基本不等式說課課件
基本不等式說課課件,一起來看看吧。
各位評(píng)委老師,上午好,我選擇的課題是必修5第三章第四節(jié)《基本不等式》第一課時(shí)。關(guān)于本課的設(shè)計(jì),我將從以下五個(gè)方面向各位評(píng)委老師匯報(bào)。
★教材分析
★教法說明
★學(xué)法指導(dǎo)
★教學(xué)設(shè)計(jì)
★板書設(shè)計(jì)
一、教材分析
◆本節(jié)教材的地位和作用
◆教學(xué)目標(biāo)
◆教學(xué)重點(diǎn)、難點(diǎn)
1、本節(jié)教材的地位和作用
"基本不等式" 是必修5的重點(diǎn)內(nèi)容,在課本封面上就體現(xiàn)出來了(展示課本和參考書封面)。它是在學(xué)完"不等式的性質(zhì)"、"不等式的解法"及"線性規(guī)劃"的基礎(chǔ)上對(duì)不等式的進(jìn)一步研究。在不等式的證明和求最值過程中有著廣泛的應(yīng)用。求最值又是高考的熱點(diǎn)。同時(shí)本節(jié)知識(shí)又滲透了數(shù)形結(jié)合、化歸等重要數(shù)學(xué)思想,有利于培養(yǎng)學(xué)生良好的思維品質(zhì)。
2、 教學(xué)目標(biāo)
。1)知識(shí)目標(biāo):探索基本不等式的證明過程;會(huì)用基本不等式解決最值問題。
(2)能力目標(biāo):培養(yǎng)學(xué)生觀察、試驗(yàn)、歸納、判斷、猜想等思維能力。
。3)情感目標(biāo):培養(yǎng)學(xué)生嚴(yán)謹(jǐn)求實(shí)的科學(xué)態(tài)度,體會(huì)數(shù)與形的和諧統(tǒng)一,領(lǐng)略數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生的.學(xué)習(xí)興趣和勇于探索的精神。
3、教學(xué)重點(diǎn)、難點(diǎn)
根據(jù)課程標(biāo)準(zhǔn)制定如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn): 應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索基本不等式。
難點(diǎn):基本不等式的內(nèi)涵及幾何意義的挖掘,用基本不等式求最值。
二、教法說明
本節(jié)課借助幾何畫板,使用多媒體輔助進(jìn)行直觀演示。采用啟發(fā)式教學(xué)法創(chuàng)設(shè)問題情景,激發(fā)學(xué)生開始嘗試活動(dòng)。運(yùn)用生活中的實(shí)際例子,讓學(xué)生享受解決實(shí)際問題的樂趣。 課堂上主要采取對(duì)比分析;讓學(xué)生邊議、邊評(píng);組織學(xué)生學(xué)、思、練。通過師生和諧對(duì)話,使情感共鳴,讓學(xué)生的潛能、創(chuàng)造性最大限度發(fā)揮,使認(rèn)知效益最大。讓學(xué)生愛學(xué)、樂學(xué)、會(huì)學(xué)、學(xué)會(huì)。
三、學(xué)法指導(dǎo)
為更好的貫徹課改精神,合理的對(duì)學(xué)生進(jìn)行素質(zhì)教育,在教學(xué)中,始終以學(xué)生主體,教師為主導(dǎo)。因此我在教學(xué)中讓學(xué)生從不同角度去觀察、分析,指導(dǎo)學(xué)生解決問題,感受知識(shí)的形成過程,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和能力,讓學(xué)生學(xué)會(huì)學(xué)習(xí)。
四、教學(xué)設(shè)計(jì)
◆運(yùn)用2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)引入
◆運(yùn)用分析法證明基本不等式
◆不等式的幾何解釋
◆基本不等式的應(yīng)用
1、運(yùn)用2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)引入
如圖,這是在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)。會(huì)標(biāo)根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。(展示風(fēng)車)
正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,設(shè)AE=a,BE=b,則正方形的面積為S=__,Rt△ABE,Rt△BCF,Rt△CDG,Rt△ADH是全等三角形,它們的面積之和是S’=_
從圖形中易得,s≥s’,即
問題1:它們有相等的情況嗎?何時(shí)相等?
問題2:當(dāng) a,b為任意實(shí)數(shù)時(shí),上式還成立嗎?(學(xué)生積極思考,通過幾何畫板幫助學(xué)生理解)
一般地,對(duì)于任意實(shí)數(shù)a、b,我們有
當(dāng)且僅當(dāng)(重點(diǎn)強(qiáng)調(diào))a=b時(shí),等號(hào)成立(合情推理)
問題3:你能給出它的證明嗎?(讓學(xué)生獨(dú)立證明)
設(shè)計(jì)意圖
。1)運(yùn)用2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)引入,能讓學(xué)生進(jìn)一步體會(huì)中國(guó)數(shù)學(xué)的歷史悠久,感受數(shù)學(xué)與生活的聯(lián)系。
。2)運(yùn)用此圖標(biāo)能較容易的觀察出面積之間的關(guān)系,引入基本不等式很直觀。
。3)三個(gè)思考題為學(xué)生創(chuàng)造情景,逐層深入,強(qiáng)化理解。
2、運(yùn)用分析法證明基本不等式
如果 a>0,b>0 ,
用 和 分別代替a,b.可以得到
也可寫成
。◤(qiáng)調(diào)基本不等式成立的前提條件"正")(演繹推理)
問題4:你能用不等式的性質(zhì)直接推導(dǎo)嗎?
要證 ①
只要證 ②
要證② ,只要證 ③
要證③ ,只要證 ④
顯然, ④是成立的。當(dāng)且僅當(dāng)a=b時(shí), 不等式中的等號(hào)成立。
。◤(qiáng)調(diào)基本不等式取等的條件"等")
設(shè)計(jì)意圖
。1)證明過程課本上是以填空形式出現(xiàn)的,學(xué)生能夠獨(dú)立完成,這也能進(jìn)一步培養(yǎng)學(xué)生的自學(xué)能力,符合課改精神;
。2)證明過程印證了不等式的正確性,并能加深學(xué)生對(duì)基本不等式的理解;
。3)此種證明方法是"分析法",在選修教材的《推理與證明》一章中會(huì)重點(diǎn)講解,此處有必要讓學(xué)生初步了解。
3、不等式的幾何解釋
如圖,AB是圓的直徑,C是AB上任一點(diǎn),AC=a,CB=b,過點(diǎn)C作垂直于AB的弦DE,連AD,BD,則CD= ,半徑為
問題5: 你能用這個(gè)圖得出基本不等式的幾何解釋嗎? (學(xué)生積極思考,通過幾何畫板幫助學(xué)生理解)
設(shè)計(jì)意圖
幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學(xué)習(xí)和理解數(shù)學(xué),是數(shù)學(xué)學(xué)習(xí)中的重要方面。只有做到了直觀上的理解,才是真正的理解。
4、基本不等式的應(yīng)用
例1.證明
。▽W(xué)生自己證明)
設(shè)計(jì)意圖
。1)這道例題很簡(jiǎn)單,多數(shù)學(xué)生都會(huì)仿照課本上的分析思路重新證明,能夠練習(xí)"分析法"證明不等式的過程;
。2)學(xué)生能夠加深對(duì)基本不等式的理解,a和b不僅僅是一個(gè)字母,而是一個(gè)符號(hào),它們可以是a、b,也可以是x、y,也可以是一個(gè)多項(xiàng)式;
。3)此例不是課本例題,比課本例題簡(jiǎn)單,這樣,循序漸進(jìn), 有利于學(xué)生理解不等式的內(nèi)涵。
例2:(1)把36寫成兩個(gè)正數(shù)的積,當(dāng)兩個(gè)正數(shù)取什么值時(shí),它們的和最?
。2)把18寫成兩個(gè)正數(shù)的和,當(dāng)兩個(gè)正數(shù)取什么值時(shí),它們的積最大?
。ㄗ寣W(xué)生分組合作、探究完成)
設(shè)計(jì)意圖
。1)此題目利用基本不等式求最值,包含正用,逆用,體現(xiàn)了基本不等式的應(yīng)用價(jià)值;
(2)強(qiáng)調(diào)利用不等式求最值的關(guān)鍵點(diǎn):"正""定""等";
。3)有利于培養(yǎng)學(xué)生團(tuán)結(jié)合作的精神。
練習(xí) :(1)若a,b同號(hào),則
(2)P113 練習(xí)1.2
設(shè)計(jì)意圖
鞏固基本不等式,讓學(xué)生熟悉公式,并學(xué)會(huì)應(yīng)用。
小結(jié):(讓學(xué)生暢所欲言)
設(shè)計(jì)意圖
有利于發(fā)揮學(xué)生的主觀能動(dòng)性,突出學(xué)生的主體地位。
作業(yè): 必做題:P 113 A組3、4
選做題:
設(shè)計(jì)意圖
(1)必做題是讓學(xué)生鞏固所學(xué)知識(shí),熟練公式應(yīng)用,強(qiáng)化學(xué)生基礎(chǔ)知識(shí)、基本技能的形成;
。2)選做題達(dá)到分層教學(xué)的目的,根據(jù)學(xué)生的實(shí)際情況,對(duì)他們進(jìn)行素質(zhì)教育。
時(shí)間安排:引入約5分鐘
證明基本不等式約10分鐘
幾何意義約10分鐘
知識(shí)應(yīng)用約15分鐘
小結(jié)約5分鐘
五、板書設(shè)計(jì)
分析法證明
幾何解釋
例題講解
小結(jié)
作業(yè)
例2
以上是我對(duì)這節(jié)課的教學(xué)設(shè)計(jì),懇請(qǐng)各位評(píng)委老師指導(dǎo),謝謝!
【基本不等式說課課件】相關(guān)文章:
不等式的基本性質(zhì)課后說課12-17
不等式說課課件06-11
高三基本不等式課件04-01
體育說課 課件03-14
體育說課的課件06-10
窮人說課 課件03-19
故鄉(xiāng)說課的課件03-20
插花課件說課06-11