1. <rp id="zsypk"></rp>

      2. 抽屜原理說課稿

        時間:2022-07-05 13:59:44 說課稿 我要投稿

        抽屜原理說課稿

          作為一名專為他人授業(yè)解惑的人民教師,很有必要精心設計一份說課稿,說課稿有助于教學取得成功、提高教學質量。怎么樣才能寫出優(yōu)秀的說課稿呢?以下是小編幫大家整理的抽屜原理說課稿,希望能夠幫助到大家。

        抽屜原理說課稿

        抽屜原理說課稿1

          一、說教材

          《抽屜原理》共有三個例題,例1、例2的內容,教材通過幾個直觀例子,借助實際操作向學生介紹抽屜原理。讓學生經歷抽屜原理的探究過程,重在引導學生通過實際操作發(fā)現(xiàn)、總結規(guī)律,為后面學習抽屜原理(二)及利用這一原理解決問題做下了有力的鋪墊。

          二、說教學目標

          1、經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

          2、通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。

          3、通過“抽屜原理”的靈活應用感受數(shù)學的魅力。

          教學重點:

          經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

          教學難點:

          理解“抽屜原理”,并會用“抽屜原理”解決簡單的實際問題。

          三、說教學流程

          本節(jié)課共三個教學環(huán)節(jié):游戲導入——探究新知——解決問題——課堂小結

          下面我分別說說前3個環(huán)節(jié)。

          第一環(huán)節(jié)——游戲導入

          通過“搶椅子”游戲,體驗不管怎么坐,一定有一把椅子上至少坐兩個同學。激起學生認識上的興趣,趁機抓住他們認知上的求知欲,作為新課的切入點,這樣導入極大地激發(fā)了學生探究新知的熱情,使學生積極主動地投入到新課的學習中。

          第二環(huán)節(jié)——探究新知

          此環(huán)節(jié)正是本節(jié)課的關鍵一環(huán),這一環(huán)節(jié)的教學,我重在讓學生經歷知識發(fā)生、發(fā)展的過程,讓學生不但知其然,更要知其所以然。課上我讓學生通過小組合作擺一擺,說一說,讓每一個學生都參與到知識的探究中來,讓學生實際到講臺前演示,并對數(shù)進行分解法,把學生得出的結論進行匯總,最后由學生總結出了結論:5根小棒放進4個杯子,一定有一個杯子里至少有2根小棒。例2是讓學生明確數(shù)量、抽屜和結論三者之間的關系,特別是對“一定有一個杯子里至少有小棒的根數(shù)”是除法算式中的商加“1”,而不是商加“余數(shù)”,我適時挑出針對性問題進行交流、討論,使學生從本質上理解了“抽屜原理”,引導學生總結歸納這一類“抽屜問題”的一般規(guī)律。

          第三環(huán)節(jié)——解決問題

          此環(huán)節(jié)是對學生學習效果的檢驗,在設置習題方面采取層層深入,有一定的梯度,由學生很容易找到抽屜的題型過度到抽屜隱藏在題目中,逐漸提高難度,所選擇的題力爭與實際生活相結合。

          整節(jié)課,我始終注意調動學生的學習興趣,通過小組討論,動手操作,學生演示,幻燈示范,抓住學生的思維,讓學生通過我的引導來完成本節(jié)課的學習。

        抽屜原理說課稿2

          這節(jié)課是小學數(shù)學第十二冊第五單元數(shù)學廣角的第一節(jié),下面我從以下四方面來說這節(jié)課。

          一、說教材

          本單元共三個例題,例1、例2的內容,教材通過幾個直觀例子,借助實際操作向學生介紹抽屜原理。例3則是在學生理解抽屜原理這一數(shù)學方法的基礎上,會用這一原理解決簡單的實際問題。今天我講的是例1例2的內容,主要經歷抽屜原理的探究過程,重在引導學生通過實際操作發(fā)現(xiàn)、總結規(guī)律,這一內容為后面學習抽屜原理(二)及利用這一原理解決問題做下了有力的鋪墊。因此,這節(jié)課在本單元起著引領指航的重要作用。

          二、說教學目標

          根據(jù)《數(shù)學課程標準》和教材內容,我確定本節(jié)課學習目標如下:

          1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

          2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。

          3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。

          教學重點是;經歷抽屜原理的探究過程,發(fā)現(xiàn)、總結并理解抽屜原理。

          教學難點:理解抽屜原理中“總有”“至少”的含義。

          我之所以這樣確定重難點和教學目標,因為《新標準》指出:在本學段學生將通過數(shù)學活動了解數(shù)學與生活的廣泛聯(lián)系,學會運用所學知識和方法解決簡單的實際問題,加深對所學知識的理解,獲得運用數(shù)學解決問題的思考方法。

          三、說教法學法

          教法上本節(jié)課主要采用了設疑激趣法、講授法、實踐操作法。

          學法上學生主要采用了自主、合作、探究式的學習方式。

          四、說教學流程

          本節(jié)課共四個教學環(huán)節(jié):游戲導入——探究新知——解決問題——游戲深化。

          下面我分別說說這樣設計的意圖。

          第一環(huán)節(jié)——游戲導入

          通過“搶椅子”游戲,體驗不管怎么坐,總有一把椅子上至少坐兩個同學。激起學生認識上的興趣,趁機抓住他們認知上的求知欲,作為新課的切入點,我這樣導入極大地激發(fā)了學生探究新知的熱情,使學生積極主動地投入到新課的學習中。

          第二環(huán)節(jié),探究新知

          此環(huán)節(jié)正是本節(jié)課的關鍵一環(huán),這一環(huán)節(jié)的教學,我重在讓學生經歷知識發(fā)生、發(fā)展的過程,而不是生搬硬套,只求結論或囫圇吞棗,讓學生不但知其然,更要知其所以然。課上我讓學生通過列舉法、數(shù)的分解法及假設法探究總結出了結論:3本書,放到2個抽屜里,不管怎么放,總有一個抽屜里至少有2本書。這是本課的重點,接著引導學生把每種分法中得書最多的旁邊作個記號,得出每種分法中有一名學生得2本、3本即2本書以上,再讓學生用一個詞語表示這種意思,那就是“至少”的意思,再反過來理解“總有”“至少”的意思。這樣既突破了本節(jié)課的難點,也加深了對抽屜原理的理解。

          在此基礎上,我讓學生把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?先擺放、再討論能不能只擺一次就能得出結論。然后得出只要先平均分,再把余下的再平均分就能得到“不管怎么放,總有一個盒子里至少有2枝鉛筆!

          第三環(huán)節(jié)——解決問題

          數(shù)學來源于生活又服務于生活,此環(huán)節(jié)我選擇了貼近學生生活的喜聞樂見的事物,讓學生在滿懷激情中解決問題。練習題的設計遵循了“讓學生接觸這類問題——逐步熟悉這類問題——然后歸納這類問題的基本型——這類問題的變式型。即給出了抽屜數(shù),引導學生逆向思維去求物體數(shù),這一問題是抽屜原理的逆思考問題,拓寬了學生的思維空間。

          第四環(huán)節(jié)——游戲深化

          課的開始是游戲導入,結束時必須讓學生沒有遺憾的離開課堂,所以我在出示了幾道關于出生年、月、日的練習題,在解決這幾個問題時,我把問題逐步深化,比如:四(3)班有43名同學,至少有多少人在同一個月出生?我校有1603名學生至少有xx人同日出生。最后我又給學生做了一個游戲:有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?這一類問題正是下節(jié)課要學習的抽屜原理(二)的知識,學生的思維向縱深發(fā)展了,不但解決了問題還受到了相信科學不迷信的情感教育,落實情感教育標。

        抽屜原理說課稿3

          各為評委、老師,大家好:

          我說課題目是《抽屜原理》(板書),這節(jié)課是小學數(shù)學第十二冊第五單元數(shù)學廣角的第一節(jié),下面我從以下四方面來說說這節(jié)課。

          一、(首先談談第一點)從學情出發(fā),確定課時的劃分,與文本對話。

          本單元共三個例題,例1、例2的內容,教材通過幾個直觀的例子,借助實際操作向學生介紹抽屜原理。例3則是在學生理解抽屜原理這一數(shù)學方法的基礎上,會用這一原理解決簡單的實際問題。例1例2的內容,主要經歷抽屜原理的探究過程,重在引導學生通過實際操作發(fā)現(xiàn)、總結規(guī)律,這一內容為后面學習抽屜原理(二)及利用這一原理解決問題做下了有力的鋪墊。例1和例2既可以用一課時完成,又可以分兩課時完成,而我選擇后者,有如下思考。

          數(shù)學廣角的內容蘊含著豐富的數(shù)學思想方法,廣角的教學目的主要在于讓學生受到數(shù)學思想方法的熏陶,發(fā)展數(shù)學思維能力,因此對大多數(shù)學生而言,學起來是存在一些思維難度的。而抽屜原理是數(shù)學廣角這個皇冠上的明珠,比十一冊上的《雞兔同籠》的學習更具挑戰(zhàn)性。

          在《抽屜原理》中,“總有一個”、“至少”這兩個關鍵詞的解讀和為了達到“至少”而進行“平均分”的思路,以及把什么看做物體,把什么看做抽屜,這樣一個數(shù)學模型的建立,學生學起來頗具難度,尤其是對“至少”的理解,它不同于以往數(shù)學學習中所說的含義,這里的“至少”是指在物體個數(shù)最多的抽屜中找到最少的物體個數(shù),這對學生而言是一種全新的思維方式,他們很可能一時轉不過彎。另外,讓學生用精煉準確的語言來表述自己的思考也是一個難點。

          再看看課本,根據(jù)例1、例2理出了《抽屜原理》的知識序列。例1描述的是物體數(shù)比抽屜數(shù)多1的情況,例1的做一做代表的是物體數(shù)不到抽屜數(shù)的2倍,比抽屜數(shù)多2、多3一類的情形,例2描述的是物體數(shù)比抽屜數(shù)的非1整數(shù)倍多1的情況,例2的做一做代表的是物體數(shù)比抽屜數(shù)的非1整數(shù)倍多,且不止多1的情形。

          可見,例1是學好例2的基礎,只有通過例1的教學,讓全體學生真實地經歷“抽屜原理”的探究過程,把他們在學習中可能會遇到的幾個困難,弄懂、弄通,建立清晰的基本概念、思路、方法,他們才可能順利地進行例2的學習,否則,此內容的學習將只是優(yōu)生炫酷的天地,他們可能一開課就能說出原理,而其他學生可能一節(jié)課下來還弄不清什么是“總有一個”、什么是“至少”,怎樣才能很快知道“至少”是幾個物體。因此,我選擇將例1、例2分成兩課時完成?赡苡欣蠋熣f,這樣本課的教學內容容量太少了,基于這一點,我在第四個環(huán)節(jié)有說明的。

          二、從文本出發(fā),確定教學目標

          根據(jù)《數(shù)學課程標準》和教材內容,我確定本節(jié)課學習目標如下:

          1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

          2.通過操作發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。

          3.通過“抽屜原理”的靈活應用感受數(shù)學的魅力。

          教學重點是:經歷抽屜原理的探究過程,發(fā)現(xiàn)、總結并理解抽屜原理。

          我把:理解抽屜原理中“總有”“至少”的含義作為本課的教學難點

          我之所以這樣確定教學目標和重難點,是因為《新標準》指出:在本學段學生將通過數(shù)學活動了解數(shù)學與生活的廣泛聯(lián)系,學會運用所學知識和方法解決簡單的實際問題,加深對所學知識的理解,獲得運用數(shù)學解決問題的思考方法。

          三、從學生實際出發(fā),選擇合理的教法學法

          教法上本節(jié)課主要采用了設疑激趣法、講授法、實踐操作法。

          學法上學生主要采用了自主、合作、探究式的學習方式。

          第四個方面是:以學定教,與課堂對話。

          本節(jié)課共我設計了四個教學環(huán)節(jié):游戲導入——探究新知——反思、呈現(xiàn)——解決問題(游戲)。

          下面我分別說說這樣設計的意圖。

          第一環(huán)節(jié)——游戲導入

          由于只把例1作為本課的教學內容,我在設計的時候對例1的教學進行了一些鋪墊和補充。在導入部分,設計了猜至少有幾個學生是同月生的游戲,拉近數(shù)學與生活的關系,激發(fā)學生的探究欲望。在例1的教學后加入了5枝鉛筆放入4個盒子的問題,目的在于通過兩個不同的實例讓學生較充分地感受、體驗、發(fā)現(xiàn)相同的現(xiàn)象,有利于學生進行抽象、概括,使結論的得出更有說服力。然后拓展到7枝鉛筆放入5個盒子,8枝鉛筆放入5個盒子,9枝鉛筆放入5個盒子,這一類余數(shù)是2、是3、是4的問題的'探究,完成對抽屜原理第一層次的認識。

          第二環(huán)節(jié),探究新知。

          根據(jù)學生學習的困難和認知規(guī)律,我在探究部分設計了三個層次的教學活動,這三個層次的教學活動由形象思維逐步過渡到抽象思維,層層遞進,培養(yǎng)學生的邏輯思維能力。

          第一個層出:實物操作,把4枝鉛筆放入3個盒子(板書),解決3個問題:

          1、怎樣放

          知道排列組合的方法,明確如果只是放入每個盒中的枝數(shù)的排序不一樣,應視為一種分法,并引導學生有序思考,為后面的列舉掃清障礙。

          2、共有幾種放法,孕伏對“不管怎樣放”的理解。

          3、認識“總有一個”的意義。

          通過觀察盒中鉛筆枝數(shù),找出4種放法中鉛筆枝數(shù)最多的盒中枝數(shù)分別有哪幾種情況,理解“總有一個”的含義,得到一個初步的印象:不管怎么放,總有一個鉛筆盒放的枝數(shù)是最多的,分別是2枝,3枝和4枝。

          第二個層次:脫離具體操作,由抽象到數(shù),進行數(shù)的分解——思考把5枝鉛筆放入4個盒子(板書包括6支5盒),又會出現(xiàn)怎樣的情況,學生直接完成表格。這一層次達成三個目的:

          1、理解“至少”的含義,準確表述現(xiàn)象。

          通過觀察表格中枝數(shù)最多的盒子里的數(shù)據(jù),讓學生在“最多”中找“最少”,學會用“至少”來表達,概括出“5枝放4盒”、“4枝放3盒” 時,總有一個文具盒里至少放入2枝鉛筆的結論。

          2、理解“平均分”(板書)的思路,知道為什么要“平均分”。

          抓住最能體現(xiàn)結論的一種情況,引導學生理解怎樣很快知道總有一個文具盒里至少是幾枝的方法——就是按照盒數(shù)平均分,只有這樣才能讓最多的盒子里枝數(shù)盡可能少。

          3、抽象概括 小結現(xiàn)象

          通過“4枝放入3個盒子”、”5枝放入4個盒子”和練習題“6枝放入5個盒子”,讓學生抽象概括出 “當物體數(shù)比抽屜數(shù)多1時,不管怎么放,總有一個抽屜至少放入2個物體”(板書),初步認識抽屜原理。

         。ㄈ⿲W生自選問題,探究“如果物體數(shù)不止比抽屜數(shù)多1,不管怎樣放,總有一個鉛筆盒中至少要放入幾枝鉛筆?”(板書789物體5抽屜)

          這一層次請學生理解當余數(shù)不是1時,要經歷兩次平均分,第一次是按抽屜的平均分,第二次是按余下的枝數(shù)平均分,只有這樣才能達到讓“最多的盒子里枝數(shù)盡可能少”的目的。

          教學流程的第三個環(huán)節(jié),將本節(jié)課研究過的所有實例進行總體呈現(xiàn),讓學生通過比較,總結出抽屜原理中最簡單的情況:物體數(shù)不到抽屜數(shù)的2倍時,不管怎樣放,總有一個抽屜中至少要放入2個物體(板書)。

          在最后的練習環(huán)節(jié)以游戲的形式出現(xiàn),我設計了幾個需要應用“抽屜原理”解決的簡單的實際問題,進一步培養(yǎng)學生的“模型”思想,讓學生能正確地找出問題中什么是“待分的東西”,什么是“抽屜”,同時也讓學生感受到數(shù)學知識在生活中的應用,感受到數(shù)學的魅力。

          抽屜原理

          平均分

          4支鉛筆放進 3個文具盒

          5支 4 個

          6支 5個

          當物體數(shù)比抽屜數(shù)多1時,不管怎么放,總有一個抽屜至少放入2個物體。

          7個物體 5抽屜

          8個物體 5抽屜

          9個物體 5抽屜

          ﹕ ﹕

          ﹕ ﹕

          “……,不管怎樣放,總有一個抽屜,至少放進 2 個物體!

          這是這節(jié)課的板書設計。

          謝謝大家!我的說課完畢。

        抽屜原理說課稿4

          今天我將要為大家講的課題是《抽屜原理》。

          首先,我對本節(jié)教材進行一些分析:

          一、教材結構與內容簡析

          本節(jié)內容在全書及章節(jié)的地位:《抽屜原理》是義務教育課程標準實驗教科書第十二冊第五單元第一節(jié)。本節(jié)共三個例題,例1、例2的教材通過幾個直觀例子,借助實際操作向學生介紹抽屜原理,例3則是在學生理解抽屜原理這一數(shù)學方法的基礎上,用這一原理解決簡單的實際問題。

          數(shù)學思想方法分析:作為一名數(shù)學老師,不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想、數(shù)學意識,因此本節(jié)課在教學中力圖向學生的展示數(shù)學原理的靈活應用,讓學生感受數(shù)學的魅力,貫穿初步的數(shù)論及組合知識。

          二、 教學目標

          根據(jù)上述教材結構與內容分析,考慮到學生已有的認知結構心理特征 ,制定如下教學目標:

          1 、基礎知識目標:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

          2 、能力訓練目標:

          1)、會用“抽屜原理”解決簡單的實際問題。

          2)、通過操作發(fā)展學生有根據(jù)、有條理地進行思考和推理的能力,形成比較抽象的數(shù)學思維。

          3 、個性品質目標:

          通過“抽屜原理”的靈活應用感受數(shù)學的魅力,產生主動學數(shù)學的興趣。

          三、 教學重點、難點、關鍵

          本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點。

          重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。 通過設計教學環(huán)節(jié)讓學生動手操作,自主探索,小組合作交流的方法找到解決問題的關鍵,總結出解決問題的辦法。

          難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。 通過不同類型的練習,以及觀看鴿巢原理演示圖,建構知識,從本質上認識抽屜原理,將抽屜原理模型化,從而突破難點。

          下面,為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:

          四、 教法

          數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”,我們在以師生既為主體,又為客體的原則下,展現(xiàn)獲取知識和方法的思維過程。由于本節(jié)課的教學內容較為抽象,著重采用情境教學法,直觀演示法與談話法相結合的方式進行教學。

          五、 學法

          教學最重要的就是讓學生學會學習的方法。授之以漁,而非授之以魚!因此在教學中要特別重視學法的指導。本節(jié)課學生主要采用了自主、合作、探究式的學習方式。

          六、 教學程序及設想

          1、由魯賓孫航海故事 引入:把三枚金幣放進兩個盒子里,至少有一個盒子會放幾枚金幣?把教學內容轉化為具有潛在意義的讓學生感興趣的問題,讓學生產生強烈的求知欲望,使學生的整個學習過程成為“探索”,繼而緊張地沉思,尋找理由,證明過程。

          在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

          本題從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。

        抽屜原理說課稿5

          ××老師的《抽屜原理》一課結構完整,過程清晰,充分體現(xiàn)了學生的主體地位,為學生提供了足夠的自主探索的空間,引導學生在觀察、猜測、操作、推理和交流等數(shù)學活動中初步了解“抽屜原理”,并學會了用“抽屜原理”解決簡單的實際問題。

          1、本節(jié)課充分放手,讓學生自主思考,采用自己的方法“證明”:“把4枝筆放入3個文具盒中,不管怎么放,總有一個杯子里至少放進2枝筷子”,然后交流展示,為后面開展教與學的活動做了鋪墊。此處設計注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察、理解,有利于調動所有學生的積極性。在有趣的類推活動中,引導學生得出一般性的結論,讓學生體驗和理解“抽屜原理”的最基本原理:當物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學過程,有助于發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。在評價學生各種“證明”方法,針對學生的不同方法教師給予針對性的鼓勵和指導,讓學生在自主探索中體驗成功,獲得發(fā)展。在學生自主探索的基礎上,進一步比較優(yōu)化,讓學生逐步學會運用一般性的數(shù)學方法來思考問題。

          2、在教學過程中充分發(fā)揮了學生的主體性,在抽屜原理(2)的推導過程中,至少是“商+余數(shù)”,還是“商+1”個物體放進同一個抽屜。讓學生互相爭辯,再由學生自己想辦法來進行驗證,使學生更好的理解了抽屜原理。另外,本節(jié)課中,學生爭先恐后的學習行為,積極參與自學、交流、合作、展示、補充、互評、提問、質疑、反思等的學習過程,“自主、合作、探究”的學習方式,給人留下了深刻的印象,學生主體地位得到了充分的落實。

          3、 注意滲透數(shù)學和生活的聯(lián)系。并在游戲中深化知識。

          學了“抽屜原理”有什么用?能解決生活中的什么問題?教學中教師注重了聯(lián)系學生的生活實際。課前老師設計一個游戲:“學生在一副去掉了大小王的撲克牌中,任意抽取五張,老師猜:總有一種花色的牌至少有兩張。”這是為什么?學生很驚訝。于是,學生的積極性被調動起來了,總想接開其中的奧秘。學完抽屜原理后,讓學生用學過的知識來解釋這些現(xiàn)象,有效的滲透“數(shù)學來源于生活,又還原于生活”的理念。

          商討之處:

          學生對“至少”一詞的理解還顯得有些欠缺,學生僅僅理解了字面上的意思,對“至少”一詞的指向性還不明確,就我理解,“至少”應該是指的在每一種情況中出現(xiàn)的最大數(shù)中的最小數(shù),而有學生卻理解成是每一種情況中的最小數(shù)。如何讓學生的理解更準確,更深刻,還需探究。

        抽屜原理說課稿6

          一、說教材

          “數(shù)學廣角”是人教版六年級下冊第五單元的內容。在數(shù)學問題中,有一類與“存在性”有關的問題,如任意367名學生中,一定存在兩名學生,他們在同一天過生日。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”。本節(jié)課借助把4本書放進3個抽屜里的操作情境,介紹了一類較簡單的“抽屜原理”。

          二、說教法

          本課通過直觀和實際操作,使學生進一步經歷“抽屜原理”的探究過程,并對一些簡單的實際問題“模型化”,從而在用“抽屜原理”加以解決的過程中,促進邏輯推理能力的發(fā)展,培養(yǎng)分析、推理、解決問題的能力以及探索數(shù)學問題的興趣,同時也使學生感受到數(shù)學思想方法的奇妙與作用,在數(shù)學思維的訓練中,逐步形成有序地、嚴密地思考思考問題的意識。

          三、總體設計

          本節(jié)課我安排了四個教學環(huán)節(jié):

          第一環(huán):創(chuàng)設情境,誘發(fā)興趣

          在這個環(huán)節(jié)中,安排了一個小游戲:任意抽取五張撲克牌,不看牌判斷五張牌中同種花色的至少有2張,讓學生猜猜。為什么老師可以這樣判斷?由此引發(fā)學生的興趣,營造一個愉快的學習氛圍,為學習新知創(chuàng)設良好的情境。

          第二環(huán):自主參與,探索新知

          在這個環(huán)節(jié)中,教學時先放手讓學生自主思考,采用實踐操作的方法進行“證明”,然后再進行交流,引導他們對“列舉法”、“假設法”兩種方法進行比較,使學生逐步學會運用一般性的數(shù)學方法來思考問題。

          第三層:應用新知,解決問題

          讓學生借助直觀和假設法最核心的思路“有余數(shù)除法”形式,使學生更好的理解抽屜原理解決問題的一般思路。小學生不要求學生用反證法進行嚴格的證明,鼓勵學生借助學具、實物操作、或畫圖的方式進行說理。

          第四層:引導學生總結規(guī)律

          在學生自主探索的基礎上,教師進一步比較優(yōu)化,讓學生逐步學會運用一般性的數(shù)學方法來思考問題。在有趣的類推活動中,引導學生得出一般性的結論,讓學生體驗和理解“抽屜原理”的最基本原理,當物體個數(shù)大于抽屜個數(shù)時,一定有一個抽屜中放進了至少2個物體。這樣的教學過程,從方法層面和知識層面上對學生進行了提升,有助于發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。

        抽屜原理說課稿7

          今天我們在培訓中心大廳聽了來自××縣的××老師的一節(jié)錄像課《抽屜原理》。抽屜原理這節(jié)課不同于六年級其他課型,與前后知識點沒有聯(lián)系,比較孤立。抽屜原理也很抽像,對于師生而言,這節(jié)課比較難上。××老師是通過幾個直觀例子,借助實際操作,向學生介紹“抽屜原理”的,使學生在理解的基礎上,對一些簡單的實際問題加以“模型化”,并會用“抽屜原理”加以解決。

          ××老師上的《抽屜原理》一課雖然樸實,但是結構完整,過程清晰,充分體現(xiàn)了學生的主體地位,為學生提供了足夠的自主探究的空間,引導學生在觀察、猜測、操作、推理和交流等數(shù)學活動中初步了解“抽屜原理”,并學會了用“抽屜原理”解決簡單的實際問題。

          優(yōu)點:

          1.本節(jié)課充分放手,讓學生自主思考,采用自己的方法證明:把4支筆放入3個杯子中,不管怎么放,總有一個杯子中至少放進2支筆。然后交流活動,為后面開展教學活動做了鋪墊。此處注意了從最簡單的數(shù)據(jù)開始擺放,有利于學生觀察理解,有利于調動所有學生的積極性。在有趣的類推活動中,引導學生得出一般性的結論,讓學生體驗理解最基本的“抽屜原理”:當物體個數(shù)大于抽屜個數(shù)是,一定有一個抽屜放進了2個物體。這樣的教學過程,從方法和知識層面對學生進行了提升,有助于發(fā)展學生的類推能力,形成比較抽象的數(shù)學思維。

          2.在教學過程中充分發(fā)揮了學生的主體性,在抽屜原理的推導過程中,至少是商+余數(shù),還是商+1個物體放進同一個抽屜里。讓學生互相爭辯,在由學生驗證,使學生更好的理解抽屜原理。

          3.注意滲透數(shù)學和生活的聯(lián)系,并在游戲中深化知識。課前教師設計了一組簡單真實的生活情境:讓一名學生在去掉了大小王的撲克牌中,任意抽取5張。老師猜,總有一種花色的牌有2張。學完抽屜原理后,讓學生用學過的知識來解釋這一現(xiàn)象,有效的滲透“數(shù)學來源于生活,又換源于生活”的理念。

          建議:

          1、3個杯子放4支筆時說的基本原理在后面不適用,教師應該強調。

          2、在得出抽屜原理后應該讓學生多加練習并加以說明。

          3. 應該不斷在活動中使學生感受到了數(shù)學魅力。

          “抽屜原理”的建立是學生在觀察、操作思考、推理的基礎上理解和發(fā)現(xiàn)的,學生學的積極主動。老師上的比較扎實,是一節(jié)好課。

        抽屜原理說課稿8

          一.說教學內容。

          我說課的內容是人教版六年級數(shù)學下冊數(shù)學廣角《抽屜原理》第一課時,教材70-71頁的例1和例2.

          二.說教學目標。

          根據(jù)《數(shù)學課程標準》和教材內容,我確定本節(jié)課學習目標如下:

          知識與技能:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數(shù)學活動,建立數(shù)學模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷搿

          過程與方法:經歷從具體到抽象的探究過程,提高學生有根據(jù)、有條理地進行思考和推理的能力。

          情感與態(tài)度:通過“抽屜原理”的靈活應用,提高學生解決數(shù)學問題的能力和興趣,感受到數(shù)學文化及數(shù)學的魅力。

          教學重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

          教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

          三.說教學理念。

          1、用具體的操作,將抽象變?yōu)橹庇^。

          “總有一個文具盒中至少放進2支鉛筆”這句話對于學生而言,抽象難以理解。怎樣讓學生理解這句話呢?我覺得要讓學生充分的操作,一在具體操作中理解“總有”和“至少”,二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個文具盒中至少放進2支鉛筆”這種現(xiàn)象,讓學生理解這句話。

          2、充分發(fā)揮學生主動性,讓學生在證明結論的過程中探究方法,總結規(guī)律。

          學生是學習的主動者,特別是這種原理的初步認識,不應該是教師牽著學生手去認識,而是創(chuàng)造條件,讓學生自己去探索,發(fā)現(xiàn)。所以我認為應該提出問題,讓學生在具體的操作中來證明他們的結論是否正確,讓學生初步經歷“數(shù)學證明”的過程,逐步提高學生的邏輯思維能力。

          3、適當把握教學要求。

          我們的教學不同于社會上的輔導培優(yōu)機構,因此在教學中不需要求學生說理的嚴密性,也不需要學生確定過于抽象的“抽屜”和“物體”。

          四.教法和學法:

          以學生為課堂的主體,采用創(chuàng)設情境,提出問題,讓學生大膽猜測、動手操作、自主探究、合作交流。

          五.說教學流程.

         。ㄒ唬、游戲激趣,初步體驗。

          今天在學習新課之前,老師和大家玩一個“搶凳子”游戲。(下面有2把椅子。3個同學玩搶凳子的游戲,要求每個人都要坐到凳子上,結果會怎樣?)

          【設計意圖:在課前進行的游戲激趣,一使教師和學生進行自然的溝通交流;二激發(fā)學生的興趣,引起探究的愿望;三為今天的探究埋下伏筆。】

         。ǘ⒉僮魈骄,發(fā)現(xiàn)規(guī)律。

          1、提出問題:把4支筆放進3個文具盒中,可以怎么放?

          2、驗證結論:不管學生猜測的結論是什么,都要求學生借助實物進行操作,來驗證結論。學生以小組為單位進行操作和交流時,教師深入了解學生操作情況,找出列舉所有情況的學生。

         。1)先請列舉所有情況的學生進行匯報,一、說明列舉的不同情況,二、結合操作說明自己的結論。(教師根據(jù)學生的回答板書所有的情況)

          學生匯報完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾支筆被放進了同一個文具盒。

          【設計意圖:抽屜原理對于學生來說,比較抽象,特別是“總有一個文具盒中至少放進2支鉛筆”這句話的理解。所以通過具體的操作,列舉所有的情況后,引導學生直接關注到每種分法中數(shù)量最多的文具盒,理解“總有一個文具盒”以及“至少2支”。讓學生初步經歷“數(shù)學證明”的過程,訓練學生的邏輯思維能力。】

         。2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個結論嗎?

          學生匯報了自己的方法后,教師圍繞假設法,組織學生展開討論:為什么每個文具盒里都要放1支鉛筆呢?請相互之間討論一下。

          在討論的基礎上,教師小結:假如每個文具盒放入一支鉛筆,剩下的一支還要放進一個文具盒,無論放在哪個文具盒里,一定能找到一個文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。

          【設計意圖:鼓勵學生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎上,學生意識到了要考慮最少的情況,從而引出假設法滲透平均分的思想!

         。3)初步觀察規(guī)律。

          教師繼續(xù)提問:6支鉛筆放進5個文具盒里呢?你還用一一列舉所有的擺法嗎?7支鉛筆放進6個文具盒里呢?100支鉛筆放進99個文具盒呢?你發(fā)現(xiàn)了什么?

          【設計意圖:讓學生在這個連續(xù)的過程中初步感知方法的優(yōu)劣,發(fā)展了學生的類推能力,形成比較抽象的數(shù)學思維!

          3、運用抽屜原理解決問題。

          出示第70頁做一做,讓學生運用簡單的抽屜原理解決問題。在說理的過程中重點關注“余下的2只鴿子”如何分配?

          【設計意圖:從余數(shù)1到余數(shù)2,讓學生再次體會要保證“至少”必須盡量平均分,余下的數(shù)也要進行二次平均分!

          4、發(fā)現(xiàn)規(guī)律,初步建模。

          我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學生用自己的語言描述,只要大概意思正確即可)

          小結:只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進2個物體。這就叫做抽屜原理。

          【設計意圖:通過對不同具體情況的判斷,初步建立“物體”“抽屜”的模型,發(fā)現(xiàn)簡單的抽屜原理。研究的問題于生活,還要還原到生活中去,所以請學生對課前的游戲的解釋,也是一個建模的過程,讓學生體會“抽屜”不一定是看得見,摸得著!

          5、用有余數(shù)的除法算式表示假設法的思維過程。

         。1)教學例2,可以出示問題后,讓學生說理,然后問:這個思考過程可以用算式表示出來嗎?

         。2)做一做:8只鴿子飛回3個鴿舍,至少有3支鴿子飛進同一個鴿舍。為什么?

          【設計意圖:在例1和做一做的基礎上,相信學生會用平均分的方法解決“至少”的問題,將證明過程用有余數(shù)的除法算式表示,為下一步,學生發(fā)現(xiàn)結論與商和余數(shù)的關系做好鋪墊!

          6、再次發(fā)現(xiàn)規(guī)律。

          觀察板書,你有什么發(fā)現(xiàn)嗎?讓學生通過對除法算式的觀察,得出“只要物體個數(shù)比抽屜個數(shù)幾倍還多,總有一個抽屜至少有商+1個這樣的物體!钡慕Y論。

          【設計意圖:對規(guī)律的認識是循序漸進的。在初次發(fā)現(xiàn)規(guī)律的基礎上,從“至少2個”德到“至少商+1個的結論!

          7、介紹課外知識。

          介紹抽屜原理的發(fā)現(xiàn)者——數(shù)學家狄里克雷。

          【設計意圖:讓學生體會平常事中也有數(shù)學原理,有探究的成就感,激發(fā)對數(shù)學的熱情!

         。ㄈ、鞏固練習。

          《導學練案》自我測評第一題

         。ㄋ模、歸納小結,強化思想

          對于本節(jié)課的學習,你的感受如何?

         。ㄎ澹┌鍟O計

          只要物體數(shù)量比抽屜的數(shù)量多,

          總有一個抽屜至少放進2個物體。

          這就叫做抽屜原理。

          只要物體個數(shù)比抽屜個數(shù)幾倍還多,總 (至少數(shù)=商+1)

          有一個抽屜至少有商+1個這樣的物體。

        【抽屜原理說課稿】相關文章:

        抽屜原理說課稿03-17

        《抽屜原理》說課稿04-17

        抽屜原理說課稿07-05

        抽屜原理說課稿01-31

        關于《抽屜原理》說課稿04-17

        《抽屜原理》說課稿范文05-24

        《抽屜原理》數(shù)學說課稿08-14

        抽屜原理簡要說課稿11-04

        《抽屜原理》優(yōu)秀語文說課稿04-17

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>