一個數(shù)除以小數(shù)小學(xué)數(shù)學(xué)說課稿
一、 教學(xué)理念
教師的教學(xué)方案必須建立在學(xué)生的基礎(chǔ)之上。新課程標(biāo)準(zhǔn)指出,“數(shù)學(xué)課程不僅要考慮教學(xué)自身的特點,更應(yīng)遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,強調(diào)從學(xué)生已有的生活經(jīng)驗出發(fā)……數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認知發(fā)展水平和已有知識經(jīng)驗基礎(chǔ)之上。”
筆者認為教學(xué)中成功的關(guān)健在于:教師的“教”立足于學(xué)生的“學(xué)”。
1、從學(xué)生的思維實際出發(fā),激發(fā)探索知識的愿望,不同發(fā)展階段的學(xué)生在認知水平、認知風(fēng)格和發(fā)展趨勢上存在差異,處于同一階段的不同學(xué)生在認知水平、認知風(fēng)格和發(fā)展趨勢上也存在著差異。人的智力結(jié)構(gòu)是多元的,有的人善于形象思維,有的人長于計算,有的人擅長邏輯思維,這就是學(xué)生 的實際。教學(xué)要越貼近學(xué)生的實際,就越需要學(xué)生自己來探索知識,包括發(fā)現(xiàn)問題,分析、解決問題。在引導(dǎo)學(xué)生感受算理與算法的過程中,放手讓學(xué)生嘗試,讓學(xué)生主動、積極地參與新知識的形成過程中,并適時調(diào)動學(xué)生大膽說出自己的方法,然后讓學(xué)生自己去比較方法的正確與否,簡單與否。這樣學(xué)生對算理與算法用自己的思維方式,既明于心又說于口。
2、遇到課堂中學(xué)生分析問題或解決問題出現(xiàn)錯誤,特別是一些受思維定勢影響的“規(guī)律性錯誤”比如學(xué)生在處理商的小數(shù)點時受到小數(shù)加減法的影響。教師針對這種情況,是批評、簡單否定還是鼓勵大膽發(fā)言、各抒己見,然后讓學(xué)生發(fā)現(xiàn)錯誤,驗證錯誤?當(dāng)然應(yīng)該是鼓勵學(xué)生大膽地發(fā)表自己的意見、看法、想法。學(xué)生對自己的方法等于進行了一次自我否定。這樣對教學(xué)知識的理解就比較深刻,既知其然,又知其所以然。而且學(xué)生通過對自己提出的問題,分析或解決的問題提出質(zhì)疑,自我否定,有利于學(xué)生促進反思能力與自我監(jiān)控能力。
數(shù)學(xué)教學(xué)活動應(yīng)該是一個從具體問題中抽象出數(shù)學(xué)問題,并用多種數(shù)學(xué)語言分析它,用數(shù)學(xué)方法解決它,從中獲得相關(guān)的知識與方法,形成良好的思維習(xí)慣和應(yīng)用數(shù)學(xué)的意識,感受教學(xué)創(chuàng)造的樂趣,增進學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,獲得對數(shù)學(xué)較為全面的體驗與理解。因此,學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,要向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們掌握基本的數(shù)學(xué)知識、技能、思想、方法,獲得豐富的數(shù)學(xué)活動經(jīng)驗。
二、教學(xué)思路
一個數(shù)除以小數(shù)“即”除數(shù)是小數(shù)的除法“是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第九冊的重點知識之一。本節(jié)教材的重點是:除數(shù)是小數(shù)的除法轉(zhuǎn)化成除數(shù)是整數(shù)的除法時小數(shù)點的移位法則。其關(guān)鍵是根據(jù)”除數(shù)、被除數(shù)同時擴大相同的倍數(shù),商不變“的性質(zhì),把除數(shù)是小數(shù)的除法轉(zhuǎn)化成除數(shù)是整數(shù)的除法。
1、 調(diào)查分析
在教學(xué)小數(shù)除法前一個星期,筆者對曾對班內(nèi)十五位同學(xué)進行了一次簡單的調(diào)查,(調(diào)查結(jié)果見附表)筆者認為學(xué)生存在很大的教學(xué)潛能,這些潛在的”能源“就是教學(xué)的依據(jù),教學(xué)的資源。從上表可以得出以下結(jié)論:
。1) 學(xué)生對小數(shù)除法的基礎(chǔ)掌握的比較鞏固。
(2) 學(xué)生運用新知識解決實際問題的能力存在比較明顯的差異,但不同的學(xué)生具有不同的潛力。
(3) 優(yōu)秀學(xué)生與學(xué)習(xí)困難生對算理的理解在思維水平上有較大差異。但對豎式書寫都不規(guī)范。
筆者認為小數(shù)除法如果按照教材按部就班教學(xué)是很不合理的`,不僅浪費教學(xué)時間,而且不利于學(xué)生從整體上把握小數(shù)除法,不利于知識的系統(tǒng)性的形成,更不利于學(xué)生對知識的建構(gòu)。因此,筆者選擇了重組教材。(把例6例7與例8有機的結(jié)合在一起)
2、利用遷移,明確轉(zhuǎn)化原理
理解除數(shù)是小數(shù)的除法的計算法則的算理是”商不變的性質(zhì)“和”小數(shù)點位置移動引起小數(shù)大小變化的規(guī)律“,把除數(shù)是小數(shù)的除法轉(zhuǎn)化成除數(shù)是整數(shù)的除法后就用”除數(shù)是整數(shù)的小數(shù)除法“計算法則進行計算。為了促進遷移,明確轉(zhuǎn)化移位的原理,可設(shè)計如下環(huán)節(jié):
。1)、小數(shù)點移動規(guī)律的復(fù)習(xí)
。2)、商不變規(guī)律的復(fù)習(xí)
。3)、移位練習(xí)
3、試做例題,掌握轉(zhuǎn)化方法
明確轉(zhuǎn)化原理后,讓學(xué)生試算例題。在試做的基礎(chǔ)上引導(dǎo)學(xué)生進行觀察比較,抽象出轉(zhuǎn)化時小數(shù)點的移位方法,最后概括總結(jié)出移位的法則。具體做法如下:
、佟W(xué)生試做例題6例題7,并講出每個例題小數(shù)點移位的方法。
②。學(xué)生試做例8
③。引導(dǎo)學(xué)生概括總結(jié)出轉(zhuǎn)化時移位的方法,同時在此基礎(chǔ)上歸納出除數(shù)是小數(shù)的除法計算法則。在得出計算法則后,還要注意強調(diào):
。1)小數(shù)點向右移動的位數(shù)取決于除數(shù)的小數(shù)位數(shù),而不由被除數(shù)的小數(shù)位數(shù)確定。
(2)整數(shù)除法中,兩個數(shù)相除的商不會大于被除數(shù),而在小數(shù)除法中,當(dāng)除數(shù)小于1時,商反而比被除數(shù)大。
。3)要注意小數(shù)除法里余數(shù)的數(shù)值問題。對這一問題可舉例說明。如:57.4÷24,要使學(xué)生懂得余數(shù)是2.2,而不是22。
4、專項訓(xùn)練,提高“轉(zhuǎn)化”技能
除數(shù)是小數(shù)的除法,把除數(shù)轉(zhuǎn)化成整數(shù)后,被除數(shù)可能出現(xiàn)以下情況:被除數(shù)仍是小數(shù);被除數(shù)恰好也成整數(shù);被除數(shù)末尾還要補“0”。針對上述情況可作專項訓(xùn)練:
、佟XQ式移位練習(xí)。練習(xí)在豎式中移動小數(shù)點位置時,要求學(xué)生把劃去的小數(shù)點和移動后的小數(shù)點寫清楚,新點上的小數(shù)點要點清楚,做到先劃、再移、后點。這種練習(xí)小數(shù)點移位形象具體,學(xué)生所得到的印象深刻。
、凇M式移位練習(xí)。練習(xí)在橫式中移動小數(shù)點位置時,由于“劃、移、點”只反映在頭腦里,這就需要學(xué)生把轉(zhuǎn)化前后的算式建立起等式,使人一目了然。
【一個數(shù)除以小數(shù)小學(xué)數(shù)學(xué)說課稿】相關(guān)文章:
小學(xué)數(shù)學(xué)《一個數(shù)除以小數(shù)》說課稿08-22
小學(xué)數(shù)學(xué)《一個數(shù)除以小數(shù)》說課稿07-08
小學(xué)數(shù)學(xué)《一個數(shù)除以小數(shù)》說課稿01-15
小學(xué)數(shù)學(xué)一個數(shù)除以小數(shù)的說課稿11-29
小學(xué)數(shù)學(xué)一個數(shù)除以小數(shù)的說課稿07-08