關(guān)于八年級(jí)數(shù)學(xué)說課稿范文(精選5篇)
作為一位杰出的老師,時(shí)常需要用到說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那么說課稿應(yīng)該怎么寫才合適呢?下面是小編收集整理的關(guān)于八年級(jí)數(shù)學(xué)說課稿范文(精選5篇),僅供參考,大家一起來看看吧。
八年級(jí)數(shù)學(xué)說課稿1
一、教材分析
1、在教材中的作用與地位
《菱形》緊接《矩形》一節(jié)之后。縱觀整個(gè)初中平面幾何教材,它是在學(xué)生掌握了平行四邊形的性質(zhì)與判定,又學(xué)習(xí)了特殊的平行四邊形——矩形,具備了初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上講授的。這一節(jié)課既是前面所學(xué)知識(shí)的繼續(xù),又是后面學(xué)習(xí)正方形等知識(shí)的基礎(chǔ),起著承前啟后的作用。
2、從教材編寫角度看
教材從學(xué)生年齡特征、文化知識(shí)的實(shí)際水平出發(fā),先讓學(xué)生動(dòng)手做,動(dòng)腦思考,然后與同伴交流、探索、總結(jié)歸納,升華得出菱形的性質(zhì)及判定,這樣的安排使抽象的定理讓學(xué)生更易于接受,并能在整個(gè)的教學(xué)過程中真正享受到探索的樂趣。
我選擇的是初二(1)班,該班級(jí)是年段的普通班,學(xué)生的情況是中等學(xué)生較多,尖子生只有個(gè)別,還有8至10名的學(xué)習(xí)上落后的學(xué)生。因此長(zhǎng)期以來我都堅(jiān)持做好培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和自主學(xué)習(xí)的能力的工作。
3、基于對(duì)教材和班級(jí)學(xué)情的分析,我認(rèn)為本節(jié)課的教學(xué)有幾個(gè)方面需要把握好的:
、疟竟(jié)課的課題是:探索菱形的重要性質(zhì);
、颇繕(biāo)是:讓學(xué)生能在動(dòng)手實(shí)踐過程中發(fā)現(xiàn)并理解菱形的性質(zhì);
⑶重點(diǎn)是:菱形的定義與性質(zhì);
、冉虒W(xué)難點(diǎn)是:菱形性質(zhì)的靈活運(yùn)用。
4、根據(jù)新課程標(biāo)準(zhǔn)的要求及學(xué)生的實(shí)際情況,本節(jié)課我制定了如下教學(xué)目標(biāo):
。ㄒ唬┲R(shí)與技能
。1)知道菱形在現(xiàn)實(shí)生活中有廣泛的應(yīng)用。
。2)熟記菱形的有關(guān)性質(zhì)和識(shí)別條件,并能靈活運(yùn)用。
(二)過程與方法
經(jīng)歷探索菱形的性質(zhì)和識(shí)別條件的過程,在觀察、操作和分析的過程中,進(jìn)一步增進(jìn)主動(dòng)探究的意識(shí),體會(huì)說理的基本方法。
(三)情感態(tài)度價(jià)值觀
體驗(yàn)數(shù)學(xué)活動(dòng)來源于生活又服務(wù)于生活,體會(huì)菱形的圖形美,提高學(xué)生的學(xué)習(xí)興趣。
二、教法分析
1、教學(xué)設(shè)計(jì)思想
菱形是特殊的平行四邊形,后繼課要學(xué)的正方形具有菱形的一切性質(zhì)。這節(jié)課教學(xué)時(shí)注重學(xué)生的探索過程,讓觀察、猜測(cè)、驗(yàn)證,獲得知識(shí),培養(yǎng)主動(dòng)探究的能力。首先由生活中的圖片引入,引起學(xué)生學(xué)習(xí)興趣,發(fā)現(xiàn)菱形在生活中的廣泛應(yīng)用,然后設(shè)計(jì)幾個(gè)探究性問題,讓學(xué)生小組討論,相互交流,形成共識(shí)。講解例題時(shí)根據(jù)學(xué)生特點(diǎn)幫助他們分析題意,靈活運(yùn)用菱形的性質(zhì)與識(shí)別條件解題。
2、教學(xué)方法
針對(duì)本節(jié)課的特點(diǎn),我準(zhǔn)備采用“創(chuàng)設(shè)情境→觀察探索→總結(jié)歸納→知識(shí)運(yùn)用”為主線的教學(xué)模式,觀察分析討論相結(jié)合的方法。在教學(xué)過程中引導(dǎo)學(xué)生經(jīng)過觀察、思考、探索、交流獲得知識(shí),形成能力。在教學(xué)過程中注意創(chuàng)設(shè)思維情境,堅(jiān)持學(xué)生主體,教師主導(dǎo),在合作、交流的氣氛下進(jìn)行師生互動(dòng),培養(yǎng)學(xué)生的自學(xué)能力和創(chuàng)新意識(shí),讓學(xué)生在老師的指導(dǎo)下自始至終處于一種積極思維、主動(dòng)探究的學(xué)習(xí)狀態(tài)。同時(shí)借助多媒體進(jìn)行演示,以增加課堂容量和教學(xué)的直觀性,更好的理解菱形的性質(zhì),解決教學(xué)難點(diǎn)。
三、學(xué)法指導(dǎo)
在本節(jié)課的教學(xué)中,要幫助學(xué)生學(xué)會(huì)運(yùn)用觀察、分析、比較、歸納、概括等方法,得出解決問題的方法,使傳授知識(shí)與培養(yǎng)能力融為一體,使學(xué)生不僅學(xué)到科學(xué)的探究方法,而且體驗(yàn)到探究的甘苦,領(lǐng)會(huì)到成功的喜悅。
四、教學(xué)過程
。ㄒ唬┮胄抡n
在復(fù)習(xí)了平行四邊形與矩形的性質(zhì)后創(chuàng)設(shè)教學(xué)情景。如:出示我國(guó)古代文物越王勾踐劍的圖片,指出菱形花紋,再展示生活中的菱形圖案的應(yīng)用圖片。由此引出課題,可以吸引同學(xué)的注意,使其產(chǎn)生學(xué)習(xí)菱形的興趣。之后,我安排了由
平行四邊形到菱形的動(dòng)態(tài)演示,得出菱形的定義。隨后又展示了一組生活中的有關(guān)菱形的圖片,使學(xué)生認(rèn)識(shí)到菱形在生活中的廣泛應(yīng)用,并欣賞到菱形的圖形美。
設(shè)計(jì)意圖:從生活實(shí)際出發(fā),首先吸引住學(xué)生的注意力,激起學(xué)生的學(xué)習(xí)欲望。著名教育家蘇霍姆林斯基說過:如果教師不想方設(shè)法使學(xué)生進(jìn)入情緒高昂和智力振奮的內(nèi)心狀態(tài)就急于傳授知識(shí),那么這種知識(shí)只能使人產(chǎn)生冷漠的態(tài)度,而不動(dòng)感情的腦力勞動(dòng)就會(huì)帶來疲憊。
。ǘ┝庑涡再|(zhì)的探索
菱形性質(zhì)的探索分成兩方面,一是菱形的特殊性(與平行四邊形不同的性質(zhì));二是菱形的對(duì)稱性。對(duì)于這個(gè)地方,主要采取學(xué)生自主探究的形式,通過觀察思考與分析,同學(xué)間互相交流,分小組進(jìn)行總結(jié)歸納。教師在巡視中進(jìn)行個(gè)別指導(dǎo)。在探索過程中,鼓勵(lì)學(xué)生力求尋找多種方法解決問題,同時(shí)還可以組織組與組的評(píng)比,這樣也能培養(yǎng)他們的競(jìng)爭(zhēng)意識(shí),然后每組由一名學(xué)生代表發(fā)言,讓學(xué)生鍛煉自己的表達(dá)能力,讓學(xué)生的個(gè)性得到充分的展示。最后教師與學(xué)生一起總結(jié)歸納,得出菱形的性質(zhì)。
設(shè)計(jì)理念:這一教學(xué)活動(dòng)的設(shè)計(jì)主要為了確保學(xué)生主體作用得到充分發(fā)揮,讓學(xué)生從被動(dòng)學(xué)到主動(dòng)學(xué),從接受知識(shí)到探索知識(shí),從個(gè)人學(xué)習(xí)到合作交流。這樣的活動(dòng)教學(xué)將會(huì)真正煥發(fā)出課堂教學(xué)的活力,從而在課堂教學(xué)中注入一種新課程理念:給學(xué)生一個(gè)空間,讓他們自己往前走;給學(xué)生一個(gè)時(shí)間,讓他們自己去安排;給學(xué)生一個(gè)問題,讓他們自己去找答案;給學(xué)生一個(gè)條件,讓他們自己去鍛煉;給學(xué)生一個(gè)題目,讓他們自己去創(chuàng)造;給學(xué)生一個(gè)機(jī)會(huì),讓他們自己去抓住。
。ㄈ╊}目訓(xùn)練
為了進(jìn)一步落實(shí)教學(xué)目標(biāo),讓學(xué)生在學(xué)懂學(xué)會(huì)的基礎(chǔ)上融會(huì)貫通,我安排了坡度適中,題型多樣的系列題組。
1.請(qǐng)你當(dāng)裁判
與定義、性質(zhì)等相關(guān)的一些判斷題。
設(shè)計(jì)意圖:讓學(xué)生著重講清判斷的理由,此題直接運(yùn)用菱形的定義與性質(zhì),起到及時(shí)鞏固的作用,同時(shí)鍛煉學(xué)生的語言表達(dá)能力。
2.議一議
性質(zhì)的簡(jiǎn)單運(yùn)用。
設(shè)計(jì)意圖:稍微加深,進(jìn)一步鞏固菱形的性質(zhì),并能初步運(yùn)用。
3.練一練
菱形與直角三角形等知識(shí)的綜合運(yùn)用。并由此總結(jié)菱形的面積公式。即菱形的面積等于對(duì)角線乘積的一半。
設(shè)計(jì)意圖:這組練習(xí)包含了例題。要求學(xué)生不但可以順利完成簡(jiǎn)單的基礎(chǔ)填空練習(xí),而且能有條理的寫出例題的解題過程。教師及時(shí)查漏補(bǔ)缺,規(guī)范解題格式。此題完成后,學(xué)生已順利達(dá)到教學(xué)目標(biāo)。
4.學(xué)以致用
設(shè)計(jì)花壇,修建小路,求路長(zhǎng)與花壇面積。這是一道實(shí)際應(yīng)用問題。
設(shè)計(jì)意圖:目的是讓學(xué)生了解數(shù)學(xué)問題來源于生活實(shí)際,同時(shí)又運(yùn)用到實(shí)際生活中。讓學(xué)生充分體驗(yàn)歷經(jīng)困難探索結(jié)果而輕松用于實(shí)際的快樂感覺。
。ㄋ模┬〗Y(jié)、布置作業(yè)
菱形的性質(zhì)與識(shí)別條件,由學(xué)生進(jìn)行小結(jié)。布置書上課后習(xí)題,體會(huì)本節(jié)課你所獲得的成功經(jīng)驗(yàn),寫好數(shù)學(xué)日記,與同學(xué)交流。
設(shè)計(jì)意圖:讓學(xué)生寫數(shù)學(xué)日記這種作業(yè)形式,能夠培養(yǎng)學(xué)生善于歸納總結(jié)的能力,逐步養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
八年級(jí)數(shù)學(xué)說課稿2
各位評(píng)委,大家好!
今天我要說的課題是義務(wù)教育人教版初中八年級(jí)十七章第一節(jié)“反比例函數(shù)”。我將從如下步驟進(jìn)行。
一、說教材
1. 內(nèi)容分析:本節(jié)課是“反比例函數(shù)”的第一節(jié)課,是繼正比例函數(shù)、一次函數(shù)之后,二次函數(shù)之前的又一類型函數(shù),本節(jié)課主要通過豐富的生活事例,讓學(xué)生歸納出反比例函數(shù)的概念,并進(jìn)一步體會(huì)函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,從中體會(huì)函數(shù)的模型思想。因此本節(jié)課重點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念,所滲透的數(shù)學(xué)思想方法有:類比,轉(zhuǎn)化,建模。
2.學(xué)情分析:對(duì)八年級(jí)學(xué)生來說,雖然他們已經(jīng)對(duì)函數(shù),正比例函數(shù),一次函數(shù)的概念、圖象、性質(zhì)以及應(yīng)用有所掌握,但他們面對(duì)新的一次函數(shù)時(shí),還可能存在一些思維障礙,如學(xué)生不能準(zhǔn)確地找出變量之間的自變量和因變量,以及如何從事例中領(lǐng)悟和總結(jié)出反比例函數(shù)的概念,因此,本節(jié)課的難點(diǎn)是理解和領(lǐng)悟反比例函數(shù)的概念。
二、說教學(xué)目標(biāo)
根據(jù)本人對(duì)《數(shù)學(xué)課程標(biāo)準(zhǔn)》的理解與分析,考慮學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我把本課的目標(biāo)定為:
1.從現(xiàn)實(shí)的情境和已有的知識(shí)經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念。
三、說教法
本節(jié)課從知識(shí)結(jié)構(gòu)呈現(xiàn)的角度看,為了實(shí)現(xiàn)教學(xué)目標(biāo),我建立了“創(chuàng)設(shè)情境→建立模型→解釋知識(shí)→應(yīng)用知識(shí)”的學(xué)習(xí)模式,這種模式清晰地再現(xiàn)了知識(shí)的生成與發(fā)展的過程,也符合學(xué)生的認(rèn)知規(guī)律。于是,從教學(xué)內(nèi)容的性質(zhì)出發(fā),我設(shè)計(jì)了如下的課堂結(jié)構(gòu):創(chuàng)設(shè)出電流、行程等情境問題讓學(xué)生發(fā)現(xiàn)新知,把上述問題進(jìn)行類比,導(dǎo)出概念,獲得新知,最后總結(jié)評(píng)價(jià)、內(nèi)化新知。
四、說學(xué)法
我認(rèn)為學(xué)生將實(shí)際問題轉(zhuǎn)化成函數(shù)的能力是有限的,所以我借助多媒體輔助教學(xué),指導(dǎo)學(xué)生通過類比、轉(zhuǎn)化、直觀形象的觀察與演示,親身經(jīng)歷函數(shù)模型的轉(zhuǎn)化過程,為學(xué)生攻克難點(diǎn)創(chuàng)造條件,同時(shí)考慮到本課的重點(diǎn)是反比例函數(shù)概念的教學(xué),也考慮到概念教學(xué)要從大量實(shí)際出發(fā),通過事例幫助完成定義。因此,我采用了“問題式探究法”的.教法,利用多媒體設(shè)置豐富的問題情境,讓學(xué)生的思維由問題開始,到問題深化,讓學(xué)生的思維始終處于積極主動(dòng)的狀態(tài),并隨著問題的深入而跳躍。
五、說教學(xué)過程
(一)創(chuàng)設(shè)情境,發(fā)現(xiàn)新知
首先提出問題
問題1:小明同學(xué)用50元錢買學(xué)習(xí)用品,單價(jià)y(元)與數(shù)量x(件)之間的關(guān)系式是什么?
【設(shè)計(jì)意圖及教法說明】
在課開頭,我認(rèn)為以一個(gè)簡(jiǎn)單的數(shù)字問題引入,目的是讓學(xué)生在很快的時(shí)間里說出顯而易見的答案,便于增強(qiáng)學(xué)生學(xué)好本課的自信心,使他們能愉快地進(jìn)行新知的學(xué)習(xí)。
問題2:我們知道,電流I、電阻R、電壓U之間滿足關(guān)系式U=IR,當(dāng)U=220V,
(1)你能用含有R的代數(shù)式表示I嗎?
(2)利用寫出的關(guān)系式完成下表。
R/Ω 20 40 60 80 100
I/A
當(dāng)R越來越大時(shí),I怎樣變化?當(dāng)R越來越小呢?
(3)變量I是R的函數(shù)嗎?為什么?
【設(shè)計(jì)意圖及教法說明】
因?yàn)閿?shù)學(xué)來源于生活,并服務(wù)于生活,問題2是一個(gè)與物理有關(guān)的數(shù)學(xué)問題,這樣設(shè)計(jì)便于使學(xué)生把數(shù)學(xué)知識(shí)和物理知識(shí)相聯(lián)系,增加學(xué)科的相通性,另外通過本題的學(xué)習(xí),可以讓學(xué)生在情境中體會(huì)變量之間的關(guān)系,問題2先讓學(xué)生獨(dú)立思考,然后再同桌交流,最后小組討論并匯報(bào),此問題中的(1)(2)問題比較簡(jiǎn)單,學(xué)生可以獨(dú)立完成,但對(duì)于問題(3),老師要給適當(dāng)?shù)闹笇?dǎo)。
問題2的深化:舞臺(tái)燈光可以在很短的時(shí)間內(nèi)將陽光燦爛的晴日變成濃云密布的陰天,或由黑夜變成白晝,這樣的效果是通過什么來實(shí)現(xiàn)的?
【設(shè)計(jì)意圖及教法說明】
學(xué)生可以根據(jù)問題2以及學(xué)過的物理知識(shí)來解釋這個(gè)問題,這樣既增強(qiáng)學(xué)生學(xué)習(xí)新知的積極性,又達(dá)到了解決問題的目的。
問題3:京滬高速公路全長(zhǎng)約為1262km,汽車沿京滬高速公路從上海駛往北京,汽車行完全程所需時(shí)間t(h)與行駛的平均速度v(km/h)之間有怎樣的關(guān)系?變量t是v的函數(shù)嗎?為什么?
【設(shè)計(jì)意圖及教法說明】
問題3是一個(gè)行程問題,先讓學(xué)生獨(dú)立思考、同桌討論,最后列出正確的函數(shù)關(guān)系式,進(jìn)一步體會(huì)函數(shù)是刻畫變量之間關(guān)系的數(shù)學(xué)模型,為形成反比例函數(shù)的概念打基礎(chǔ)。
(二)合作探究,獲得新知
1.出示問題
想一想,你還能舉出類似的例子嗎?
【設(shè)計(jì)意圖及教法說明】
這個(gè)環(huán)節(jié)目的在于讓學(xué)生親身經(jīng)歷觀察、思考、抽象、概括、補(bǔ)充、完善的過程,讓學(xué)生嘗試用自己的語言說明他們的新發(fā)現(xiàn),培養(yǎng)他們的歸納能力和自主探索與合作交流的良好學(xué)習(xí)習(xí)慣,在這期間教師就是他們的合作者、引路人,邊聽、邊問、邊指導(dǎo),初步形成反比例函數(shù)的概念。
2.啟發(fā)學(xué)生建構(gòu)新知
反比例函數(shù)的定義:一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=k/x(k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。
反比例函數(shù)自變量不能為0!
反比例函數(shù)的一般形式:y= k/x(k為常數(shù),k≠0)
反比例函數(shù)的變式形式:k=yx,x=k/y(k為常數(shù),k≠0)
【設(shè)計(jì)意圖及教法說明】
這種從不同的問題情境中抽象出相同的數(shù)學(xué)模型,再進(jìn)行抽象得出概念的過程,并非教師所強(qiáng)加,而是學(xué)生通過自己分析走向概念,突破本節(jié)課的難點(diǎn),使學(xué)生的自豪感和成功感在活動(dòng)中得以提升,體現(xiàn)類比、轉(zhuǎn)化、建模等數(shù)學(xué)思想,把本節(jié)課推向高潮。
(三)反饋練習(xí),應(yīng)用新知
根據(jù)學(xué)生認(rèn)知的差異性,我設(shè)計(jì)了基礎(chǔ)過關(guān)和拓展訓(xùn)練兩類練習(xí)題。
1.基礎(chǔ)過關(guān)
(1)下列函數(shù)的表達(dá)式中,x表示自變量,那么哪些是反比例函數(shù)?每一個(gè)反比例函數(shù)相應(yīng)的k的值是多少?
、賧=x/5 ②y=6x-1 ③y=-3x-2 ④xy=2
【設(shè)計(jì)意圖及教法說明】
此題較簡(jiǎn)單,以口答的形式進(jìn)行,設(shè)計(jì)的目的是重視基礎(chǔ)知識(shí)的教學(xué)和面向全體學(xué)生的教學(xué),并告誡學(xué)生判斷一個(gè)函數(shù)是否是反比例函數(shù)不能單從形式上判斷,一定要嚴(yán)謹(jǐn)認(rèn)真,同時(shí)也完成了隨堂練習(xí)1。
(2)做一做
、僖粋(gè)矩形的面積為20cm2,相鄰的兩條邊長(zhǎng)分別是xcm和ycm,那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
、谀炒逵懈346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
、踶是x的反比例函數(shù),下表給出了x和y的一些值:
a.寫出這個(gè)反比例函數(shù)的表達(dá)式;
b.根據(jù)函數(shù)表達(dá)式完成下表。
表略。
【設(shè)計(jì)意圖及教法說明】
通過三個(gè)實(shí)際問題的解決,培養(yǎng)了學(xué)生“發(fā)現(xiàn)問題”、“解決問題”的能力,也達(dá)到了學(xué)以致用的目的。
2.能力拓展
(1)你能舉個(gè)反比例函數(shù)的實(shí)例嗎?與同學(xué)進(jìn)行交流。
(2)y=5xm是反比例函數(shù),求m的值。
【設(shè)計(jì)意圖及教法說明】
問題(1)是一個(gè)開放性的題,既解決了隨堂練習(xí)2,也培養(yǎng)了學(xué)生的發(fā)散性思維。問題(2)能助于學(xué)生抓住關(guān)鍵點(diǎn),澄清易錯(cuò)點(diǎn)(反比例函數(shù)中k≠0),并且加強(qiáng)了新舊知識(shí)的聯(lián)系。
(四)歸納總結(jié),反思提高
通過這節(jié)課的學(xué)習(xí)你有哪些收獲?還有哪些問題?與同伴進(jìn)行討論。
(如:你學(xué)到了什么?懂得了什么?你發(fā)現(xiàn)了什么?還有什么困惑?應(yīng)注意什么?還想知道什么?)
【設(shè)計(jì)意圖及教法說明】通過問題式的小結(jié),讓學(xué)生再次歸納、總結(jié)本節(jié)課的重點(diǎn),彌補(bǔ)教學(xué)中的不足。
(五)推薦作業(yè),分層落實(shí)
必做題:課本第134頁習(xí)題1、2題。
選做題:已知y與2x成反比例,且當(dāng)x=2時(shí),y=-1,求:
(1)y與x的函數(shù)關(guān)系式。
(2)當(dāng)x=4時(shí),y的值。
(3)當(dāng)y=4時(shí),x的值。
【設(shè)計(jì)意圖及教法說明】作業(yè)以推薦的形式進(jìn)行,必做題體現(xiàn)了對(duì)新課標(biāo)下“學(xué)有價(jià)值的數(shù)學(xué)”、“人人能獲得必要的數(shù)學(xué)”的落實(shí),選做題體現(xiàn)了讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。
八年級(jí)數(shù)學(xué)說課稿3
一、說教材:
本章的主要內(nèi)容包括:分式的概念,分式的基本性質(zhì),分式的約分與通分,分式的加、減、乘、除運(yùn)算,整數(shù)指數(shù)冪的概念及運(yùn)算性質(zhì),分式方程的概念及可化為一元一次方程的分式方程的解法。
全章共包括三節(jié):
16.1 分式
16.2 分式的運(yùn)算
16.3 分式方程
其中,16.1 節(jié)引進(jìn)分式的概念,討論分式的基本性質(zhì)及約分、通分等分式變形,是全章的理論基礎(chǔ)部分。16.2節(jié)討論分式的四則運(yùn)算法則,這是全章的一個(gè)重點(diǎn)內(nèi)容,分式的四則混合運(yùn)算也是本章教學(xué)中的一個(gè)難點(diǎn),克服這一難點(diǎn)的關(guān)鍵是通過必要的練習(xí)掌握分式的各種運(yùn)算法則及運(yùn)算順序。在這一節(jié)中對(duì)指數(shù)概念的限制從正整數(shù)擴(kuò)大到全體整數(shù),這給運(yùn)算帶來便利。16.3節(jié)討論分式方程的概念,主要涉及可以化為一元一次方程的分式方程。解方程中要應(yīng)用分式的基本性質(zhì),并且出現(xiàn)了必須檢驗(yàn)(驗(yàn)根)的環(huán)節(jié),這是不同于解以前學(xué)習(xí)的方程的新問題。根據(jù)實(shí)際問題列出分式方程,是本章教學(xué)中的另一個(gè)難點(diǎn),克服它的關(guān)鍵是提高分析問題中數(shù)量關(guān)系的能力。
分式是不同于整式的另一類有理式,是代數(shù)式中重要的基本概念;相應(yīng)地,分式方程是一類有理方程,解分式方程的過程比解整式方程更復(fù)雜些。然而,分式或分式方程更適合作為某些類型的問題的數(shù)學(xué)模型,它們具有整式或整式方程不可替代的特殊作用。
借助對(duì)分?jǐn)?shù)的認(rèn)識(shí)學(xué)習(xí)分式的內(nèi)容,是一種類比的認(rèn)識(shí)方法,這在本章學(xué)習(xí)中經(jīng)常使用。解分式方程時(shí),化歸思想很有用,分式方程一般要先化為整式方程再求解,并且要注意檢驗(yàn)是必不可少的步驟。
二、說教學(xué)目標(biāo):
1.進(jìn)一步掌握分式的有關(guān)概念,相關(guān)性質(zhì)及運(yùn)算法則,分式方程的解法。
2.會(huì)利用分式方程解決實(shí)際問題,培養(yǎng)分析問題,解決問題的能力和應(yīng)用意識(shí)。
三、說教學(xué)重難點(diǎn)
重點(diǎn):
1、能熟練的進(jìn)行分式的約分、通分和分式的運(yùn)算。
2、會(huì)解可化為一元一次方程的分式方程,了解產(chǎn)生增根的原因。
3、會(huì)用分式方程解決實(shí)際問題。
難點(diǎn):用分式方程解決實(shí)際問題。
四、說教法學(xué)法
閱讀教材,歸納知識(shí)點(diǎn),疑難問題小組合作探究。
五、說教學(xué)過程:
學(xué)生在自主梳理課本內(nèi)容的基礎(chǔ)上,課堂上展示交流以下問題:
概念部分:
舉例說明什么是分式、分式方程、分式的約分、通分和最簡(jiǎn)分式
分式:
分式方程:
分式的約分:
分式的通分:
最簡(jiǎn)分式:
性質(zhì)部分
(1) 什么是分式的基本性質(zhì)?本章哪些內(nèi)容用到了分式的基本性質(zhì)?
(2) 整數(shù)指數(shù)冪的運(yùn)算性質(zhì)有哪些?
3法則部分
用自己的語言敘述分式的加法、減法、乘法、除法及乘方的運(yùn)算法則(各舉一例說明這些法則) 。
這部分內(nèi)容由每個(gè)小組完成。目的是培養(yǎng)學(xué)生梳理知識(shí)的能力,同時(shí)也能更好的掌握本章的基礎(chǔ)知識(shí),學(xué)生完全可獨(dú)立完成。這些基礎(chǔ)知識(shí)也為分式的運(yùn)算、化簡(jiǎn)、解方程奠定基礎(chǔ)的所以學(xué)生必須學(xué)會(huì)這部分內(nèi)容。為此讓學(xué)生舉例說明就更有必要了。
鞏固訓(xùn)練,提升能力:
1.在式子,,,,·,中
整式有 ; 分式有 。
2.若分式:有意義,則,x ;若分式無意義,則x ;若分式的值為零,則x= 。
3.解分式方程的基本思想是把分式方程轉(zhuǎn)化為 方程,其步驟為:
(1)去分母在方程兩邊都 ,把分式方程轉(zhuǎn)化為 方程。
(2)解這個(gè) 方程。
(3)檢驗(yàn),檢驗(yàn)的方法是 。
4.約分= , 5.將5.62×
5 、10用小數(shù)表示為( )
A.0.000 000 00562 B.0.000 000 0562
C.0.000 000562 D.0.000 000 000562
6.下列式子從左到右變形一定正確的是( )
A. B. C. D. =
7.下列變形正確的是( )
A.3a= B. C. D.
8.通分(1) , (2)
9.(1)計(jì)算 (2) 解方程
10.計(jì)算
11.先化簡(jiǎn):÷。再任選一個(gè)適當(dāng)?shù)膞值代入求值 。 .
12已知:,試求A、B的值。
13.已知:求的值.
14.已知,求的值.
15.若關(guān)于x的分式方程有增根,求m的值.
16某工程隊(duì)承接了3000米的修路任務(wù),在修好600米后,引進(jìn)了新設(shè)備,工作效率是原來的2倍,一共用30天完成了任務(wù),求引進(jìn)新設(shè)備前平均每天修路多少米?
17.學(xué)校要舉行跳遺繩比賽,同學(xué)們都積極練習(xí),甲同學(xué)跳180個(gè)所用時(shí)間,乙同學(xué)可以跳240個(gè),又知甲每分鐘比乙少跳5個(gè),求每人每分鐘各跳多少個(gè)?
18.探究題:探索規(guī)律:,個(gè)位數(shù)字是3;,個(gè)位數(shù)字是9;個(gè)位數(shù)字是7;,個(gè)位數(shù)字是1;,個(gè)位數(shù)字是3 ;,個(gè)位數(shù)字是9;的個(gè)位數(shù)字是 ;的個(gè)位數(shù)字是 。
19.根據(jù)所給方程,聯(lián)系生活實(shí)際編寫一道應(yīng)用題(要求:題目完整,題意清楚,不要求解方程.)
這部分編寫的目的是運(yùn)用基礎(chǔ)知識(shí)解決實(shí)際問題從而達(dá)到解決問題的目的,提綱下發(fā)全體學(xué)生都做,然后針對(duì)檢查情況把典型題寫在黑板上然后由學(xué)生講解,教師適時(shí)補(bǔ)充。最后19題是開放試題但教師要總結(jié)規(guī)律和方法,工程問題怎樣編,行程問題怎樣編,教給學(xué)生方法是關(guān)鍵。
六、教學(xué)反思:
自從實(shí)行學(xué)、教、測(cè)教學(xué)模式以來學(xué)生的能力得到真正的提高。在本章的教學(xué)中我主要是采用類比的教學(xué)方法,通過類比分?jǐn)?shù)來學(xué)習(xí)分式效果非常好。本節(jié)復(fù)習(xí)課讓學(xué)生歸納知識(shí)體系真正培養(yǎng)了學(xué)生的歸納整理知識(shí)的能力。復(fù)習(xí)課注重習(xí)題方法的探究。學(xué)生思維能力的培養(yǎng)。類型題的規(guī)律的探究。在本節(jié)課中體現(xiàn)的還可以如果時(shí)間允許的話效果還能好一些。值得我們思考的是在今后的備課中還應(yīng)注意時(shí)間的分配和重點(diǎn)問題的處理。同時(shí)數(shù)學(xué)課上應(yīng)該多交給學(xué)生解題方法、解題技巧、規(guī)律探索、思維能力的訓(xùn)練等。
八年級(jí)數(shù)學(xué)說課稿4
各位老師、評(píng)委:大家好﹗
今天我說課的題目是選自人教版八年級(jí)數(shù)學(xué)第十八章第一節(jié)的內(nèi)容:勾股定理。
我將從以下這幾個(gè)方面進(jìn)行本節(jié)課的闡述:教材分析、學(xué)情分析、教法、學(xué)法指導(dǎo)、教學(xué)過程設(shè)計(jì)以及教學(xué)反思。
下面請(qǐng)大家和我共同走進(jìn)教材。
(一)教材分析
、苯滩牡牡匚缓妥饔
《勾股定理》是人教版新課標(biāo)八年級(jí)數(shù)學(xué)第十八章第一節(jié)第一課時(shí)內(nèi)容,勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,它在理論上占有重要地位,學(xué)好本節(jié)至關(guān)重要。
⒉教學(xué)目標(biāo)
根據(jù)新課程標(biāo)準(zhǔn)對(duì)學(xué)生知識(shí)、能力的要求,結(jié)合八年級(jí)學(xué)生實(shí)際水平、認(rèn)知特點(diǎn)制定以下教學(xué)目標(biāo)。
知識(shí)與技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程,能夠靈活地運(yùn)用勾股定理及其計(jì)算。
過程與方法:讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)過程,并從中體會(huì)數(shù)形結(jié)合及從特殊到一般的數(shù)學(xué)思想。培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
情感態(tài)度與價(jià)值觀:通過介紹我國(guó)古代在研究勾股定理方面取得的偉大成就,激發(fā)學(xué)生熱愛祖國(guó)與熱愛祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感,在探索問題的過程中,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神。
3.重點(diǎn)和難點(diǎn)
勾股定理的學(xué)習(xí)是建立在掌握一般三角形的性質(zhì)、直角三角形以及三角形全等的基礎(chǔ)上, 是直角三角形性質(zhì)的拓展。本節(jié)課主要是對(duì)勾股定理的探索和勾股定理的證明。勾股定理的證明方法很多,本節(jié)課介紹的是等積法。通過本節(jié)課的教學(xué),引領(lǐng)學(xué)生從不同的角度發(fā)現(xiàn)問題、用多樣化策略解決問題,從而提高學(xué)生分析、解決問題的能力。
因此本節(jié)課的重點(diǎn):是勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用。
八年級(jí)學(xué)生已初步具備幾何的觀察能力和說理能力,也有了一定的空間想象和動(dòng)手操作能力,但是他們的推理能力較弱、抽象思維能力不足。而本節(jié)課采用的是等積法證明。由于學(xué)生之前沒有接觸過等積法證明,他們對(duì)這種證明方法感到很陌生,尤其是覺得推理根據(jù)不明確,不象證明,沒有教師的啟發(fā)引領(lǐng),學(xué)生不容易獨(dú)立想到。
因此本節(jié)課的難點(diǎn):是用拼圖方法、面積法證明勾股定理。
(二)學(xué)情分析
八年級(jí)學(xué)生已初步具有幾何圖形的觀察,幾何證明的理論思維能力。希望老師預(yù)設(shè)便于他們進(jìn)行觀察的幾何環(huán)境,給他們發(fā)表自己見解和表現(xiàn)自己才華的機(jī)會(huì),希望老師滿足他們的創(chuàng)造愿望,讓他們實(shí)際操作,使他們獲得施展自己創(chuàng)造才能的機(jī)會(huì)。
(三)說教學(xué)方法
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,要展現(xiàn)獲取知識(shí)和方法的思維過程, 針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課采取引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。以導(dǎo)為主,采用設(shè)疑的形式,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知。并利用教具與多媒體進(jìn)行教學(xué)。
(四)說學(xué)習(xí)方法
我們常說:“現(xiàn)代的文盲不是不識(shí)字的人, 而是沒有掌握學(xué)習(xí)方法的人”, 因而在教學(xué)中要特別重視學(xué)法的指導(dǎo), 我采用了如下的學(xué)法指導(dǎo):
在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
(五)說教學(xué)過程
根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,本節(jié)課分六個(gè)活動(dòng)進(jìn)行學(xué)習(xí),為了擴(kuò)大課堂容量節(jié)省時(shí)間提高課堂效率,擬采用多媒體教學(xué)。
【活動(dòng)1】:(多媒體展示)欣賞圖片 了解歷史
第一幅圖片配上文字說明。
設(shè)計(jì)意圖:這樣的導(dǎo)入富有科學(xué)特色和濃郁的數(shù)學(xué)氣息,激起學(xué)生強(qiáng)烈的興趣和求知欲。
第二幅圖片為2002年在我國(guó)北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的場(chǎng)景,值得一提的是這次大會(huì)的會(huì)徽,為著名的趙爽弦圖。
設(shè)計(jì)意圖:在學(xué)生欣賞趙爽弦圖的過程中,進(jìn)行愛國(guó)主義教育,可以讓他們充分體會(huì)到我國(guó)古代在數(shù)學(xué)研究方面取得的偉大成就,從而激發(fā)學(xué)生的愛國(guó)熱情和民族自豪感。
第三幅圖片為介紹古代勾和股。
設(shè)計(jì)意圖:簡(jiǎn)單介紹勾股定理的歷史,引出勾股定理這一課題。
學(xué)生,讀一讀和觀察。
【活動(dòng)2】:探索勾股定理
首先講述畢達(dá)哥拉斯到朋友家做客的故事。(多媒體展示)
然后提出兩個(gè)問題,讓學(xué)生沿著畢達(dá)哥拉斯的足跡去探尋勾股定理。
{問題一}:在圖中你能發(fā)現(xiàn)那些基本圖形?
{問題二}:與等腰直角三角形相鄰的正方形面積之間有怎樣的關(guān)系?
(多媒體展示)探究一
{問題三}:如圖,每個(gè)小方格的面積為1個(gè)單位,你能寫出正方形A、B、C的面積嗎?
{問題四}:由此你可以得出等腰直角三角形三邊存在著一種怎樣特殊的數(shù)量關(guān)系嗎?
學(xué)生在獨(dú)立探究的基礎(chǔ)上觀察圖片,計(jì)算面積,分組交流, 猜想和歸納。
教師參與學(xué)生小組活動(dòng),指導(dǎo),傾聽學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積。在計(jì)算C的面積時(shí)可能有一定的難度,此時(shí)就要用到數(shù)學(xué)當(dāng)中常見的割補(bǔ)法。因此需要教師的引導(dǎo)。
設(shè)計(jì)意圖:通過講傳說故事來激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生進(jìn)入學(xué)習(xí)狀態(tài)。學(xué)生會(huì)很積極的投入到探索這個(gè)問題的實(shí)踐中。讓學(xué)生并且嘗試了從不同角度尋求解決問題的有效方法,并通過對(duì)方法的反思,獲得解決問題的經(jīng)驗(yàn)。
“問題是思維的起點(diǎn)”,通過層層設(shè)問,引導(dǎo)學(xué)生發(fā)現(xiàn)新知。
(多媒體展示)探究二
{問題五}:等腰直角三角形三邊具有這樣的特殊關(guān)系,那么一般的直角三角形呢?如圖,每個(gè)小方格的面積為1個(gè)單位,你能寫出正方形A、B、C的面積嗎?
將一般的直角三角形放入到網(wǎng)格中,并使得直角三角形的兩條直角邊為正整數(shù),讓學(xué)生去計(jì)算圖1和圖2中六個(gè)正方形的面積。關(guān)注學(xué)生能否用不同的方法得到大正方形的面積。
學(xué)生計(jì)算,觀察,猜想,語言表達(dá)猜想結(jié)論。
教師參與學(xué)生小組活動(dòng),指導(dǎo),傾聽學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積。在計(jì)算C的面積時(shí)可能有一定的難度,此時(shí)又用到數(shù)學(xué)當(dāng)中常見的割補(bǔ)法。因此需要教師的引導(dǎo)。
設(shè)計(jì)意圖:學(xué)生通過探究A、B、C三個(gè)正方形之間的面積關(guān)系,進(jìn)而發(fā)現(xiàn)、猜想勾股定理,并用自己的語言表達(dá)出來。這樣的設(shè)計(jì)滲透了從特殊到一般的數(shù)學(xué)思想。發(fā)揮學(xué)生的主體作用,培養(yǎng)學(xué)生類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞,爭(zhēng)辯,互助中得到提高。
(多媒體展示)猜想:
如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2 b2=c2。
即直角三角形兩直角邊的平方和等于斜邊的平方。
{問題六}:是不是所有的直角三角形都有這樣的特點(diǎn)呢?
【活動(dòng)3】:證明勾股定理
師:這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明。到目前為止,對(duì)這個(gè)命題的證明方法已有幾百種之多。下面我們就來看一看我國(guó)數(shù)學(xué)家趙爽是怎樣證明這個(gè)命題的。
{問題七}:請(qǐng)同學(xué)們拿出課前準(zhǔn)備好的四個(gè)全等的直角三角形,記三邊分別為a,b,c,然后拼一拼、擺一擺,看看能否得到一個(gè)含有以斜邊c為邊長(zhǎng)的正方形?
學(xué)生獨(dú)立思考的基礎(chǔ)上以小組為單位,用準(zhǔn)備好的四個(gè)全等直角三角形動(dòng)手拼接。學(xué)生展示分割,拼接的過程。
教師深入小組參與活動(dòng),傾聽學(xué)生的交流,幫助指導(dǎo)學(xué)生完成拼圖活動(dòng)。并請(qǐng)小組代表到黑板演示拼圖過程,鼓勵(lì)學(xué)生敢于發(fā)表自己的見解。
設(shè)計(jì)意圖:通過這些實(shí)際操作,調(diào)動(dòng)學(xué)生思維積極性,同時(shí)使學(xué)生對(duì)定理的理解更加深刻,學(xué)生能夠進(jìn)一步加深對(duì)數(shù)形結(jié)合的理解,拼圖也會(huì)產(chǎn)生感性認(rèn)識(shí),也為論證勾股定理做好準(zhǔn)備。
{問題八}:它們的面積分別怎樣表示?它們有什么關(guān)系呢?
(多媒體展示)拼接圖,面積計(jì)算
學(xué)生觀察,計(jì)算,小組討論。
在計(jì)算過程中,我重點(diǎn)在于引導(dǎo)學(xué)生分析圖中面積之間的關(guān)系,得出結(jié)論:大正方形的面積= 4個(gè)全等的直角三角形的面積 小正方形的面積,從而運(yùn)用等積法證明勾股定理。(這樣,既突破了難點(diǎn),讓學(xué)生感受到用等積法證明勾股定理的奧妙。)
設(shè)計(jì)意圖:給學(xué)生充分的時(shí)間和空間參與到數(shù)學(xué)活動(dòng)中來,并發(fā)揮他們的主觀能動(dòng)性,可以進(jìn)一步提高學(xué)生的學(xué)習(xí)興趣。利用分組討論,加強(qiáng)學(xué)生的合作意識(shí)。
師:我們現(xiàn)在通過推理證實(shí)了我們的猜想的正確性,經(jīng)過證明被確認(rèn)正確的命題叫做定理。猜想與直角三角形的邊有關(guān),我國(guó)把它稱為勾股定理。“趙爽弦圖”表現(xiàn)了我國(guó)古人對(duì)數(shù)學(xué)的鉆研精神和聰明才智,它是我古代數(shù)學(xué)的驕傲。正因如此,這個(gè)圖案被選為2002年在北京召開的國(guó)際數(shù)學(xué)大會(huì)的會(huì)徽。
【活動(dòng)4】:應(yīng)用勾股定理(多媒體展示)
(小組選擇,采用競(jìng)答方式)
填空
P的面積= ,
AB= X=
BC=
BC=
2、求下列圖中表示邊的未知數(shù)x、y、z的值。
3求下列直角三角形中未知邊的長(zhǎng):
設(shè)計(jì)意圖:首先是幾道填空題和勾股定理的直接應(yīng)用,這幾道題既有類似又有不同,通過變式訓(xùn)練,強(qiáng)調(diào)應(yīng)用勾股定理時(shí)應(yīng)注意的問題。一是勾股定理要應(yīng)用于直角三角形當(dāng)中,二是要注意哪一條邊為斜邊。
4、求出下列直角三角形中未知邊的長(zhǎng)度。
設(shè)計(jì)意圖:規(guī)范解題過程。
5、小明的媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你能解釋這是為什么嗎?(我們通過所說的29英寸或74厘米的電視機(jī),是指其屏幕對(duì)角線的長(zhǎng)度。)
設(shè)計(jì)意圖:這是一道和學(xué)生生活密切相關(guān)的應(yīng)用題,讓學(xué)生充分體會(huì)到數(shù)學(xué)是來源于生活,應(yīng)用于生活。
【活動(dòng)5】:總結(jié)勾股定理(多媒體展示)
1.這節(jié)課你的收獲是什么?
2.理解“勾股定理”應(yīng)該注意什么問題?
3.你覺得“勾股定理”有用嗎?
學(xué)生談?wù)勥@節(jié)課的收獲是什么,讓學(xué)生暢所欲言。
教師進(jìn)行補(bǔ)充,總結(jié),為下節(jié)課做好鋪墊。
設(shè)計(jì)意圖:通過小結(jié)為學(xué)生創(chuàng)造交流的空間,調(diào)動(dòng)學(xué)生的積極性,即引導(dǎo)學(xué)生培養(yǎng)學(xué)生從面積的角度理解勾股定理,又從能力,情感,態(tài)度等方面關(guān)注學(xué)生的整體感受。
【活動(dòng)6】:布置作業(yè)(多媒體展示)
1.閱讀教材第71頁的閱讀與思考-----《勾股定理的證明》。
2.收集有關(guān)勾股定理的證明方法,下節(jié)展示交流。
3.做一棵奇妙的勾股樹(選做)
設(shè)計(jì)的意圖:給學(xué)生留有繼續(xù)學(xué)習(xí)的空間和興趣。
(六)說教學(xué)反思
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,始終面向全體學(xué)生“以學(xué)生的發(fā)展為本” 的教育理念,課堂教學(xué)充分體現(xiàn)學(xué)生的主體性,給學(xué)生留下最大化的思維空間。注重?cái)?shù)學(xué)思想方法的滲透,整個(gè)勾股定理的探索、發(fā)現(xiàn)、證明都著意滲透數(shù)形結(jié)合,又從一般到特殊,從特殊回歸到一般的數(shù)學(xué)思想方法。重視數(shù)學(xué)史教育,激發(fā)學(xué)生的愛國(guó)情感。數(shù)學(xué)問題生活化,用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問題,關(guān)鍵在于把生活問題轉(zhuǎn)化為數(shù)學(xué)問題,讓生活問題數(shù)學(xué)化,然后才能得以解決。在這個(gè)過程中,很多時(shí)候需要老師幫助學(xué)生去理解、轉(zhuǎn)化,而更多時(shí)候需要學(xué)生自己去探索、嘗試,并在失敗中尋找成功的途徑。教學(xué)中,如果能讓學(xué)生自己反思答案與方法的合理性,那么效果會(huì)更好了。
板書設(shè)計(jì):
18.1 勾股定理
勾股定理:
如果直角三角形兩直角邊分別為a,b,
斜邊為c,那么a2 b2=c2
八年級(jí)數(shù)學(xué)說課稿5
一、教材分析 :
(一)、本節(jié)課在教材中的地位作用
“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。
(二)、教學(xué)目標(biāo):根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。知識(shí)技能:1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形
過程與方法:
1、通過對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過程
2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用
3、通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。
情感態(tài)度:
1、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系
2、在探究勾股定理的逆定理的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神 (三)、學(xué)情分析: 盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn): 勾股定理逆定理的應(yīng)用 難點(diǎn): 勾股定理逆定理的證明
關(guān)鍵: 輔助線的添法探索
二、教學(xué)過程 :
本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。
(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。
(二)、創(chuàng)設(shè)問題情境
一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。
(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)
因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對(duì)初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。
這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。
接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。
在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。
(四)、組織變式訓(xùn)練
本著由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。
(五)、歸納小結(jié),納入知識(shí)體系
本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。
(六)、作業(yè)布置
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。B組題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
三、說教法、學(xué)法與教學(xué)手段
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。
此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。
總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。
【關(guān)于八年級(jí)數(shù)學(xué)說課稿范文(精選5篇)】相關(guān)文章:
關(guān)于八年級(jí)數(shù)學(xué)說課稿范文錦集八篇10-15
關(guān)于數(shù)學(xué)說課的幾個(gè)問題說課稿【精選】03-24
數(shù)學(xué)廣角說課稿11-07
數(shù)學(xué)說課稿04-07
幼兒園數(shù)學(xué)說課稿范文12-18
小學(xué)數(shù)學(xué)《解決問題》說課稿【精選】03-24
關(guān)于數(shù)軸說課稿范文02-22