高三數(shù)學(xué)《二項式定理》說課稿
在教學(xué)工作者開展教學(xué)活動前,就不得不需要編寫說課稿,借助說課稿可以提高教學(xué)質(zhì)量,取得良好的教學(xué)效果。那么寫說課稿需要注意哪些問題呢?以下是小編精心整理的高三數(shù)學(xué)《二項式定理》說課稿,希望能夠幫助到大家。
一、教材分析:
1、知識內(nèi)容:二項式定理及簡單應(yīng)用
2、地位及重要性
二項式定理是安排在高中數(shù)學(xué)排列組合內(nèi)容后的一部分內(nèi)容,其形成過程是組合知識的應(yīng)用,同時也是自成體系的知識塊,為隨后學(xué)習(xí)的概率知識及高三選修概率與統(tǒng)計,作知識上的鋪墊。二項展開式與多項式乘法有密切的聯(lián)系,本節(jié)知識的學(xué)習(xí),必然從更廣的視角和更高的層次來審視初中學(xué)習(xí)的關(guān)于多項式變形的知識。運用二項式定理可以解決一些比較典型的數(shù)學(xué)問題,例如近似計算、整除問題、不等式的證明等。
3、教學(xué)目標
A、知識目標:
。1)使學(xué)生參與并探討二項式定理的形成過程,掌握二項式系數(shù)、字母的冪次、展開式項數(shù)的規(guī)律
。2)能夠應(yīng)用二項式定理對所給出的二項式進行正確的展開
B、能力目標:
。1)在學(xué)生對二項式定理形成過程的參與、探討過程中,培養(yǎng)學(xué)生觀察、猜想、歸納的能力及分類討論解決問題的能力
。2)培養(yǎng)學(xué)生的化歸意識和知識遷移的能力
c、情感目標:
。1)通過學(xué)生自主參與和二項式定理的形成過程培養(yǎng)學(xué)生解決數(shù)學(xué)問題的信心;
。2)通過學(xué)生自主參與和二項式定理的形成過程培養(yǎng)學(xué)生體會到數(shù)學(xué)內(nèi)在和諧對稱美;
。3)培養(yǎng)學(xué)生的民族自豪感,在學(xué)習(xí)知識的過程中進行愛國主義教育。
4、重點難點:
重點:
。1)使學(xué)生參與并深刻體會二項式定理的形成過程,掌握二項式系數(shù)、字母的冪次、展開式項數(shù)的規(guī)律;
。2)能夠利用二項式定理對給出的二項式進行正確的展開。
難點:二項式定理的發(fā)現(xiàn)。
二、教法學(xué)法分析
為了達到這節(jié)課的目標:掌握并能運用二項式定理,讓學(xué)生主動探索展開式的由來是關(guān)鍵。“學(xué)習(xí)任何東西最好的途徑是自己去發(fā)現(xiàn)”正所謂“學(xué)問之道,問而得,不如求而得之深固也”本節(jié)課的教法貫穿啟發(fā)式教學(xué)原則,以啟發(fā)學(xué)生主動學(xué)習(xí),積極探索為主。創(chuàng)設(shè)一個以學(xué)生為主體,師生互動、共同探索的教與學(xué)的情境。通過復(fù)習(xí)引入,引申設(shè)疑,實驗猜想,歸納推廣等環(huán)節(jié)進行對此定理的探索。不僅重視知識的結(jié)果,而且重視知識的發(fā)生、發(fā)現(xiàn)和解決的過程,貫切新課程理念。
另外,根據(jù)“近發(fā)展區(qū)的理論”精心設(shè)置問題,調(diào)控問題的解決過程培育這節(jié)課最佳的知識生長點。
三、教學(xué)過程
1、情景設(shè)置
問題1:若今天是星期二,再過30天后的那一天是星期幾?怎么算?
預(yù)期回答:星期四,將問題轉(zhuǎn)化為求“30被7除后算余數(shù)”是多少?
問題2:若今天是星期二,再過810天后的那一天是星期幾?
問題3:若今天是星期二,再過天后是星期幾?怎么算?
預(yù)期回答:將問題轉(zhuǎn)化為求“被7除后算余數(shù)”是多少?
在初中,我們已經(jīng)學(xué)過了
。╝+b)2=a2+2ab+b2
。╝+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3
。ㄌ釂枺簩τ冢╝+b)4,(a+b)5如何展開?(利用多項式乘法)
。ㄔ偬釂枺海╝+b)100又怎么辦?(a+b)n(n?N+)呢?
我們知道,事物之間或多或少存在著規(guī)律。也就是研究(a+b)n(n?N+)的展開式是什么?這就是本節(jié)課要學(xué)的內(nèi)容。這節(jié)課,我們就來研究(a+b)n的二項展開式的規(guī)律性。學(xué)完本課后,此題就不難求解了。
(設(shè)計意圖:使學(xué)生明確學(xué)習(xí)目的,用懸念來激發(fā)他們的學(xué)習(xí)動機。奧蘇貝爾認為動機是學(xué)習(xí)的先決條件,而認知驅(qū)力,即學(xué)生渴望認知、理解和掌握知識,并能正確陳述問題、順利解決問題的傾向是學(xué)生學(xué)習(xí)的重要動力。)
2、新授
第一步:讓學(xué)生展開
問題1:以的展開式為例,說出各項字母排列的規(guī)律;項數(shù)與乘方指數(shù)的關(guān)系;展開式第二項的系數(shù)與乘方指數(shù)的關(guān)系。
預(yù)期回答:①展開式每一項的`次數(shù)按某一字母降冪、另一字母升冪排列,且兩個字母冪指數(shù)的和等于乘方指數(shù);②展開式的項數(shù)比乘方指數(shù)多1;③展開式中第二項的系數(shù)等于乘方指數(shù)。
第二步:繼續(xù)設(shè)疑
如何展開以及呢?
(設(shè)計意圖:讓學(xué)生感到僅掌握楊輝三角形是不夠的,激發(fā)學(xué)生繼續(xù)學(xué)習(xí)新的更簡捷的方法的欲望。)
繼續(xù)新授
師:為了尋找規(guī)律,我們以中為例
問題1:以項為例,有幾種情況相乘均可得到項?這里的字母各來自哪個括號?
問題2:既然以上的字母分別來自4個不同的括號,項的系數(shù)你能用組合數(shù)來表示嗎?
問題3:你能將問題2所述的意思改編成一個排列組合的命題嗎?
。A(yù)期答案:有4個括號,每個括號中有兩個字母,一個是、一個是。每個括號只能取一個字母,任取兩個、兩個,然后相乘,問不同的取法有幾種?)
問題4:請用類比的方法,求出二項展開式中的其它各項系數(shù)(用組合數(shù)的形式進行填寫),
呈現(xiàn)二項式定理
3、深化認識
請學(xué)生總結(jié):
、俣検蕉ɡ碚归_式的系數(shù)、指數(shù)、項數(shù)的特點是什么?
、诙検蕉ɡ碚归_式的結(jié)構(gòu)特征是什么?哪一項最具有代表性?
由此,學(xué)生得出二項式定理、二項展開式、二項式系數(shù)、項的系數(shù)、二項展開式的通項等概念,這是本課的重點。
。ㄔO(shè)計意圖:教師用邊講邊問的形式,通過讓學(xué)生自己總結(jié)、發(fā)現(xiàn)規(guī)律,挖掘?qū)W習(xí)材料潛在的意義,從而使學(xué)習(xí)成為有意義的學(xué)習(xí)。)
4、鞏固應(yīng)用
例1—3是課本原題,由于是第一節(jié)課所以題目類型較基礎(chǔ)
最后解決起始問題:今天是星期二,再過8n天后的那一天是星期幾?
解:8n=(7+1)n=cn07n+cn17n—1+cn27n—2+…+cnn—17+cnn
因為cnn前面各項都是7的倍數(shù),故都能被7整除。
因此余數(shù)為cnn=1
所以應(yīng)為星期三
四、回顧小結(jié):
通過學(xué)生主動探索的學(xué)習(xí)過程,使學(xué)生清晰的掌握二項式定理的內(nèi)容,更體會到了二項式定理形成的思考方式,為后繼課程(n次獨立重復(fù)實驗恰好發(fā)生k次)的學(xué)習(xí)打下了基礎(chǔ)。
而二項式定理內(nèi)容本身對解釋二項分布有很直接的功效,因為二項分布中所有概率和恰好是二項式。
課后記:
準備這節(jié)課,我主要思考了這么幾個問題:
(1)這節(jié)課的教學(xué)目的“使學(xué)生掌握二項式定理”重要,還是“使學(xué)生掌握二項式定理的形成過程”重要?我反復(fù)斟酌,認為后者重要。于是,我這節(jié)課花了大部分時間是來引導(dǎo)學(xué)生探究“為什么可以用組合數(shù)來表示二項式定理中各項的二項式系數(shù)?”
。2)學(xué)生怎樣才能掌握二項式定理?是通過大量的練習(xí)來達到目的,還是通過學(xué)生對二項式定理的形成過程來記憶?正如前面所說“學(xué)問之道,問而得,不如求而得之深固也”。我還是要求學(xué)生自主的去探索二項式定理。這樣也符合以教師為主導(dǎo)、學(xué)生為主體、師生互動的新課程教學(xué)理念。
。3)準備什么樣的例題?例題的目的是為了鞏固本節(jié)課所學(xué),例題1是很直接的二項式定理內(nèi)容的應(yīng)用;為了更好的讓學(xué)生體會到二項式定理形成過程中的思考問題的方式,并培養(yǎng)學(xué)生知識的遷移能力,我增加了例題,但是難免還有一些有不足之處,希望各位老師能不吝賜教。謝謝!