1. <rp id="zsypk"></rp>

      2. 等腰三角形性質(zhì)定理說課稿

        時(shí)間:2021-11-07 11:20:15 說課稿 我要投稿

        等腰三角形性質(zhì)定理說課稿

          作為一位無私奉獻(xiàn)的人民教師,就有可能用到說課稿,說課稿有助于提高教師理論素養(yǎng)和駕馭教材的能力。怎樣寫說課稿才更能起到其作用呢?以下是小編為大家收集的等腰三角形性質(zhì)定理說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。

        等腰三角形性質(zhì)定理說課稿

          一、說教材

          本節(jié)課是在學(xué)生掌握了一般三角形基礎(chǔ)知識(shí)和初步推論證明的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著訓(xùn)練學(xué)生學(xué)會(huì)分析證明思路的任務(wù),在培養(yǎng)學(xué)生邏輯推理能力方面有著非常重要的作用。等腰三角形兩底角相等的性質(zhì)是今后論證兩角相等的的依據(jù)之一,等腰三角形底邊上的三條主要線段重合的性質(zhì)是今后論證兩條線段相等、兩個(gè)角相等及兩條直線垂直的重要依據(jù),因此在教材中處于非常重要的地位。

          二、說教學(xué)目標(biāo)

          知識(shí)與能力:探索并掌握等腰三角形性質(zhì)定理,能運(yùn)用它們進(jìn)行有關(guān)的論證和計(jì)算。理解等腰三角形和等邊三角形性質(zhì)定理之間的聯(lián)系。過程與方法:培養(yǎng)學(xué)生對(duì)命題的抽象概括能力,逐步滲透幾何證題的基本思想方法:分析法和綜合法。情感與態(tài)度:引導(dǎo)學(xué)生進(jìn)行規(guī)律的再發(fā)現(xiàn),培養(yǎng)學(xué)生勇于實(shí)踐、大膽探索的精神。加強(qiáng)學(xué)生數(shù)學(xué)應(yīng)用意識(shí)。

          三、教學(xué)重點(diǎn)與難點(diǎn)

          重點(diǎn):等腰三角形的性質(zhì)定理。難點(diǎn):等腰三角形三線合一性質(zhì)的運(yùn)用四、說教法與學(xué)法課堂教學(xué)要體現(xiàn)以學(xué)生發(fā)展為本的精神,因此本堂課我采取了“開放型的探究式”教學(xué)模式,從問題提出到問題解決都竭力把參與認(rèn)知過程的主動(dòng)權(quán)交給學(xué)生,使學(xué)生全面參與、全員參與、全程參與,真正確立其主體地位。而教師只是作為數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者,及時(shí)地給以引導(dǎo)、點(diǎn)撥、糾正。五、說教學(xué)過程:學(xué)生的學(xué)習(xí)過程是在其原有認(rèn)知基礎(chǔ)上的主動(dòng)建構(gòu),因此我依據(jù)學(xué)生的認(rèn)知規(guī)律將教學(xué)過程分為以下五個(gè)環(huán)節(jié):

          教學(xué)過程教學(xué)活動(dòng)設(shè)計(jì)意圖

          一、回顧與思考電腦展示人字型屋頂?shù)膱D像,提問:

          1、屋頂設(shè)計(jì)成了何種幾何圖形?2、我們都知道它是一種特殊的三角形,那么它特殊在哪里呢?(兩腰相等,是軸對(duì)稱圖形)3、它的對(duì)稱軸是哪一條呢?由日常生活中的等腰三角形引出課題,目的在于培養(yǎng)學(xué)生從實(shí)際問題中抽象出數(shù)學(xué)問題的能力。同時(shí)創(chuàng)造豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識(shí)的連接點(diǎn),特別是問題3,其實(shí)就是等腰三角形三線合一性質(zhì)的伏筆。除了這些特殊點(diǎn),等腰三角形還有其它特殊性質(zhì)嗎?這節(jié)課我們就要一起來研究等腰三角形的性質(zhì)(由此引出課題)現(xiàn)代教學(xué)論認(rèn)為,在正式進(jìn)行發(fā)現(xiàn)過程前要讓學(xué)生對(duì)探索的目標(biāo)、意義認(rèn)識(shí)得十分明確,做好探索的物質(zhì)準(zhǔn)備和精神準(zhǔn)備。

          二、觀察與表達(dá)1、觀察猜想請(qǐng)同學(xué)們拿出準(zhǔn)備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起,觀察一下你有什么發(fā)現(xiàn)。教師用多媒體課件演示等腰三角形ABC疊合情況,請(qǐng)學(xué)生思考你能得出哪些結(jié)論。 2、得出定理學(xué)生回答發(fā)現(xiàn)后,教師給予指導(dǎo),用規(guī)范的數(shù)學(xué)語言進(jìn)行逐條歸納,得出兩個(gè)性質(zhì)定理:定理1:等腰三角形兩底角相等。

          定理2:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。

          通過讓學(xué)生動(dòng)手操作,觀察、猜想,體驗(yàn)知識(shí)的發(fā)生、發(fā)現(xiàn)過程,變灌注知識(shí)為學(xué)生主動(dòng)獲取知識(shí)。

          學(xué)習(xí)內(nèi)容不再以定論的形式呈現(xiàn),而是以問題形式間接呈現(xiàn);學(xué)習(xí)的心理機(jī)制不再是僅僅是同化,而是順應(yīng)。

          三、了解與探究3、探索定理一、(A組口答,B組獨(dú)立解答)A組:1、等腰直角三角形的兩個(gè)銳角各等于幾度?2、若等腰三角形頂角為40度,則它的頂角為幾度?3、若等腰三角形底角為40度,則它的底角為幾度?B組:1、若等腰三角形一個(gè)內(nèi)角為40度,則它的其余各角為幾度?2、若等腰三角形一個(gè)內(nèi)角為120度,則它的其余各角為幾度?3、一個(gè)內(nèi)角為60度,則它的其余各角為幾度?(A組口答,B組獨(dú)立解答)由此引出推論:等邊三角形各個(gè)角都相等,且各個(gè)角都等于60°。

          二、根據(jù)性質(zhì)2填空:

          (1)∵AB=AC,AD⊥BC,∴,。

          (2)∵AB=AC,BD=CD,∴,。 A

          B D C (3)∵AB=AC,∠1=∠2,∴,。為了對(duì)定理進(jìn)行進(jìn)一步探索,設(shè)計(jì)了以下練習(xí):練習(xí)一的整體設(shè)計(jì)遵循低起點(diǎn)、小分階、大容量、高密度的原則,其目的是要學(xué)生掌握應(yīng)用等腰三角形性質(zhì)定理1與三角形內(nèi)角和定理求角的度數(shù)的'規(guī)律,但教師不是直接將規(guī)律灌輸給學(xué)生,而是讓學(xué)生在練習(xí)過程中自己發(fā)現(xiàn)規(guī)律,使學(xué)生獲得從問題中探索共同屬性的思維能力。從認(rèn)知結(jié)構(gòu)看,利用三線合一性質(zhì)來證明角相等、線段相等或垂直與學(xué)生原有認(rèn)知結(jié)構(gòu)聯(lián)系較少,需要建構(gòu)新的認(rèn)知結(jié)構(gòu),是一種“順應(yīng)”過程,對(duì)學(xué)生來說有一定困難,因此設(shè)計(jì)了下面一組填空題,幫助學(xué)生進(jìn)行建構(gòu)活動(dòng)。同時(shí),提醒學(xué)生注意性質(zhì)應(yīng)用應(yīng)以等腰三角形為前提,為例2的教學(xué)作了輔墊,起到分散難點(diǎn)的作用。四、應(yīng)用與提高應(yīng)用舉例:如圖,某房屋的頂角

          ∠BAC=120°,過屋頂A的立柱AD⊥BC,屋椽AB=AC,求頂架上的∠B, ∠C, ∠CAD的度數(shù)。

          例1:求證等腰三角形兩底角平分線相等A

          E D

          B C

          由于這是個(gè)用文字語言敘述的的幾何命題,師生共同商討,將解題過程分為以下幾個(gè)步驟:①根據(jù)命題畫出相應(yīng)的圖形,并標(biāo)出字母②通過分析題設(shè)結(jié)論,將命題翻譯為幾何符號(hào)語言,寫出已知與求證。 ③探索證法在尋求證法時(shí)啟發(fā)學(xué)生從“已知”、“求證”兩方面出發(fā)進(jìn)行思考。從已知出發(fā):a:由AB=AC聯(lián)想到什么

          b:BD、CE是△ABC的角平分線聯(lián)想到什么

          c:由a、b聯(lián)想到什么

          d:由a、b、c聯(lián)想到什么

          e:由d聯(lián)想到什么

          從求證出發(fā):證明兩條線段相等通常用什么方法?(全等三角形)。這兩條線段分別在哪兩個(gè)三角形中?這兩個(gè)三角形全等嗎?如何證明?本課從居民建筑人字梁結(jié)構(gòu)中抽象出幾何問題,通過探索實(shí)踐活動(dòng)得出結(jié)論,在這里,再將得到的結(jié)論應(yīng)用到實(shí)踐中,從而解決了人字梁結(jié)構(gòu)中的實(shí)際問題。這樣既有前后呼應(yīng),又體現(xiàn)了“數(shù)學(xué)來源于生活,應(yīng)用于生活”的思想,有利于加強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。

          “證明”的教學(xué)所關(guān)注的是,對(duì)證明基本方法和證明過程的體驗(yàn),而不是追求所證命題的數(shù)量、證明的技巧。因此在例1教學(xué)中,有意讓學(xué)生來確定學(xué)習(xí)任務(wù)與步驟,充分調(diào)動(dòng)其學(xué)習(xí)積極性。

          分析法和綜合法是基本的數(shù)學(xué)思想方法,因此在這里要求學(xué)生從兩方面都能夠思考問題。但這對(duì)于剛接觸論證幾何不久的學(xué)生來說,有一定的難度。所以,由教師提出一系列問題,引導(dǎo)學(xué)生進(jìn)行聯(lián)想。

          本題是通過三角形全等來證明兩條角平分線相等,而這對(duì)全等三角形可是△ABD和△ACE也可是△BCE和△CBD分別用到了公共邊和公共角這兩對(duì)元素,因此在教學(xué)過程中將充分利用這一點(diǎn),組織學(xué)生探索證明的不同思路,并進(jìn)行適當(dāng)?shù)谋容^和討論,有利于開闊學(xué)生的視野。四、應(yīng)用與提高例2:已知:如圖,△ A

          O

          B D C O’ ABC中,AB=AC,O是△ABC內(nèi)一點(diǎn),且OB=OC,AO的延長線交BC與D.

          求證:BD=CD,AD⊥BC

          思考:(1)本題的結(jié)論有何特

          殊之處?——證明兩個(gè)結(jié)論

          (2)你準(zhǔn)備如何得出這兩個(gè)結(jié)論?——分別認(rèn)證或同時(shí)證明

         。3)哪一種簡捷?利用什

          么性質(zhì)?

          在此基礎(chǔ)上請(qǐng)學(xué)生按照例1的思考方法自己尋找解題思路,可以在小組間進(jìn)行討論。

          變式拓展:

          (1)如圖,在例2中若點(diǎn)O是△ABC外一點(diǎn),AO連線交BC于D,如何求證?

         。2)若點(diǎn)O在BC上呢?

          經(jīng)過例1的學(xué)習(xí),學(xué)生已有一定推理基礎(chǔ),因此應(yīng)放手讓學(xué)生自己去發(fā)現(xiàn)證題思路,從而學(xué)到新的研究數(shù)學(xué)學(xué)習(xí)的方法,并逐漸內(nèi)化為自己的經(jīng)驗(yàn)。同時(shí)也體現(xiàn)了自主探索、合作交流的學(xué)習(xí)方式。

          在這里有意通過變式讓學(xué)生經(jīng)歷圖形變換過程,并使他們感受到在一定條件下,圖形變換不會(huì)改變圖形的實(shí)質(zhì),最后將點(diǎn)O移到BC上,使學(xué)生體驗(yàn)了從一般到特殊的過程。想一想:記一塊等腰直角三角尺的底邊中點(diǎn)為,再從頂點(diǎn)懸掛一個(gè)鉛錘,把這塊三角尺放在房梁上,如果懸線通過點(diǎn)M就能確定房梁是水平的,為什么?通過想一想進(jìn)一步突出重點(diǎn)與難點(diǎn),也有利于引導(dǎo)學(xué)生運(yùn)用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實(shí)生活,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。五、心得與體會(huì)

          通過今天這堂課的研究,我明確了,我的收獲與感受有,我還有疑惑之處是。請(qǐng)學(xué)生按這一模式進(jìn)行小結(jié),培養(yǎng)學(xué)生學(xué)習(xí)-總結(jié)-學(xué)習(xí)-反思的良好習(xí)慣,同時(shí)通過自我的評(píng)價(jià)來獲得成功的快樂,提高學(xué)生學(xué)習(xí)的自信心。六、作業(yè)(1)作業(yè)本上相應(yīng)的作業(yè)。(2)已知:D、E在△ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE(1)進(jìn)一步鞏固和提高所學(xué)知識(shí)(2)及時(shí)反饋、查漏補(bǔ)缺(3)體現(xiàn)層次性與開放性六、說評(píng)價(jià)

        【等腰三角形性質(zhì)定理說課稿】相關(guān)文章:

        等腰三角形的性質(zhì)定理和判定定理及其證明01-05

        勾股定理的逆定理說課稿12-04

        勾股定理的逆定理說課稿4篇12-04

        《探索勾股定理》的說課稿11-30

        小數(shù)的性質(zhì)說課稿11-08

        余弦定理說課稿6篇11-12

        垂徑定理說課稿2篇11-15

        余弦函數(shù)的性質(zhì)說課稿11-06

        垂徑定理及其推論說課稿11-19

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>