

          一、教學(xué)內(nèi)容:六年制小學(xué)數(shù)學(xué)教材第十二冊第25-26頁

          二、教學(xué)目標(biāo):

          1、知識技能目標(biāo):

          ◆使學(xué)生探索并初步掌握圓錐體積的計算方法和推導(dǎo)過程;

          ◆使學(xué)生會應(yīng)用公式計算圓錐的體積并解決一些實際問題。

          2、思維能力目標(biāo):

          ◆提高學(xué)生實踐操作、觀察比較、抽象概括及邏輯推斷的能力,發(fā)展空間觀念。

          3、情感態(tài)度目標(biāo):

          ◆培養(yǎng)學(xué)生的合作意識和探究意識;

          ◆使學(xué)生獲得成功的體驗,體驗數(shù)學(xué)與生活的聯(lián)系。

          三、教學(xué)重點、難點:

          重點:使學(xué)生初步掌握圓錐體積的計算方法并解決一些實際問題

          難點:探索圓錐體積方法和推導(dǎo)過程。

          教學(xué)過程:

          一、質(zhì)疑引入

          1圓錐有什么特征?指名學(xué)生回答。

          2說一說圓柱體積的計算公式。

          (1)已知s、h求v

          (2)已知r、h求v

          (3)已知d、h求v

          3我們已經(jīng)認識了圓錐又學(xué)過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學(xué)習(xí)圓錐體積的計算。

          板書課題:圓錐的體積

          二、新課

          (一)教學(xué)圓錐體積的計算公式

          1、師:請大家回憶一下,我們是怎樣得到圓柱體積的計算公式的?

          指名學(xué)生敘述圓柱體積的計算公式的推導(dǎo)過程:(學(xué)生:圓柱---轉(zhuǎn)化長方體-長方體的體積公式----推導(dǎo)圓柱體公式)

          2、教師:那么圓錐的體積該怎樣求呢?能不能也通過學(xué)過的圖形來求呢?

          先讓學(xué)生討論,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式

          〈1〉學(xué)生獨立操作

          讓兩名學(xué)生到講臺上做實驗其他學(xué)生觀察,拿出等底等高的圓柱和圓錐各1個,比圓柱體積多的水。先在圓錐里裝滿水,然后倒入圓柱?磶状握冒褕A柱裝滿?

          〈2〉教師教具演示鞏固學(xué)生的操作效果,cai課件演示

          a屏幕上出示等底、等高

          b等底、不等高

          c等高、不等底

          實驗報告單

          實驗器材

          實驗結(jié)果

          等底不等高的圓錐、圓柱

          等高不等底的圓錐、圓柱

          等底等高的圓錐、圓柱

          〈3〉引導(dǎo)學(xué)生發(fā)現(xiàn):

          圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的1/3 (板書)

          用字母表示圓錐的`體積公式。v錐=1/3sh

          做一做:

          填空:

          等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的(),圓錐的體積是圓柱的體積的()已知圓錐的體積是9立方分米,圓柱的體積是();如果圓柱的體積是12立方分米,那么圓錐的體積是()。

         。ǘ┻\用公式,嘗試練習(xí)

          1、要求圓錐的體積,必須知道哪兩個條件?為什么要乘1/3 ?

          試一試:

          一個圓錐體,底面積是19平方米,高是12分米。這個圓錐的體積是多少?

          2、思考:求圓錐的體積,還可能出現(xiàn)那些情況?

          (如果已知圓錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)

          練一練

          3、求下面的體積。(只列式不計算)

          (1)底面半徑是2厘米,高3厘米。

          3.14×22×3

          (2)底面直徑是6分米,高6分米。

          3.14×(6 ÷2)2 ×6

          (3)底面周長是12.56厘米,高是6厘米

          3.14×(12.56 ÷6.28)2 ×6

          2、求下面各圓錐的體積如圖(單位厘米)

         。1)底面直徑是8分米,高9分米(2)底面半徑3分米和高7分米

          通過公式我們發(fā)現(xiàn)計算圓錐的體積所必須的條件可以是底面積和高

          a、底面積和高

          b、底面半徑和高

          c、底面直徑和高

          d、底面周長和高

          三、鞏固練習(xí)

          1、判斷:

         、、圓錐的體積等于圓住體積的1/3。()

         、瓢岩粋圓柱切成一個圓錐,這個圓錐的體積是圓柱體積的1/3()

          ⑶圓柱的體積比和它等底等高圓錐的體積大2倍。()

         、且粋圓柱與一個圓錐的底面積和體積相等,那么圓錐的高是圓柱高的

          2、填空

         、乓粋圓錐與一個圓柱等底等高,已知圓錐的體積是18立方米,圓柱的體積是()。

         、埔粋圓錐與一個圓柱等底等體積,已知圓柱的高是12厘米,圓錐的高是()。

         、且粋圓錐與一個圓柱等高等體積,已知圓柱的底面積是314平方米,圓錐的底面積是()。

          3、拓展練習(xí)

          工地上有一些沙子,堆起來近似于一個圓錐,通過測量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))

         。ㄒ龑(dǎo)學(xué)生說出怎樣測量沙堆的底面的周長、直徑、和高。)

          用兩根竹竿平行地放在沙堆兩側(cè),測得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計6

          一、教學(xué)內(nèi)容:

          六年制小學(xué)數(shù)學(xué)教材第十二冊第25-26頁

          二、教學(xué)目標(biāo):

          1、知識技能目標(biāo):

          ◆使學(xué)生探索并初步掌握圓錐體積的計算方法和推導(dǎo)過程;

          ◆使學(xué)生會應(yīng)用公式計算圓錐的體積并解決一些實際問題。

          2、思維能力目標(biāo):

          ◆提高學(xué)生實踐操作、觀察比較、抽象概括及邏輯推斷的能力,發(fā)展空間觀念。

          3、情感態(tài)度目標(biāo):

          ◆培養(yǎng)學(xué)生的合作意識和探究意識;

          ◆使學(xué)生獲得成功的體驗,體驗數(shù)學(xué)與生活的聯(lián)系。

          三、教學(xué)重點、難點:

          重點:使學(xué)生初步掌握圓錐體積的計算方法并解決一些實際問題

          難點:探索圓錐體積方法和推導(dǎo)過程。

          教學(xué)過程:

          一、質(zhì)疑引入

          1圓錐有什么特征?指名學(xué)生回答。

          2說一說圓柱體積的計算公式。

         。1)已知s、h求v

         。2)已知r、h求v

         。3)已知d、h求v

          3我們已經(jīng)認識了圓錐又學(xué)過圓柱體積的計算公式,那么圓錐的體積又該如何計算呢?今天我們就來學(xué)習(xí)圓錐體積的計算。

          板書課題:圓錐的體積

          二、新課

         。ㄒ唬┙虒W(xué)圓錐體積的計算公式

          1、師:請大家回憶一下,我們是怎樣得到圓柱體積的計算公式的?

          指名學(xué)生敘述圓柱體積的計算公式的推導(dǎo)過程:(學(xué)生:圓柱---轉(zhuǎn)化長方體-長方體的體積公式----推導(dǎo)圓柱體公式)

          2、教師:那么圓錐的體積該怎樣求呢?能不能也通過學(xué)過的圖形來求呢?

          先讓學(xué)生討論,然后指出:我們可以通過實驗的方法,得到計算圓錐體積的公式

          〈1〉學(xué)生獨立操作

          讓兩名學(xué)生到講臺上做實驗其他學(xué)生觀察,拿出等底等高的圓柱和圓錐各1個,比圓柱體積多的水。先在圓錐里裝滿水,然后倒入圓柱?磶状握冒褕A柱裝滿?

          〈2〉教師教具演示鞏固學(xué)生的操作效果,cai課件演示

          a屏幕上出示等底、等高

          b等底、不等高

          c等高、不等底

          實驗報告單

          實驗器材

          實驗結(jié)果

          等底不等高的.圓錐、圓柱

          等高不等底的圓錐、圓柱

          等底等高的圓錐、圓柱

          〈3〉引導(dǎo)學(xué)生發(fā)現(xiàn):

          圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積等于和它等底等高圓柱體積的1/3(板書)

          用字母表示圓錐的體積公式.v錐=1/3sh

          做一做:

          填空:

          等底等高的圓錐和圓柱,圓柱的體積是圓錐的體積的(),圓錐的體積是圓柱的體積的()已知圓錐的體積是9立方分米,圓柱的體積是();如果圓柱的體積是12立方分米,那么圓錐的體積是()。

          (二)運用公式,嘗試練習(xí)

          1、要求圓錐的體積,必須知道哪兩個條件?為什么要乘1/3?

          試一試:

          一個圓錐體,底面積是19平方米,高是12分米。這個圓錐的體積是多少?《圓錐的體積》教學(xué)設(shè)計 相關(guān)內(nèi)容:第四單元圓全單元教案六下第一單元負數(shù)教材分析《圓錐的認識》說課《分數(shù)乘分數(shù)》教后反思《納稅》教案人教版第十一冊教案百分數(shù)(五)折扣圓柱的表面積第三單元分數(shù)除法:分數(shù)除法的意義和整數(shù)除以分數(shù)查看更多>>小學(xué)六年級數(shù)學(xué)教案

          2、思考:求圓錐的體積,還可能出現(xiàn)那些情況?

         。ㄈ绻阎獔A錐的高和底面半徑如果已知圓錐的高和底面半徑(或直徑、周長),怎樣求圓錐的體積呢?)

          練一練

          3、求下面的體積。(只列式不計算)

         。1)底面半徑是2厘米,高3厘米。

          3.14×22×3

         。2)底面直徑是6分米,高6分米。

          3.14×(6 ÷2)2 ×6

         。3)底面周長是12.56厘米,高是6厘米

          3.14×(12.56 ÷6.28)2 ×6

          2、求下面各圓錐的體積如圖(單位厘米)

         。1)底面直徑是8分米,高9分米(2)底面半徑3分米和高7分米

          通過公式我們發(fā)現(xiàn)計算圓錐的體積所必須的條件可以是底面積和高

          a、底面積和高

          b、底面半徑和高

          c、底面直徑和高

          d、底面周長和高

          三、鞏固練習(xí)

          1、判斷:

         、、圓錐的體積等于圓住體積的1/3。()

         、瓢岩粋圓柱切成一個圓錐,這個圓錐的體積是圓柱體積的1/3()

         、菆A柱的體積比和它等底等高圓錐的體積大2倍。()

         、且粋圓柱與一個圓錐的底面積和體積相等,那么圓錐的高是圓柱高的

          2、填空

          ⑴一個圓錐與一個圓柱等底等高,已知圓錐的體積是18立方米,圓柱的體積是()。

         、埔粋圓錐與一個圓柱等底等體積,已知圓柱的高是12厘米,圓錐的高是()。

         、且粋圓錐與一個圓柱等高等體積,已知圓柱的底面積是314平方米,圓錐的底面積是()。

          3、拓展練習(xí)

          工地上有一些沙子,堆起來近似于一個圓錐,通過測量它的直徑是4厘米高是1.2厘米,這堆沙子大約多少立方米?(得數(shù)保留兩位小數(shù))

          (引導(dǎo)學(xué)生說出怎樣測量沙堆的底面的周長、直徑、和高。)

          用兩根竹竿平行地放在沙堆兩側(cè),測得兩根竹竿間的距離,就是直徑。將一根竹竿過沙堆的頂部水平位置,另一根竹竿豎直與水平竹竿成直角即可量得高。

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計7

          一、教學(xué)目標(biāo)

          1、知識與技能

          理解圓錐體積公式的推導(dǎo)過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。

          2、過程與方法

          通過操作、實驗、觀察等方式,引導(dǎo)學(xué)生進行比較、分析、綜合、猜測,在感知的基礎(chǔ)上加以判斷、推理來獲取新知識。

          3、情感態(tài)度與價值觀

          滲透知識是“互相轉(zhuǎn)化”的辨證思想,養(yǎng)成善于猜測的習(xí)慣,在探索合作中感受教學(xué)與我的生活的密切聯(lián)系,讓學(xué)生感受探究成功的快樂。

          二、教學(xué)重、難點

          重點:掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。

          難點:理解圓錐體積公式的推導(dǎo)過程。

          三、教具學(xué)具

          不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。

          四、教學(xué)流程

          (一)創(chuàng)設(shè)情境,提出問題

          師:五一節(jié)放假期間,老師帶著自己的小外甥去商場購物,正巧商場在搞冰淇淋促銷活動。促銷的冰淇淋有三種(課件出示三個大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請同學(xué)們幫老師參考一下買哪一種合算?

          生:我選擇底面最大的;

          生:我選擇高是最高的;

          生:我選擇介于二者之間的。

          師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?

          生:只要求出冰淇淋的體積就可以了。

          師:冰淇淋是個什么形狀?(圓錐體)

          生:你會求嗎?

          師:通過這節(jié)課的學(xué)習(xí),相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。

         。ǘ┰O(shè)疑激趣,探求新知

          師:那么你能想辦法求出圓錐的體積嗎?

          (學(xué)生猜想求圓錐體積的方法。)

          生:我們可以利用求不規(guī)則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。

          師:如果這樣,你覺得行嗎?

          教師根據(jù)學(xué)生的回答做出最后的評價;

          生:老師,我們前面學(xué)過把圓轉(zhuǎn)化成長方形來研究,我想圓錐是不是也可以這樣做呢?

          師:大家猜一猜圓錐體可能會轉(zhuǎn)化成哪一種圖形,你的根據(jù)是什么?

          小組中大家商量。

          生:我們組認為可以將圓錐轉(zhuǎn)化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。

          師:此種方法是否可行?

          學(xué)生進行評價。

          師:哪個小組還有更好的辦法?

          生:我們組認為:圓錐體轉(zhuǎn)化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯(lián)系。如果將圓錐轉(zhuǎn)化成圓柱,就更容易進行研究。)

          師:既然大家都認為圓錐與圓柱的聯(lián)系最為密切,請各組先拿出學(xué)具袋的圓錐與圓柱,觀察比較他們的底與高的大小關(guān)系。

          1、各小組進行觀察討論。

          2、各小組進行交流,教師做適當(dāng)?shù)陌鍟?/p>

          通過學(xué)生的交流出現(xiàn)以下幾種情況:一是圓柱與圓錐等底不等高;二是圓柱與圓錐等高不等底;三是圓柱與圓錐不等底不等高;四是圓柱與圓錐等底等高。

          3、師啟發(fā)談話:現(xiàn)在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關(guān)系的一組呢?(小組討論)

          4、小組交流,在此環(huán)節(jié)著重讓學(xué)生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。

          師:我們大家一致認為應(yīng)該選擇等底等高的一組,那么我們就跟求圓柱體的.體積一樣,就用“底面積×高”來表示圓錐體的體積行不行?為什么?

          師:圓錐體的體積小,那你猜測一下這兩個形體的體積的大小有什么樣的關(guān)系?

          生:大約是圓柱的一半。

          生:……

          師:到底誰的意見正確呢?

          師:下面請同學(xué)們?nèi)艘唤M利用你桌子的學(xué)具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關(guān)系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標(biāo)明確,才能更好的合作。開始吧!

          要求:1、實驗材料,任選沙、米、水中的一種。

          2、實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。

          (生進行實驗操作、小組交流)

          師:1、誰來匯報一下,你們組是怎樣做實驗的?

          2、通過做實驗,你們發(fā)現(xiàn)它們有什么關(guān)系?

          生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的體積是等底等高圓錐體積的三倍。

          生:我們利用空圓錐裝滿米到入空圓柱,三次倒?jié)M。圓錐的體積是等底等高圓柱的體積的1/3。)

          師:同學(xué)們得出這個結(jié)論非常重要,其他組也是這樣的嗎?生略

          師:請看大屏幕,看數(shù)學(xué)小博士是怎樣做的?(課件演示)

          齊讀結(jié)論:

          師:你能根據(jù)剛才我們的實驗和課件演示的情況,也給圓錐的體積寫一個公式?

         。ㄐ〗M討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則v圓錐=sh÷3即v圓錐=1/3sh

          師:同學(xué)們剛才我們得到了圓錐的體積公式,(請看課件)你能求出三種冰淇淋的體積?

         。ㄠ蓿∪N冰淇淋的體積原來一樣大)

          五、聯(lián)系生活,拓展運用

          本練習(xí)共有三個層次:

          1、基本練習(xí)

         。1)判斷對錯,并說明理由。

          圓柱的體積相當(dāng)于圓錐體積的3倍。()

          一個圓柱木料,把它加工成最大的圓錐,削去的部分的體積和圓錐的體積比是()

          一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。()

         。2)計算下面圓錐的體積。(單位:厘米)

          s=25.12 h=2.5

          r=4, h=6

          2、變形練習(xí)

          出示學(xué)校沙堆:我班數(shù)學(xué)小組的同學(xué)利用課余時間測量了那堆沙子,得到了以下信息:底面半徑:2米,底面直徑4米,底面周長12.56米,底面積:12.56平方米,高1.2米,(1)、你能根據(jù)這些信息,用不同的方法計算出這堆沙子的體積嗎?

         。2)、找一找這些計算方法有什么共同的特點?v錐=1/3sh

         。3)、準(zhǔn)備把這堆沙填在一個長3米,寬1、5米的沙坑里,請同學(xué)們算一算能填多深?

          3、拓展練習(xí)

          一個近似圓錐形的煤堆,測得它的底面周長是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?

          活動五:整理歸納,回顧體驗

         。ㄍㄟ^小結(jié)展示學(xué)生個性,學(xué)生在學(xué)習(xí)中的自我體驗,使孩子情感態(tài)度,價值觀得到升華。)

        【《圓錐的體積》優(yōu)秀教學(xué)設(shè)計】相關(guān)文章:

        圓錐的體積教學(xué)設(shè)計03-08

        圓錐的體積教學(xué)設(shè)計03-02

        《圓錐的體積》教學(xué)設(shè)計03-07

        圓錐的體積教學(xué)設(shè)計03-02

        《圓錐的體積》教學(xué)設(shè)計03-07

        圓錐的體積的教學(xué)設(shè)計06-02

        圓錐的體積教學(xué)設(shè)計06-10

        《圓錐的體積》優(yōu)秀教學(xué)設(shè)計(精選10篇)07-29

        圓錐的體積教學(xué)設(shè)計(優(yōu)秀15篇)12-01

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>