1. <rp id="zsypk"></rp>

      2. 三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿

        時(shí)間:2022-11-02 09:55:14 數(shù)學(xué)說課稿 我要投稿

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿

          在教學(xué)工作者開展教學(xué)活動(dòng)前,往往需要進(jìn)行說課稿編寫工作,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。那么問題來了,說課稿應(yīng)該怎么寫?下面是小編為大家整理的三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿,僅供參考,大家一起來看看吧。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿1

          一、說教材

          1、說課內(nèi)容

          今天我說課的內(nèi)容是人教版九年義務(wù)教育小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第五單元第67頁的《三角形的內(nèi)角和》。

          2、教材分析

          《三角形的內(nèi)角和》是探索型的教材。是在學(xué)生學(xué)習(xí)了三角形、長方形等基本圖形,以及角的度量、三角形的特征、分類的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生對(duì)這一知識(shí)的理解和掌握又將為進(jìn)一步學(xué)習(xí)幾何知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。

          教材的知識(shí)它是分成3個(gè)部分來呈現(xiàn)的。第一部分是讓學(xué)生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實(shí)驗(yàn)來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運(yùn)用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗(yàn)證問題,再到運(yùn)用規(guī)律,充分體現(xiàn)了知識(shí)結(jié)構(gòu)的有序性和強(qiáng)烈的數(shù)學(xué)建模思想,既符合四年級(jí)學(xué)生的認(rèn)知規(guī)律,又突出了本課教學(xué)的重點(diǎn)。

          3、教學(xué)目標(biāo)

          根據(jù)小學(xué)數(shù)學(xué)教學(xué)大綱對(duì)四年級(jí)學(xué)生的具體要求,結(jié)合教材特點(diǎn)及學(xué)生年齡特征,將本節(jié)課的目標(biāo)制定為以下幾點(diǎn):

          知識(shí)與技能:學(xué)生動(dòng)手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

          過程與方法:在操作實(shí)驗(yàn)中,讓學(xué)生感受圖形的轉(zhuǎn)化過程及數(shù)學(xué)建模思想,初步培養(yǎng)學(xué)生的空間思維觀念。解決問題:在運(yùn)用知識(shí)解決問題的過程中,感受所學(xué)知識(shí)的重要性,初步培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

          情感態(tài)度:通過各種實(shí)驗(yàn)活動(dòng),激發(fā)學(xué)習(xí)興趣,體驗(yàn)學(xué)習(xí)成功感,并在教學(xué)中,感受生活與數(shù)學(xué)的密切聯(lián)系。

          4、教學(xué)重點(diǎn)難點(diǎn)

          根據(jù)本節(jié)課的教學(xué)目標(biāo)及對(duì)編者意圖的理解。將運(yùn)用各種實(shí)驗(yàn)方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運(yùn)用規(guī)律解決實(shí)際問題確定為本節(jié)課的教學(xué)重點(diǎn)。而同時(shí)學(xué)生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學(xué)難點(diǎn)。

          5、教學(xué)具準(zhǔn)備

          每個(gè)4人小組準(zhǔn)備三個(gè)不同的三角形(銳角三角形、鈍角三角形、直角三角形的紙片一個(gè),且要求大小不一)、實(shí)驗(yàn)報(bào)告單一份;量角器、白板。

          二、說教法學(xué)法我要說的第二塊是教法學(xué)法。

          新課程標(biāo)準(zhǔn)的基本理念就是要讓學(xué)生“人人學(xué)有價(jià)值的數(shù)學(xué)”。強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程”。

          因此,我運(yùn)用猜想驗(yàn)證,自主探究,動(dòng)手操作,直觀演示的教學(xué)法,讓學(xué)生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗(yàn)證等方式讓學(xué)生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學(xué)生的觀察能力和歸納概括能力,又體現(xiàn)了學(xué)生動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式。

          在整個(gè)教學(xué)設(shè)計(jì)上力求充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,將教學(xué)思路擬定為“故事設(shè)疑導(dǎo)入--猜想驗(yàn)證{自主探究}--鞏固新知—數(shù)學(xué)文化—課堂總結(jié)”,努力構(gòu)建探索型的課堂教學(xué)模式。當(dāng)然,一堂課的效果如何,還要看課堂結(jié)構(gòu)是否合理。接下來,我就來說說我的教學(xué)程序設(shè)計(jì)。

          三、說教學(xué)流程

          根據(jù)我對(duì)教材的把握和對(duì)學(xué)情的了解,設(shè)計(jì)了5個(gè)環(huán)節(jié)展開教學(xué)。

          四、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題

          一天,圖形王國舉行了一場盛大的宴會(huì),正在大家聊得熱火朝天的時(shí)候,突然下面?zhèn)鱽砹艘魂嚦臭[聲,圖形王國的國王“點(diǎn)”來到爭吵的地方一看,原來是三角形家族在爭吵,只聽一個(gè)鈍角三角形說:“我有一個(gè)內(nèi)角是最大的,所以我的三角和也是最大的!保@時(shí)候一個(gè)銳角三角形說“我長得比你大,所以說我的內(nèi)角和才是最大的!”,這時(shí),一個(gè)直角三角形弱弱的說了一句:“誰長的大,誰的內(nèi)角和就最大,這不公平。。 ,于是他們就讓國王來評(píng)理,聽到這里國王的也糊涂了:“你們說的都是什么呀?什么是三角形的內(nèi)角,什么是三角形的內(nèi)角和呀?”

          五、合作交流,引導(dǎo)探究

         。1)學(xué)生自然想到要量出三角形每個(gè)角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。

         。2)教師要組織學(xué)生進(jìn)行小組合作每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形)的三個(gè)內(nèi)角并計(jì)算出它們的總和是多少?

         。3)記錄小組測量結(jié)果及討論結(jié)果

          實(shí)驗(yàn)名稱:三角形內(nèi)角和

          實(shí)驗(yàn)?zāi)康模禾骄咳切蝺?nèi)角和是多少度。

          實(shí)驗(yàn)材料:量角器,銳角三角形紙片,直角三角形紙片,鈍角三角形紙片。

         。4)學(xué)生匯報(bào)量的方法,師請(qǐng)同學(xué)評(píng)價(jià)這種方法。

          師小結(jié):直接量的方法挺好,雖然測量有誤差,不準(zhǔn),但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

          (一)剪拼法

          學(xué)生匯報(bào)后師小結(jié):能想到這個(gè)方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)

          師:把三角形的三個(gè)內(nèi)角湊到了一起,拼成了一個(gè)大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會(huì)產(chǎn)生誤差,有時(shí)會(huì)差一點(diǎn)點(diǎn),誰還有別的方法確定三角形的內(nèi)角和一定是180°?

         。ǘ┱燮捶

          學(xué)生匯報(bào)后師小結(jié):我們要研究三角形的內(nèi)角和,實(shí)際上就是想辦法把三角形的三個(gè)內(nèi)角湊到一起,像剪和折的方法,看三個(gè)內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。

          這三種方法都不錯(cuò),在操作的過程中,有時(shí)會(huì)有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

         。ㄈ┭堇[推理法

          (借助學(xué)過的長方形,把一個(gè)長方形沿對(duì)角線分成兩個(gè)三角形。)

          師:你認(rèn)為這種方法好不好?我們看看是不是這么回事。

          (演示課件:兩個(gè)完全相同的三角形內(nèi)角和等于360°,一個(gè)三角形內(nèi)角和等于180°)

          師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準(zhǔn)確的說明了三角形的內(nèi)角和一定是180度。

          (學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗(yàn),更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價(jià)值。)

          學(xué)生用的方法會(huì)非常多,但它們的思維水平是不平行的。

          直接測量法是學(xué)生利用已有的知識(shí),測量出每個(gè)角的度數(shù),再用加法求和;

          拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個(gè)特殊角,也就是平角來解決問題;而演繹推理法,即把兩個(gè)完全相同的三角形合二為一,或把長方形一分為二,成為兩個(gè)三角形,這是更深層次的思考。

          前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個(gè)長方形沿對(duì)角線分成兩個(gè)完全相同的三角形后,因?yàn)閮蓚(gè)三角形的內(nèi)角和是原來長方形的四個(gè)內(nèi)角之和360度,所以一個(gè)三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴(yán)密性和精確性。

          六、訓(xùn)練提高

          使用課本兩道題,以及以下習(xí)題

         。1)∠1=35°∠2=47°∠3=()

         。2)∠1=50°∠2=40°∠3=()

         。3)∠1=20°∠2=45°∠3=()

          按著難易程度逐漸提高,鞏固新知。

          七、數(shù)學(xué)文化

          帕斯卡(BlaisePascal,1623~1662),法國數(shù)學(xué)家、物理學(xué)家、近代概率論的奠基者。早在300多年前這位法國著名的科學(xué)家就已經(jīng)發(fā)現(xiàn)了任何三角形的內(nèi)角和是180度,而他當(dāng)時(shí)才12歲。

          八、課堂總結(jié)

          我們用三角形內(nèi)角和的知識(shí)知道了六邊形內(nèi)角和,那么五邊形、七邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,你能用學(xué)到的知識(shí)和方法去探究問題,相信你還會(huì)有一些精彩的發(fā)現(xiàn)。

          九、反思

          整節(jié)課都在比較愉快的氛圍中展開的,但在小組合作中因?yàn)橐蟛粔蛎鞔_,導(dǎo)致在合作中出現(xiàn)了問題,不過好在由于我給孩子們足夠的時(shí)間,他們能說出:所有三角形都是180度,證明孩子們是學(xué)會(huì)了的。所以,如果你給孩子足夠的時(shí)間,他們會(huì)給你意想不到的驚喜。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿2

          一、說教材

          “三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識(shí)的直接經(jīng)驗(yàn),已具備了一些相應(yīng)的三角形知識(shí)和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅(jiān)實(shí)的基礎(chǔ)。

          為方便教師領(lǐng)會(huì)教材編寫的意圖與理念,開展有效的教學(xué),更好的發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的各種能力,教材在呈現(xiàn)教學(xué)內(nèi)容時(shí),不但重視體現(xiàn)知識(shí)形成的過程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間,為教師靈活的組織教學(xué)提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結(jié)論,而是提供豐富的動(dòng)手實(shí)踐的素材,設(shè)計(jì)思考性較強(qiáng)的問題,讓學(xué)生通過探索、實(shí)驗(yàn)、發(fā)現(xiàn)、討論、交流等獲得。從而讓學(xué)生在動(dòng)手操作,積極探索的活動(dòng)過程中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力,不斷提高自己的思維水平;趯(duì)教材以上的認(rèn)識(shí)及課程標(biāo)準(zhǔn)的要求,我擬定本節(jié)課的教學(xué)目標(biāo)為:

          1、知識(shí)目標(biāo):知道三角形內(nèi)角和是180°。

          2、能力目標(biāo):①通過學(xué)生猜、測、拼、折、觀察等活動(dòng),培養(yǎng)學(xué)生探索、發(fā)現(xiàn)能力、觀察能力和動(dòng)手操作能力。②能運(yùn)用三角形內(nèi)角和是180°這一規(guī)律解決實(shí)際問題。

          3、情感目標(biāo):①讓學(xué)生在探索活動(dòng)中產(chǎn)生對(duì)數(shù)學(xué)的好奇心,發(fā)展學(xué)生的空間觀念;②體驗(yàn)探索的樂趣和成功的快樂,增強(qiáng)學(xué)好數(shù)學(xué)的信心。

          教學(xué)重點(diǎn):三角形內(nèi)角和是180°的實(shí)際應(yīng)用。

          教學(xué)難點(diǎn):探索三角形的內(nèi)角和是180°

          {二、教學(xué)用具}

          本節(jié)課采用課件、不同形狀的三角形、量件器等。

          三、說教法

          新課程標(biāo)準(zhǔn)的基本理念就是要讓學(xué)生“人人學(xué)有價(jià)值的數(shù)學(xué)”。強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓他們積極主動(dòng)地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);而教師只是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者,在全面參與和了解學(xué)生的學(xué)習(xí)過程中起著對(duì)學(xué)生進(jìn)行積極的評(píng)價(jià),關(guān)注他們的學(xué)習(xí)方法、學(xué)習(xí)水平和情感態(tài)度,促使學(xué)生向著預(yù)定的目標(biāo)發(fā)展的作用”。因此,我運(yùn)用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學(xué)法,讓學(xué)生知道身邊的數(shù)學(xué)問題隨處可見,能用自己所學(xué)的知識(shí)解決生活當(dāng)中的事情,培養(yǎng)學(xué)生的發(fā)散思維,進(jìn)一步激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。

          四、說學(xué)法

          學(xué)法是學(xué)生再生知識(shí)的法寶。為了使學(xué)生能在整節(jié)課的探索活動(dòng)中積極主動(dòng)參與動(dòng)手實(shí)踐、自主探究、合作交流的學(xué)習(xí)活動(dòng),我設(shè)計(jì)了獨(dú)立活動(dòng)、二人活動(dòng)及分小組活動(dòng)。在具體活動(dòng)中,我讓學(xué)生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗(yàn)證等方式讓學(xué)生確定三角形內(nèi)角的度數(shù)是18度。這樣,既培養(yǎng)了學(xué)生的觀察能力和歸納概括能力,又體現(xiàn)了學(xué)生動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式,同時(shí)也培養(yǎng)了學(xué)生探索能力和創(chuàng)新精神。

          五、說教學(xué)流程

          “將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”,“努力營造學(xué)生在教學(xué)活動(dòng)中獨(dú)立自主學(xué)習(xí)的時(shí)間和空間,使他們成為課堂教學(xué)中重要的參與者與創(chuàng)造者。在整個(gè)教學(xué)設(shè)計(jì)上力求充分體現(xiàn)“以學(xué)生發(fā)展為本”教育理念,我將教學(xué)流程擬定為“設(shè)疑導(dǎo)入——大膽猜想——?jiǎng)邮烛?yàn)證——鞏固內(nèi)化&mdash

          ;—拓展延伸”,努力構(gòu)建探索型的課堂教學(xué)模式。

          1、設(shè)疑導(dǎo)入

          教學(xué)的藝術(shù)不在于傳授知識(shí),而在于喚醒、激發(fā)和鼓勵(lì)。伊始上課,我想以前面學(xué)過的知識(shí)“三角形的分類”為切入點(diǎn),給出不同形狀的三角形,讓學(xué)生說出它們的名稱,有銳角三角形、直角三角形、鈍角三角形,隨后我提出挑戰(zhàn),讓學(xué)生畫一個(gè)很特殊的三角形:即含有兩個(gè)直角的三角形,結(jié)果是可想而知的,學(xué)生是不可能畫出來的,想知道為什么呢?學(xué)了“三角形內(nèi)角和”我們就知道了。板書課題:三角形內(nèi)角和。這樣,我在很短的時(shí)間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,為學(xué)生進(jìn)一步學(xué)習(xí)打好基礎(chǔ)。

          2、大膽猜想

          學(xué)生有了探索的愿望和興趣,可是不能沒有目標(biāo)的去探索,那樣只會(huì)事倍功半,甚至沒有結(jié)果,這時(shí)我讓學(xué)生大膽猜想:為什么不能畫出有兩個(gè)直角的三角形呢?猜一猜三角形的內(nèi)角和”大約是多少度?學(xué)生猜想時(shí)我在黑板上書寫幾個(gè)比較接近的度數(shù)。這樣形成統(tǒng)一的認(rèn)識(shí),使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。

          3、動(dòng)手驗(yàn)證

          學(xué)生形成統(tǒng)一的猜想后,我就把課堂大量的時(shí)間和空間留給學(xué)生,讓他們開展有針對(duì)性的數(shù)學(xué)探究活動(dòng){既驗(yàn)證三角形的內(nèi)角和是否是180度?},在活動(dòng)中,我既不像過去那樣告訴學(xué)生怎么動(dòng)手去驗(yàn)證,讓學(xué)生做機(jī)械的操作員,也不是隨意放開讓學(xué)生盲目的操作,我想把放和引有機(jī)的結(jié)合起來,鼓勵(lì)學(xué)生積極開動(dòng)腦筋,從不同的途徑探索解決問題的方法。不但讓每個(gè)學(xué)生自主參與驗(yàn)證活動(dòng),而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量量不同形狀的三角形的三個(gè)內(nèi)角拼一拼將三角形的三個(gè)內(nèi)角可以拼成一個(gè)什么角,折一折將三角形的三個(gè)內(nèi)角可以折成一個(gè)什么角,看一看無論是量、還是拼、或者是折我們得到的三角形內(nèi)角和都是多少度?。

          4、鞏固內(nèi)化:

          俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識(shí),形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對(duì)此,我力爭注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用。

          1、釋疑練習(xí):讓學(xué)生用所學(xué)的知識(shí)說一說為什么畫不出含有兩個(gè)直角的三角形?目的是解釋課前的設(shè)疑,從中培養(yǎng)學(xué)生應(yīng)用意識(shí)和解決問題的能力;

          2、基本練習(xí):鞏固本節(jié)課所學(xué)的知識(shí)。

          3、變式練習(xí):目的是是學(xué)生將知識(shí)轉(zhuǎn)化成能力。

          4、綜合練習(xí):目的是讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力。

          5、拓展創(chuàng)新:力求體現(xiàn)“不同的人在數(shù)學(xué)上得到不同的發(fā)展”這一新課程理念。

          數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個(gè)循序漸進(jìn)的過程,前面學(xué)習(xí)的知識(shí)往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會(huì)對(duì)知識(shí)的遷移。本課最后,我給學(xué)生出了一道通過對(duì)本節(jié)課所學(xué)知識(shí)的遷移就可以完成的問題,對(duì)學(xué)生進(jìn)行思維訓(xùn)練,既培養(yǎng)了學(xué)生應(yīng)用知識(shí)的能力,又培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。

          總之,在本節(jié)課教學(xué)活動(dòng)中我力求充分體現(xiàn)一下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,以思維訓(xùn)練為主線的教學(xué)思想;充分關(guān)注學(xué)生的自主探究與合作交流,注重培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿3

          一,說教材

          (一)教材的地位和作用

          《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級(jí)下冊(cè)第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個(gè)重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,學(xué)習(xí),掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義.

          (二)教學(xué)目標(biāo)

          基于以上對(duì)教材的分析以及對(duì)教學(xué)現(xiàn)狀的思考,我從知識(shí)與技能,教學(xué)過程與方法,情感態(tài)度價(jià)值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):

          1.通過"量一量","算一算","拼一拼","折一折"的小組活動(dòng)的方法,探索發(fā)現(xiàn)驗(yàn)證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識(shí)解決一些簡單問題.

          2.通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透"轉(zhuǎn)化"的數(shù)學(xué)思想.

          3.通過數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心.培養(yǎng)學(xué)生的創(chuàng)新意識(shí),探索精神和實(shí)踐能力.

          (三)教學(xué)重,難點(diǎn)

          因?yàn)閷W(xué)生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識(shí).對(duì)于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°.在整個(gè)過程中學(xué)生要了解的是"內(nèi)角"的概念,如何驗(yàn)證得出三角形的內(nèi)角和是180°.因此本節(jié)課我提出的教學(xué)的重點(diǎn)是:驗(yàn)證三角形的內(nèi)角和是180°.

          二,說教法,學(xué)法

          本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗(yàn)證三角形的內(nèi)角和是180°.

          因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力".四年級(jí)學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作,主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過渡的階段.因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從"猜測――驗(yàn)證"展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式.

          三,說教學(xué)過程

          我以引入,猜測,證實(shí),深化和應(yīng)用五個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn).

          引入

          呈現(xiàn)情境:出示多個(gè)已學(xué)的平面圖形,讓學(xué)生認(rèn)識(shí)什么是"內(nèi)角".( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個(gè)內(nèi)角 (四個(gè))它的內(nèi)角有什么特點(diǎn) (都是直角)這四個(gè)內(nèi)角的和是多少 (360°)三角形有幾個(gè)內(nèi)角呢 從而引入課題.

          【設(shè)計(jì)意圖】讓學(xué)生整體感知三角形內(nèi)角和的知識(shí),這樣的教學(xué), 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景, 滲透數(shù)學(xué)知識(shí)之間的聯(lián)系, 有效地避免了新知識(shí)的"橫空出現(xiàn)".

          猜測

          提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

          【設(shè)計(jì)意圖】引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°.

          (三)驗(yàn)證

          (1)量:請(qǐng)學(xué)生每人畫一個(gè)自己喜歡的三角形,接著用量角器量一量,然后把這三個(gè)內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

          (2)撕―拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個(gè)內(nèi)角撕下來拼在一起,成為一個(gè)平角 請(qǐng)學(xué)生同桌合作,從學(xué)具中選出一個(gè)三角形,撕下來拼一拼.

          (3)折-拼:把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角,一個(gè)平角是180°,所以得出三角形的內(nèi)角和是180°.

          (4)畫:根據(jù)長方形的內(nèi)角和來驗(yàn)證三角形內(nèi)角和是180°.

          一個(gè)長方形有4個(gè)直角,每個(gè)直角90°,那么長方形的內(nèi)角和就是360°,每個(gè)長方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180°.從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°.

          【設(shè)計(jì)意圖】利用已經(jīng)學(xué)過的知識(shí)構(gòu)建新的數(shù)學(xué)知識(shí), 這不僅有助于學(xué)生理解新的知識(shí), 而且是一種非常重要的學(xué)習(xí)方法.在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角,長方形四個(gè)內(nèi)角的和等知識(shí)聯(lián)系起來, 并使學(xué)生在新舊知識(shí)的連接點(diǎn)和新知識(shí)的生長點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系.在整個(gè)探索過程中, 學(xué)生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮.

          深化

          質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會(huì)是一樣嗎

          觀察指著黑板上兩個(gè)大小不同但三個(gè)角對(duì)應(yīng)相等的三角形并說明原因,三角形變大了, 但角的大小沒有變.)

          結(jié)論: 角的兩條邊長了, 但角的大小不變.因?yàn)榻堑拇笮∨c邊的長短無關(guān).

          實(shí)驗(yàn): 教師先在黑板上固定小棒, 然后用活動(dòng)角與小棒組成一個(gè)三角形, 教師手拿活動(dòng)角的頂點(diǎn)處, 往下壓, 形成一個(gè)新的三角形, 活動(dòng)角在變大, 而另外兩個(gè)角在變小.這樣多次變化, 活動(dòng)角越來越大, 而另外兩個(gè)角越來越小.最后, 當(dāng)活動(dòng)角的兩條邊與小棒重合時(shí).

          結(jié)論:活動(dòng)角就是一個(gè)平角180°, 另外兩個(gè)角都是0°.

          【設(shè)計(jì)意圖】小學(xué)生由于年齡小, 容易受圖形或物體的外在形式的影響.教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識(shí)聯(lián)系起來,通過讓學(xué)生觀察利用"角的大小與邊的長短無關(guān)"的舊知識(shí)來理解說明.

          對(duì)于利用精巧的小教具的演示, 讓學(xué)生通過觀察,交流,想象, 充分感受三角形三個(gè)角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因.

          (五)應(yīng)用

          1.基礎(chǔ)練習(xí):書本練習(xí)十四的習(xí)題9,求出三角形各個(gè)角的度數(shù).

          2.變式練習(xí):一個(gè)三角形可能有兩個(gè)直角嗎 一個(gè)三角形可能有兩個(gè)鈍角嗎 你能用今天所學(xué)的知識(shí)說明嗎

          3.(1)將兩個(gè)完全一樣的直角三角形拼成一個(gè)大三角形, 這個(gè)大三角形的內(nèi)角和是多少

          (2) 將一個(gè)大三角形分成兩個(gè)小三角形, 這兩個(gè)小三角形的內(nèi)角和分別是多少

          4.智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習(xí)十四的習(xí)題

          【設(shè)計(jì)意圖】習(xí)題是溝通知識(shí)聯(lián)系的有效手段.在本節(jié)課的四個(gè)層次的練習(xí)中, 能充分注意溝通知識(shí)之間的內(nèi)在聯(lián)系, 使學(xué)生從整體上把握知識(shí)的來龍去脈和縱橫聯(lián)系,逐步形成對(duì)知識(shí)的整體認(rèn)知, 構(gòu)建自己的認(rèn)知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運(yùn)用知識(shí)解決問題的能力.

          第一題將三角形內(nèi)角和知識(shí)與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運(yùn)用內(nèi)角和知識(shí)和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù).

          第二題將三角形內(nèi)角和知識(shí)與三角形的分類知識(shí)結(jié)合起來,引導(dǎo)學(xué)生運(yùn)用三角形內(nèi)角和的知識(shí)去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識(shí)之間的聯(lián)系.

          第三題通過兩個(gè)三角形的分與合的過程,使學(xué)生感受此過程中三角內(nèi)角的 變化情況, 進(jìn)一步理解三角形內(nèi)角和的知識(shí).

          第四題是對(duì)三角形內(nèi)角和知識(shí)的進(jìn)一步拓展, 引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和.教學(xué)中, 學(xué)生能把這些多邊形分成幾個(gè)三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進(jìn)學(xué)生對(duì)多邊形內(nèi)角和知識(shí)的整體構(gòu)建.

          說課板書設(shè)計(jì):

          三角形內(nèi)角和

          引入:

          猜測:

          驗(yàn)證:

          量——算

          撕——拼

          折——拼

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿4

          一、說教材:

          今天我說課的內(nèi)容是小學(xué)數(shù)學(xué)人教版實(shí)驗(yàn)教材四年級(jí)下冊(cè)的《三角形的內(nèi)角和》。三角形的內(nèi)角和是180°是三角形的一個(gè)重要性質(zhì),也是“空間與圖形”領(lǐng)域中的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何知識(shí)的基礎(chǔ)。三角形是常見的一種圖形,在平面圖形中,三角形是最簡單的多邊形,也是最基本的多邊形。學(xué)生對(duì)三角形已經(jīng)有了直觀的認(rèn)識(shí),能夠從平面圖形中分辨出三角形,還認(rèn)識(shí)了三角形的特性,知道三角形任意兩邊之和大于第三邊以及三角形的分類等有關(guān)三角形的知識(shí)。這些都是學(xué)生感受、理解、抽象“三角形的內(nèi)角和”的概念的基礎(chǔ)。我們把握好“三角形的內(nèi)角和是180°”這部分內(nèi)容的教學(xué)不僅可以加深學(xué)生對(duì)三角形特征的理解,發(fā)展學(xué)生的空間觀念,而且可以通過動(dòng)手操作,獲取新知,發(fā)展學(xué)生的思維能力和解決實(shí)際問題的能力。同時(shí)也為以后學(xué)習(xí)更復(fù)雜的幾何圖形知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。

          二、說教學(xué)目標(biāo):

          1、知識(shí)目標(biāo):知道三角形內(nèi)角和是180°。

          2、能力目標(biāo):①通過學(xué)生測量、撕拼、折疊、觀察等活動(dòng),培養(yǎng)學(xué)生探索、發(fā)現(xiàn)能力、觀察能力和動(dòng)手操作能力。

          ②能運(yùn)用三角形內(nèi)角和是180°這一規(guī)律解決實(shí)際問題。

          3、情感目標(biāo):①讓學(xué)生在探索活動(dòng)中產(chǎn)生對(duì)數(shù)學(xué)的好奇心,發(fā)展學(xué)生的空間觀念;

         、隗w驗(yàn)探索的樂趣和成功的快樂,增強(qiáng)學(xué)好數(shù)學(xué)的信心。

          三、說重點(diǎn)和難點(diǎn):

          重點(diǎn):探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°。

          難點(diǎn):通過小組討論、動(dòng)手操作等方式,讓學(xué)生自己探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°,并能應(yīng)用這一規(guī)律解決實(shí)際問題。

          四、說教法和學(xué)法:

          新課程標(biāo)準(zhǔn)的基本理念就是要讓學(xué)生“人人學(xué)有價(jià)值的數(shù)學(xué)”。強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓他們積極主動(dòng)地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn)。因此,我主要采用的教學(xué)方法是:直觀教學(xué)法和動(dòng)手操作實(shí)驗(yàn)法。在教學(xué)中,根據(jù)學(xué)生的年齡特征,整節(jié)課我以學(xué)生為主的“活動(dòng)教學(xué)”貫穿全過程。設(shè)計(jì)有獨(dú)立活動(dòng)、同桌活動(dòng)及分小組活動(dòng)。在具體活動(dòng)中,雖然小學(xué)生的遺忘性較強(qiáng),但不得不承認(rèn)學(xué)生已學(xué)過了三角形的內(nèi)角和,所以一開始我大膽放手讓學(xué)生說,從學(xué)生說中導(dǎo)入故事,“三角形三兄弟的爭吵”,引出與學(xué)生要學(xué)習(xí)的內(nèi)容——三角形的內(nèi)角,然后設(shè)疑:三角形內(nèi)角和是多少?由于學(xué)生在小學(xué)學(xué)過這樣的知識(shí),所以很輕松地就可以答出。所以我直接讓學(xué)生分小組討論:有什么辦法可以驗(yàn)證得出這樣的結(jié)論。讓學(xué)生大膽猜想,自主探索三角形的內(nèi)角和。再通過測量、拼折、驗(yàn)證等方式讓學(xué)生確定三角形內(nèi)角和是180度。這樣,既培養(yǎng)了學(xué)生的觀察能力和歸納概括能力,又培養(yǎng)了學(xué)生動(dòng)手操作能力和創(chuàng)新精神。

          五、說教學(xué)過程:

          本節(jié)課的教學(xué)過程我設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):一是創(chuàng)設(shè)情境,導(dǎo)入新課;二是自主探究,證實(shí)規(guī)律;三是應(yīng)用延伸,解決問題;四是深化思維,拓展知識(shí);五是課堂總結(jié);六是作業(yè)布置。下面就具體的教學(xué)環(huán)節(jié)說說我的設(shè)想。

          (一)創(chuàng)設(shè)情境,導(dǎo)入新課:

          教學(xué)的藝術(shù)不在于傳授知識(shí),而在于喚醒、激發(fā)和鼓勵(lì)。開始上課,我就大膽放手讓學(xué)生說三角形的特性、分類等有關(guān)知識(shí),從學(xué)生說中導(dǎo)入故事,“三角形三兄弟的爭吵”,引出與學(xué)生要學(xué)習(xí)的內(nèi)容——三角形的內(nèi)角和,然后設(shè)疑:三角形內(nèi)角和是多少?從而激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣。

          (二)自主探究,證實(shí)規(guī)律:

          1、理解標(biāo)目:學(xué)生有了探索的愿望和興趣,可是不能沒有目標(biāo)的去探索,那樣只會(huì)事倍功半,甚至沒有結(jié)果,所以一開始我先不急于動(dòng)手探索,先讓學(xué)生明白什么是三角形的內(nèi)角和。

          2、猜想:目標(biāo)明確后,我就讓學(xué)生大膽猜想,形成統(tǒng)一的認(rèn)識(shí),使后邊的探索和驗(yàn)證活動(dòng)有了明確的目標(biāo)。

          3、驗(yàn)證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,我就把課堂大量的時(shí)間和空間留給學(xué)生,讓他們開展有針對(duì)性的數(shù)學(xué)探究活動(dòng){既驗(yàn)證三角形的內(nèi)角和是否是180度?},在活動(dòng)中,我既不像過去那樣告訴學(xué)生怎么動(dòng)手去驗(yàn)證,讓學(xué)生做機(jī)械的操作員,不是隨意放開讓學(xué)生盲目的操作,而是把放和引有機(jī)的結(jié)合,鼓勵(lì)學(xué)生積極開動(dòng)腦筋,從不同的途徑探索解決問題的方法。不但讓每個(gè)學(xué)生自主參與驗(yàn)證活動(dòng),而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動(dòng)過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量量、拼一拼、折一折――說說、議議――小結(jié)。

          4、鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習(xí),要掌握知識(shí),形成技能技巧,一定要通過練習(xí)。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習(xí),課程標(biāo)準(zhǔn)提倡練習(xí)的有效性。對(duì)此,我非常注意將數(shù)學(xué)的思考融入不同層次的練習(xí)之中,很好的發(fā)揮練習(xí)的作用,如:根據(jù)普遍三角形兩個(gè)角求一個(gè)角,根據(jù)特殊的三角形求出三角形的三個(gè)角的度數(shù){具體在練習(xí)一,第二、應(yīng)用延伸練習(xí)一中都有體現(xiàn)},從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習(xí)設(shè)計(jì)目的明確,針對(duì)性強(qiáng),使學(xué)生不但鞏固了知識(shí),更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。

          5、拓展創(chuàng)新:數(shù)學(xué)具有嚴(yán)密的邏輯性和抽象性。而學(xué)生學(xué)習(xí)內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個(gè)循序漸進(jìn)的過程,前面學(xué)習(xí)的知識(shí)往往是后面進(jìn)一步學(xué)習(xí)的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會(huì)對(duì)知識(shí)的遷移。本課最后,我給學(xué)生出了一道通過對(duì)本節(jié)課所學(xué)知識(shí)的遷移就可以完成的問題,對(duì)學(xué)生進(jìn)行思維訓(xùn)練,既培養(yǎng)了學(xué)生應(yīng)用知識(shí)的能力,又培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新精神。

          6、說課堂總結(jié)

          采用用先讓學(xué)生歸納補(bǔ)充,然后教師再補(bǔ)充的方式進(jìn)行:⑴這節(jié)課我們學(xué)了什么知識(shí)?你有什么收獲?(2)看書設(shè)疑。充分發(fā)揮學(xué)生的主體意識(shí),培養(yǎng)學(xué)生的語言概括能力。

          六.說教學(xué)板書

          這是一節(jié)操作課,學(xué)生要掌握的概念較少,所以整個(gè)板書我以表格為主,主要把學(xué)生大量的驗(yàn)證成果展示出,讓學(xué)生親自動(dòng)手后再通過觀察,一目了然,得出結(jié)論——三角形的內(nèi)角和是180度。簡間但又層層涉及,形式活潑,色彩也較豐富。

          總之,本節(jié)課教學(xué)活動(dòng)中我力求充分體現(xiàn)一下特點(diǎn):以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習(xí)體現(xiàn)了層次性,知識(shí)技能得于落實(shí)和發(fā)展。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿5

          一、說教材

         。ㄒ唬┙滩牡牡匚缓妥饔

          《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級(jí)下冊(cè)第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》、《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個(gè)重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,學(xué)習(xí)、掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

         。ǘ┙虒W(xué)目標(biāo)

          基于以上對(duì)教材的分析以及對(duì)教學(xué)現(xiàn)狀的思考,我從知識(shí)與技能、教學(xué)過程與方法、情感態(tài)度價(jià)值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):

          1、通過“量一量”、“算一算”、“拼一拼”、“折一折”的小組活動(dòng)的方法,探索發(fā)現(xiàn)驗(yàn)證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識(shí)解決一些簡單問題。

          2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。

          3、通過數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心。培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、探索精神和實(shí)踐能力。

         。ㄈ┙虒W(xué)重、難點(diǎn)

          因?yàn)閷W(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識(shí)。對(duì)于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個(gè)過程中學(xué)生要了解的是“內(nèi)角”的概念,如何驗(yàn)證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點(diǎn)是:驗(yàn)證三角形的內(nèi)角和是180°。

          二、說教法、學(xué)法

          本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量、折一折、撕一撕、畫一畫,選擇不同的一種或者幾種方法來驗(yàn)證三角形的內(nèi)角和是180°。

          因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力”。四年級(jí)學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作、主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從“猜測――驗(yàn)證”展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。

          三、說教學(xué)過程

          我以引入、猜測、證實(shí)、深化和應(yīng)用五個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。

         。ㄒ唬┮

          呈現(xiàn)情境:出示多個(gè)已學(xué)的平面圖形,讓學(xué)生認(rèn)識(shí)什么是“內(nèi)角”。(把圖形中相鄰兩邊的夾角稱為內(nèi)角)長方形有幾個(gè)內(nèi)角?(四個(gè))它的內(nèi)角有什么特點(diǎn)?(都是直角)這四個(gè)內(nèi)角的和是多少?(360°)三角形有幾個(gè)內(nèi)角呢?從而引入課題。

          設(shè)計(jì)意圖:讓學(xué)生整體感知三角形內(nèi)角和的知識(shí),這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景,滲透數(shù)學(xué)知識(shí)之間的聯(lián)系,有效地避免了新知識(shí)的“橫空出現(xiàn)”。

         。ǘ┎聹y

          提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢?

          設(shè)計(jì)意圖:引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。

         。ㄈ(yàn)證

         。1)量:請(qǐng)學(xué)生每人畫一個(gè)自己喜歡的三角形,接著用量角器量一量,然后把這三個(gè)內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度?

         。2)撕拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個(gè)內(nèi)角撕下來拼在一起,成為一個(gè)平角?請(qǐng)學(xué)生同桌合作,從學(xué)具中選出一個(gè)三角形,撕下來拼一拼。

         。3)折拼:把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角,一個(gè)平角是180°,所以得出三角形的內(nèi)角和是180°。

          (4)畫:根據(jù)長方形的內(nèi)角和來驗(yàn)證三角形內(nèi)角和是180°。

          一個(gè)長方形有4個(gè)直角,每個(gè)直角90°,那么長方形的內(nèi)角和就是360°,每個(gè)長方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

          設(shè)計(jì)意圖:利用已經(jīng)學(xué)過的知識(shí)構(gòu)建新的數(shù)學(xué)知識(shí),這不僅有助于學(xué)生理解新的知識(shí),而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角、長方形四個(gè)內(nèi)角的和等知識(shí)聯(lián)系起來,并使學(xué)生在新舊知識(shí)的連接點(diǎn)和新知識(shí)的生長點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系。在整個(gè)探索過程中,學(xué)生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。

         。ㄋ模┥罨

          質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會(huì)是一樣嗎?

          觀察:(指著黑板上兩個(gè)大小不同但三個(gè)角對(duì)應(yīng)相等的三角形并說明原因,三角形變大了,但角的大小沒有變。)

          結(jié)論:角的兩條邊長了,但角的大小不變。因?yàn)榻堑拇笮∨c邊的長短無關(guān)。

          實(shí)驗(yàn):教師先在黑板上固定小棒,然后用活動(dòng)角與小棒組成一個(gè)三角形,教師手拿活動(dòng)角的頂點(diǎn)處,往下壓,形成一個(gè)新的三角形,活動(dòng)角在變大,而另外兩個(gè)角在變小。這樣多次變化,活動(dòng)角越來越大,而另外兩個(gè)角越來越小。最后,當(dāng)活動(dòng)角的兩條邊與小棒重合時(shí),

          結(jié)論:活動(dòng)角就是一個(gè)平角180°,另外兩個(gè)角都是0°。

          設(shè)計(jì)意圖:小學(xué)生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識(shí)聯(lián)系起來,通過讓學(xué)生觀察利用“角的大小與邊的長短無關(guān)”的舊知識(shí)來理解說明。

          對(duì)于利用精巧的小教具的演示,讓學(xué)生通過觀察、交流、想象,充分感受三角形三個(gè)角之間的聯(lián)系和變化,感悟三角形內(nèi)角和不變的原因。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿6

          一、說教材

          1、我說課的內(nèi)容是《九年義務(wù)教育人教版》第八冊(cè)的《三角形的內(nèi)角和》。

          2、教材簡析

          三角形在平面圖形中是簡單的,也是最基本的多邊形,這部分內(nèi)容是在學(xué)生對(duì)三角形已經(jīng)有了直觀的認(rèn)識(shí),并且對(duì)三角形的特性及分類有了一定的了解的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。通過這部分內(nèi)容的學(xué)習(xí),培養(yǎng)學(xué)生的實(shí)際操作能力、觀察能力、小組合作交流能力、語言表達(dá)能力以及抽象的思維能力,為以后學(xué)習(xí)多邊形打好基礎(chǔ)。

          3、教學(xué)目標(biāo)

          根據(jù)教材的內(nèi)容以及學(xué)生的知識(shí)現(xiàn)狀和年齡心理特點(diǎn),我制定以下教學(xué)目標(biāo)。

          (1)知識(shí)目標(biāo):從實(shí)際出發(fā),通過互動(dòng)學(xué)習(xí)初步感知三角形的內(nèi)角和是180度,在此基礎(chǔ)上,用實(shí)驗(yàn)的方法加以探究。

         。2)能力目標(biāo):通過教學(xué)活動(dòng),培養(yǎng)學(xué)生動(dòng)手操作、歸納推理以及抽象概括的能力。

          (3)情感目標(biāo):使學(xué)生經(jīng)歷探究的過程,體會(huì)與他人合作交流的樂趣,學(xué)會(huì)用數(shù)學(xué)的眼光去發(fā)現(xiàn)問題、解決問題。感受到數(shù)學(xué)的價(jià)值。

          4、教學(xué)重點(diǎn)與難點(diǎn)。

          《三角形內(nèi)角和》的教學(xué)是學(xué)生從直觀形象到抽象掌握的過程,即學(xué)生從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,對(duì)學(xué)生發(fā)展類推的能力有著重要的作用。因此,我認(rèn)為學(xué)生通過操作,自主探究三角形的內(nèi)角和是180度是本節(jié)課的重點(diǎn);采用多種途徑證明三角形的內(nèi)角和等于180度是本節(jié)課的難點(diǎn)。

          5、教學(xué)準(zhǔn)備

          為了更好的達(dá)到教學(xué)目標(biāo),突出重點(diǎn),突破難點(diǎn),我準(zhǔn)備以下教具和學(xué)具:課件、不同類型的三角形紙片、量角器、剪刀、膠水。

          二、說教法學(xué)法

          根據(jù)新課程教材的特點(diǎn)和學(xué)生實(shí)際情況,教學(xué)中以直觀教學(xué)為主。運(yùn)用動(dòng)手觀察,分組討論等多種方法,采用現(xiàn)代化手段結(jié)合教材,讓學(xué)生在“想一想”、“做一做”、“說一說”的自主探索過程發(fā)揮學(xué)生相互之間的作用,讓學(xué)生自己動(dòng)腦、動(dòng)手、動(dòng)口中促進(jìn)思維的發(fā)展。培養(yǎng)學(xué)生的動(dòng)手操作能力、語言表達(dá)能力和自學(xué)能力。

          本節(jié)課在學(xué)生學(xué)習(xí)方法的引導(dǎo)上盡量體現(xiàn):

         、僭诰唧w的情景中,讓學(xué)生親身經(jīng)歷發(fā)現(xiàn)問題、提出問題、解決問題的過程,體驗(yàn)成功的快樂。

          ②通過師生、生生互動(dòng),探究、合作交流,完善自己的想法,形成自己獨(dú)特的學(xué)習(xí)方法。

          ③通過靈活、有趣和富有創(chuàng)意的練習(xí),提高學(xué)生解決問題的能力。

          三、學(xué)生情況分析

          學(xué)生在日常生活中接觸了很多大小不同的角,但對(duì)于三角形內(nèi)角和等于180度的知識(shí),生活中很少接觸,顯得比較抽象,對(duì)于四年級(jí)的學(xué)生抽象思維雖然有一定的發(fā)展,但依然以形象具體思維為主,分析、綜合、歸納、概括能力較弱,有待進(jìn)一步培養(yǎng)。

          四、說教學(xué)流程

          為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我這樣設(shè)計(jì)教學(xué)流程:

          1、設(shè)疑導(dǎo)入。

          為了激起學(xué)生求知的欲望,再根據(jù)本課題的特點(diǎn)和四年級(jí)學(xué)生心理的特點(diǎn),我采取了直接設(shè)疑導(dǎo)入。具體步驟如下:

         。1)讓學(xué)生匯報(bào)三角尺各個(gè)內(nèi)角的度數(shù),并計(jì)算出每個(gè)三角尺的內(nèi)角和是多少度。

          (2)提出問題:當(dāng)學(xué)生答出三角尺的內(nèi)角和度數(shù)之后,我問:所有的三角形的內(nèi)角和都是180度嗎?學(xué)生討論之后引出課題。

          2、動(dòng)手操作,自主探究。

          為創(chuàng)新學(xué)生的思維,張揚(yáng)學(xué)生的個(gè)性,學(xué)生動(dòng)手量、剪、拼等活動(dòng)貫穿于整個(gè)課堂。我根據(jù)四年級(jí)學(xué)生的心理特點(diǎn)設(shè)計(jì)了這一環(huán)節(jié),其目的是:讓學(xué)生在活動(dòng)過程中形成問題意識(shí),從而展開想象,培養(yǎng)學(xué)生的問題意識(shí)。具體做法是:(1)先讓學(xué)生思考如何驗(yàn)證三角形的內(nèi)角和是180度,然后通過討論交流得到幾種驗(yàn)證方法。(2)讓學(xué)生利用量角器量出學(xué)具三角形紙片的各個(gè)內(nèi)角的度數(shù),再求出三角形的內(nèi)角和,初步感知三角形的內(nèi)角和等于180度。(3)讓學(xué)生利用剪拼的方法感知三角形的三個(gè)內(nèi)角拼在一起是一個(gè)平角,從而得到結(jié)論。

          3、鞏固新知

          本環(huán)節(jié)我設(shè)計(jì)了不同類型的習(xí)題。有操作題,計(jì)算題,畫圖題,拼角題等等。其目的是:通過這一環(huán)節(jié),讓學(xué)生掌握、理解三角形的內(nèi)角和等于180度,并把所學(xué)知識(shí)回歸于生活實(shí)踐,從而達(dá)到情感、態(tài)度、價(jià)值觀這一教學(xué)目標(biāo)的實(shí)現(xiàn)。

          五、板書設(shè)計(jì)

          板書是課堂教學(xué)語言的一種表現(xiàn)形式,它具有啟發(fā)性、指導(dǎo)性和應(yīng)用性。精巧的板書設(shè)計(jì)有“引”和“導(dǎo)”的功能,“引”是引學(xué)生之思,“導(dǎo)”是導(dǎo)學(xué)生之路。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿7

          一、說課內(nèi)容:北師大版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第二單元第三節(jié)----《三角形的內(nèi)角和》一課。

          二、教材分析:

          在這一環(huán)節(jié)我要闡述四方面的內(nèi)容:

          1、三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,教材呈現(xiàn)教學(xué)內(nèi)容時(shí),安排了一系列的實(shí)驗(yàn)操作活動(dòng)。讓學(xué)生通過探索,發(fā)現(xiàn)三角形的內(nèi)角和是180度。

          2、學(xué)情分析:

          學(xué)生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點(diǎn),掌握了量角的方法。也可能有部分學(xué)生知道了三角形內(nèi)角和是180°的結(jié)論。

          3、教學(xué)目標(biāo):

          A、讓學(xué)生親自動(dòng)手,發(fā)現(xiàn),證實(shí)三角形的內(nèi)角和等于180度。并能初步運(yùn)用這一性質(zhì)解決有一些實(shí)際問題。

          B、在經(jīng)歷“觀察、測量、撕拼、折疊”的驗(yàn)證的過程中培養(yǎng)學(xué)生觀察能力,歸納能力、合作能力和創(chuàng)造能力。

          4、教學(xué)重難點(diǎn):

          經(jīng)歷三角形的內(nèi)角和是180度這一知識(shí)的形成,發(fā)展和應(yīng)用的全過程。

          5、教學(xué)難點(diǎn):

          讓學(xué)生用不同方法驗(yàn)證三角形的內(nèi)角和是180度。

          三、教學(xué)準(zhǔn)備:

          在備課過程中,我閱讀了農(nóng)遠(yuǎn)光盤中多位名師的教學(xué)案例來完善自己的教學(xué)設(shè)計(jì),并收集了農(nóng)遠(yuǎn)光盤中的多媒體課件,用課件適時(shí)播放。

          四、教法分析

          為了使教學(xué)目標(biāo)得以落實(shí),談?wù)劚菊n的教法和學(xué)法。新課程標(biāo)準(zhǔn)強(qiáng)調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程。要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),讓他們積極主動(dòng)地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗(yàn);而教師只是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者和合作者。我采用了趣味教學(xué)法、情境教學(xué)法、引導(dǎo)發(fā)現(xiàn)法、合作探究法和直觀演示法。

          五、學(xué)法分析

          在學(xué)法指導(dǎo)上,我把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,引導(dǎo)學(xué)生通過動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)形成的全過程。體現(xiàn)了學(xué)生動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式。

          六:教學(xué)流程:

          (一)猜迷激趣,復(fù)習(xí)舊知。,

          興趣是最好的老師,開課我出示了一則謎語。調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。

          形狀是似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問不簡單。(打一平面圖形)

          由謎底又得出了一個(gè)對(duì)三角形你們有哪些了解的問題,喚醒學(xué)生頭腦中有關(guān)三角形的知識(shí),同時(shí)很自然引出對(duì)“三角形內(nèi)角和”一詞的講解,為后面的探索奠定基礎(chǔ)。

         。ǘ﹦(chuàng)設(shè)情境,巧引新知(課件出示)

         。ㄈ(yàn)證猜想,主動(dòng)探究。

          本環(huán)節(jié)是學(xué)生獲取知識(shí)、提高能力的一個(gè)重要過程。我有目的、有意識(shí)的引導(dǎo)學(xué)生主動(dòng)參與實(shí)踐活動(dòng)、經(jīng)歷知識(shí)的形成過程。

          “你能運(yùn)用已有的知識(shí)和身邊的學(xué)具想辦法驗(yàn)證你的猜想嗎?”學(xué)生思考片刻后,我出示學(xué)習(xí)提綱:

          A、先獨(dú)立思考,你想怎樣驗(yàn)證?

          B、再小組合作探究,運(yùn)用多種方法驗(yàn)證。

          C、最后匯報(bào),展示你的驗(yàn)證方法。

          課程標(biāo)準(zhǔn)指出:數(shù)學(xué)教學(xué)應(yīng)該由簡單的問答式教學(xué)向獨(dú)立思考基礎(chǔ)上的合作學(xué)習(xí)轉(zhuǎn)變。所以,先讓他們獨(dú)立思考,形成獨(dú)特的個(gè)人見解。等有了合作的需要時(shí),再合作探究。此時(shí)的合作,學(xué)生才會(huì)有展示自己的方法的強(qiáng)烈欲望,才會(huì)在不同意見的相互碰撞中產(chǎn)生富有創(chuàng)意的思維火花。在足夠的討論之后,進(jìn)入了匯報(bào)展示過程。學(xué)生可能出現(xiàn)以下幾種方法

          1.量角求和

          這個(gè)驗(yàn)證方法應(yīng)是全班同學(xué)都能想到的,因此,在這一環(huán)節(jié)我設(shè)計(jì)了小組活動(dòng)的形式。讓小組成員在練習(xí)本上任意地畫幾個(gè)三角形進(jìn)行測量并記錄。學(xué)生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個(gè)內(nèi)角和都是180度。

          2.拼角求和

          通過討論,有的小組可能會(huì)想到把三個(gè)角撕開,再拼在一起,剛好拼成了一個(gè)平角,由于學(xué)生在以前學(xué)過平角是180度,很快就發(fā)現(xiàn)這三個(gè)三角形的內(nèi)角和都是180度。為了讓全班學(xué)生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進(jìn)行了演示。(課件出示)課件播放后學(xué)生一目了然,攻克了本課的一個(gè)教學(xué)重點(diǎn)。

          3.折角求和

          有的小組還可能想到把三個(gè)角折在一起,也剛好形成一個(gè)平角。但如何折才能夠使三個(gè)內(nèi)角剛好組成平角呢?這一驗(yàn)證方法是本課教學(xué)的一個(gè)難點(diǎn)。

          在學(xué)生展示完驗(yàn)證方法后,我又讓每位學(xué)生選擇自己喜歡的方法,再去驗(yàn)證剛才的發(fā)現(xiàn)。最后歸納出結(jié)論:所有三角形的內(nèi)角和都是180度。

         。ㄋ模⿷(yīng)用新知,解決問題。

          數(shù)學(xué)離不開練習(xí)。本節(jié)課我把圖像、動(dòng)畫等引入課件,使練習(xí)的內(nèi)容具有簡單的背景與情節(jié),使學(xué)生對(duì)解題產(chǎn)生了濃厚的興趣。

          我設(shè)計(jì)了四個(gè)層次的練習(xí):有序而多樣。

          1)基本練習(xí):讓學(xué)生通過這一習(xí)題,掌握求未知角的一般方法。

          2)實(shí)踐運(yùn)用:這一習(xí)題的設(shè)計(jì)是為了讓學(xué)生知道生活中到處都有數(shù)學(xué),數(shù)學(xué)能解決生活實(shí)際問題,真切體驗(yàn)到學(xué)的是有價(jià)值的數(shù)學(xué)。

          3)鞏固提高:使學(xué)生了解在間接條件下求未知角的方法。

          4)拓展延伸。讓學(xué)生體會(huì)到數(shù)學(xué)中輔助線的橋梁作用,在潛移默化中滲透一個(gè)重要數(shù)學(xué)思想―――轉(zhuǎn)化,為以后學(xué)習(xí)數(shù)學(xué)打下堅(jiān)實(shí)的基礎(chǔ)。

         。ㄎ澹┤n小結(jié)完善新知

          1、這節(jié)課我們學(xué)到了什么知識(shí)?2、你有什么收獲?

          通過學(xué)生談這節(jié)課的收獲,對(duì)所學(xué)知識(shí)和學(xué)習(xí)方法進(jìn)行系統(tǒng)的整理歸納。

         。┌鍟O(shè)計(jì)

          三角形的內(nèi)角和

          量角撕拼折角拼圖

          三角形的內(nèi)角和是180度。

          六、說效果預(yù)測:

          本課中,學(xué)生通過動(dòng)手操作,測量、撕拼、折疊等實(shí)驗(yàn)活動(dòng),得到的不僅是三角形內(nèi)角和的知識(shí),也使學(xué)生學(xué)到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動(dòng)探索的精神。促進(jìn)學(xué)生良好思維品質(zhì)的形成,達(dá)到預(yù)想的教學(xué)目的。使學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長!

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿8

          一、說教材

          三角形的內(nèi)角和是北師大版四年級(jí)下冊(cè)第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個(gè)重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。

          二、說學(xué)情

          本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識(shí)的直接經(jīng)驗(yàn),也已具備了一些相應(yīng)的三角形知識(shí)和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅(jiān)實(shí)的基礎(chǔ)。

          因此,我確定本節(jié)課的教學(xué)目標(biāo)是:

          教學(xué)目標(biāo):

          知識(shí)與技能:通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的和等于180。知道三角形兩個(gè)角的度數(shù),能求出第三個(gè)角的度數(shù)。能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。

          過程與方法:

          發(fā)展學(xué)生動(dòng)手操作、觀察比較和抽象概括的能力。

          情感、態(tài)度與價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)的探索樂趣,體會(huì)研究數(shù)學(xué)問題的思想方法。

          教學(xué)重點(diǎn):

          學(xué)生經(jīng)歷探究三角形內(nèi)角和的全過程并歸納概括三角形內(nèi)角和等于180。

          教學(xué)難點(diǎn):

          三角形內(nèi)角和的探索與驗(yàn)證,對(duì)不同探究方法的指導(dǎo)和學(xué)生對(duì)規(guī)律的靈活應(yīng)用。

          三、說教法、學(xué)法

          整個(gè)教學(xué)將體現(xiàn)以人為本,先放后扶的教學(xué)策略。放,不是漫無目的的放,而是為學(xué)生提供足夠的探究規(guī)律的材料和時(shí)間,放手讓學(xué)生自主學(xué)習(xí),合作探究;扶,則是根據(jù)學(xué)生的不同探究方法和出現(xiàn)的錯(cuò)誤,給予恰當(dāng)指導(dǎo),引導(dǎo)學(xué)生歸納概括出規(guī)律。

          《課程標(biāo)準(zhǔn)》明確指出:要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力。四年級(jí)學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作、主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從猜測――驗(yàn)證展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。在教學(xué)中,學(xué)生通過測量、拼折、驗(yàn)證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動(dòng)手實(shí)踐、合作交流,自主探索的學(xué)習(xí)方式,同時(shí)也培養(yǎng)了探索能力和創(chuàng)新精神。

          四、說教學(xué)過程

          基于以上分析,我以猜測、驗(yàn)證、結(jié)論和應(yīng)用四個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。

          第一,猜測。

          通過出示一個(gè)角形,讓學(xué)生說知道三角形的知識(shí)來引出三角形的內(nèi)角的概念,讓學(xué)生自由猜測,三角形內(nèi)角和是多少?引出課題,以疑激思。

          第二,動(dòng)手操作,探究新知。

          動(dòng)手實(shí)踐,自主探究,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,新課程的一個(gè)重要理念就是提倡學(xué)生做數(shù)學(xué)用親身體驗(yàn)的方式來經(jīng)歷數(shù)學(xué),探究數(shù)學(xué),這要求老師首先為學(xué)生提供充分的研究材料,以及充裕的時(shí)間,保證學(xué)生能真正地試驗(yàn),操作和探索。

          這一環(huán)節(jié)我設(shè)計(jì)為以下三步:

          1、操作感知。

          組織學(xué)生通過算一算初步感知三角形的內(nèi)角和。根據(jù)學(xué)生特點(diǎn),為了節(jié)約學(xué)生上課的時(shí)間,作為預(yù)習(xí)作業(yè),我提前讓學(xué)生在家里自制鈍角、銳角、直角三角形,并測量出每個(gè)角的度數(shù),寫在三角形對(duì)應(yīng)的角上,也填在書上的表格里。這時(shí)直接讓學(xué)生計(jì)算,學(xué)生匯報(bào)計(jì)算結(jié)果,不同的學(xué)生可能會(huì)有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對(duì)合理(允許一點(diǎn)誤差)都給與肯定。這時(shí)可引導(dǎo)學(xué)生得出結(jié)論(強(qiáng)調(diào)在排除測量誤差的前提下):三角形的內(nèi)角和是180度。在這一過程中,學(xué)生有困惑,有疑問,而正是這些困惑激發(fā)了學(xué)生更強(qiáng)的探究欲望,正是這些疑問,使得合作成為學(xué)生的內(nèi)在需要。

          2、小組合作。

          針對(duì)探究過程中不同思維能力的學(xué)生,要做到因材施教。對(duì)于得出結(jié)論的學(xué)生要鼓勵(lì)他們思考新的方法,對(duì)于無法下手的學(xué)生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來看是多少?能用什么方法將三個(gè)角合起來。在探究學(xué)習(xí)中,老師只是起一個(gè)引導(dǎo)者的作用,引導(dǎo)學(xué)生不斷地深入探究,盡可能用多種合理的方法,驗(yàn)證結(jié)論。

          3、交流反饋,得出結(jié)論。

          學(xué)生完成探究活動(dòng)之后,在有親身體驗(yàn)的基礎(chǔ)上,我將選擇不同方法的代表,在展示平臺(tái)上展示自己的探究過程,并說說自己是怎樣想的。我關(guān)注的不是學(xué)生最后論證的結(jié)果,而是學(xué)生思維的過程。學(xué)生可能通過:拼一拼、折一折、畫一畫的方法,驗(yàn)證得出三角形的內(nèi)角和是180度,并通過觀察對(duì)比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對(duì)于任意三角形都是適用。在學(xué)生探究之后,我用課件重新演示了3種方法,讓學(xué)生有一個(gè)系統(tǒng)的知識(shí)體系。

          第三是靈活應(yīng)用,拓展延伸。

          揭示規(guī)律之后,學(xué)生要掌握知識(shí),形成技能技巧,就要通過解答實(shí)際問題的練習(xí)來鞏固內(nèi)化。根據(jù)學(xué)生能力的不同,我將練習(xí)分為以下3個(gè)層次。

          1、基礎(chǔ)練習(xí)。要求學(xué)生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個(gè)角,求第三個(gè)角。由于學(xué)生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字?jǐn)⑹鲱}。在這之間指導(dǎo)學(xué)生注意一題多解。

          2、提高練習(xí)。如已知一個(gè)直角三角形的一個(gè)角的度數(shù),求另一個(gè)角的度數(shù);已知一個(gè)等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。

          3、拓展練習(xí)。針對(duì)不同思維能力的學(xué)生,我設(shè)計(jì)的思考題是要求學(xué)生應(yīng)用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學(xué)生去求解多邊形的內(nèi)角和,更重要的是為了讓學(xué)生靈活應(yīng)用知識(shí)點(diǎn),培養(yǎng)學(xué)生的空間思維能力。

          這樣安排可以兼顧不同能力的學(xué)生,在保證基本教學(xué)要求的同時(shí),盡量滿足學(xué)生的學(xué)習(xí)需要,啟發(fā)學(xué)生的思維活動(dòng)。

          本節(jié)課通過這樣的設(shè)計(jì),學(xué)生全身心投入到數(shù)學(xué)探究互動(dòng)中去,學(xué)生不僅學(xué)到科學(xué)探究的方法,而體驗(yàn)到探索的甘苦,領(lǐng)略成功的喜悅,學(xué)生在探索中學(xué)習(xí),在探索中發(fā)現(xiàn),在探索中成長,最終實(shí)現(xiàn)可持續(xù)性發(fā)展。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿9

        各位老師:

          下午好!

          今天我們相聚在云周小學(xué),共同行走在“生本”課堂的道路上。作為一名新教師,我也是抱著一種學(xué)習(xí)的心態(tài)來評(píng)課。應(yīng)老師的這節(jié)《三角形內(nèi)角和》,無論是他的設(shè)計(jì),還是他對(duì)課的演繹,都充分體現(xiàn)了“以生為本”的理念。

          這節(jié)課有以下幾點(diǎn)值得我們?nèi)ヌ接懀?/p>

          一、學(xué)生的起點(diǎn)在哪里?

          既然是生本課堂,那我們?cè)趥湔n之前,就要做到備學(xué)生,找起點(diǎn)。新課導(dǎo)入時(shí),應(yīng)老師花了一些時(shí)間復(fù)習(xí)三角形的分類和平角的知識(shí),充分喚醒學(xué)生對(duì)三角形的認(rèn)知,分類是為了抓住三角形的本質(zhì),縮小驗(yàn)證時(shí)選材的范圍,而三個(gè)角拼成一個(gè)平角的練習(xí),則為學(xué)生之后的驗(yàn)證搭好一個(gè)腳手架,降低他們學(xué)習(xí)的難度。但從課堂上來看,部分學(xué)生已經(jīng)知道三角形內(nèi)角和是180°,而且當(dāng)出示平角那道題時(shí),學(xué)生立刻說出180°是三角形內(nèi)角和,而沒有想到平角,這需要我們來反思這個(gè)環(huán)節(jié)的必要性。為什么學(xué)生會(huì)聯(lián)想到內(nèi)角和呢?我想可能是應(yīng)老師在此之前詢問了:“三角形有幾個(gè)角?如果告訴你兩個(gè)角,會(huì)求第三個(gè)角嗎?”同樣是為了復(fù)習(xí),卻產(chǎn)生了負(fù)遷移,反而沒有達(dá)成預(yù)定的效果。再此之后又介紹“內(nèi)角”等概念,這樣難免有回課嫌疑。課堂選材要有取舍,我覺得這個(gè)環(huán)節(jié)可以刪除。

          二、既然量正確了,為什么還要拼?

          有位老師說過:“數(shù)學(xué)老師和語文老師就是不一樣,語文老師會(huì)發(fā)散,將一句簡單的話復(fù)雜化;而數(shù)學(xué)老師會(huì)收斂,將復(fù)雜的例題、方法融匯成一句話!彼詳(shù)學(xué)課上必須讓學(xué)生親身經(jīng)歷知識(shí)的發(fā)展過程。在探究過程中,應(yīng)老師放手讓學(xué)生想方法驗(yàn)證猜想,學(xué)生首先會(huì)想到量出內(nèi)角并相加,從反饋來看,學(xué)生量得的結(jié)果都是180°,既然得到想要的結(jié)果了,再拼不是多此一舉了嗎?課堂上應(yīng)老師也對(duì)學(xué)生的精確結(jié)果趕到意外,究竟量角的誤差在哪里?

          學(xué)生的心里總是不敢犯錯(cuò)的,這就會(huì)讓很多數(shù)據(jù)失真。其實(shí)誤差不僅僅只是存在于內(nèi)角總和,還存在于每個(gè)內(nèi)角的度數(shù)。課堂反饋上,對(duì)于同樣的銳角,學(xué)生量出了“60°,40°,80°和55°,45°,80°”同樣一個(gè)三角形,為什么內(nèi)角度數(shù)會(huì)有所不同,此時(shí)通過對(duì)比,讓學(xué)生明白量角時(shí)有誤差,容易改變角度,看來量不是最準(zhǔn)確的方法,而撕角拼角則不會(huì)改變它的大小。我想這就是我們?yōu)槭裁磳⒘饣ㄔ诩羝捶ㄉ狭恕?/p>

          三、如何凸顯內(nèi)角和的本質(zhì)?

          通過各種方法的驗(yàn)證,我們知道了三角形的內(nèi)角和是180°,難道點(diǎn)到即止嗎?應(yīng)老師巧妙借助幾何畫板,改變?nèi)切蔚男螤詈痛笮,并引?dǎo)學(xué)生觀察什么變了,什么不變?這一簡單的演示卻寓意深遠(yuǎn),無論形狀大小如何改變,三角形內(nèi)角和永遠(yuǎn)是180°,這也從另一個(gè)角度說明了三角形為什么具有穩(wěn)定性,只要確定兩個(gè)角,第三個(gè)角永遠(yuǎn)的唯一的。結(jié)論只是靜態(tài)的文字,而課件是動(dòng)態(tài)的演示,這種動(dòng)靜結(jié)合的美渲染了我們的眼球,同時(shí)也凸顯了內(nèi)角和的本質(zhì),讓結(jié)論更具說服力。

          四、練習(xí)設(shè)計(jì)的創(chuàng)新點(diǎn)在哪里?

          練習(xí)是一節(jié)課的精髓,這節(jié)課的練習(xí)主要分三層,一算二辨三延伸。應(yīng)老師在練習(xí)的設(shè)計(jì)上很注重一材多用,而且非常有坡度性,這也是本節(jié)課最大的亮點(diǎn)。在“只知道一個(gè)角”的環(huán)節(jié)中,應(yīng)老師設(shè)計(jì)了只露出一個(gè)70°角的等腰三角形,求另兩個(gè)角。大多數(shù)學(xué)生只想到一種情況后,便沾沾自喜,不會(huì)更深入思考問題,因?yàn)樵趯W(xué)生潛意識(shí)中總認(rèn)為正確答案只有一個(gè)。這也給了我們一個(gè)啟示,關(guān)注答案,更要關(guān)注學(xué)生解題的意識(shí),引導(dǎo)學(xué)生從多維角度思考問題。

          這里我有一個(gè)的想法,這個(gè)想法也來源于作業(yè)本的習(xí)題。能不能把70°角改成40°,當(dāng)學(xué)生算出答案后,詢問學(xué)生,如果按角分,這是一個(gè)什么三角形?溝通按角分和按邊分三角形的橫向聯(lián)系,在練習(xí)中溫故而知新。再設(shè)計(jì)已知一個(gè)角是140°的等腰三角形的練習(xí),打破學(xué)生的.思維定勢,并不是所有等腰三角形都有兩種可能。之后再詢問:“一個(gè)角都不知道,如何求內(nèi)角!弊尵毩(xí)更具層次性。

          應(yīng)老師這節(jié)課還有很多值得我們學(xué)習(xí)的地方,比如應(yīng)老師自如的教態(tài)、親切的語言讓學(xué)生倍感溫暖;精心準(zhǔn)備的教具讓課堂不再沉悶;精彩的練習(xí)讓知識(shí)落到實(shí)處。以上是我對(duì)這節(jié)課一些不成熟的想法,希望各位老師給予批評(píng)和指正。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿10

        各位評(píng)委、老師大家好:

          我說課的題目是《三角形內(nèi)角和》,內(nèi)容選自人教版九年義務(wù)教育七年級(jí)下冊(cè)第七章第二節(jié)第一課時(shí)。

          一、本節(jié)課在新一輪課程改革下的設(shè)計(jì)理念:

          數(shù)學(xué)是人與人之間精神層面上進(jìn)行的交往。課堂教學(xué)中的交往主要是教師與學(xué)生、學(xué)生與學(xué)生之間的交往。它需要運(yùn)用“對(duì)話式”的學(xué)習(xí)方式,采取多種教學(xué)策略,使學(xué)生在合作、探索、交流中發(fā)展能力。新課程中對(duì)學(xué)生的情感、體驗(yàn)、價(jià)值觀,以及獲取知識(shí)的渠道都有悖于傳統(tǒng)的教學(xué)模式,這正是教師在新課程中尋找新的教學(xué)方式的著眼點(diǎn)。應(yīng)該說,新的教學(xué)方式將伴隨著教師對(duì)新課程的逐漸透視而形成新的路徑。要破除原有教學(xué)活動(dòng)的框架,建立適應(yīng)師生相互交流的教學(xué)活動(dòng)體系;滿足學(xué)生的心理需求,實(shí)現(xiàn)教者與學(xué)者感情上的融洽和情感上的共鳴;給學(xué)生體驗(yàn)成功的機(jī)會(huì),把“要我學(xué)”變成“我要學(xué)”。我認(rèn)為教師角色的轉(zhuǎn)變一定會(huì)促進(jìn)學(xué)生的發(fā)展、促進(jìn)教育的長足發(fā)展,在未來的教學(xué)過程里,教師要做的是:幫助學(xué)生決定適當(dāng)?shù)膶W(xué)習(xí)目標(biāo),并確認(rèn)和協(xié)調(diào)達(dá)到目標(biāo)的最佳途徑;指導(dǎo)學(xué)生形成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略;創(chuàng)造豐富的教學(xué)情境,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性;為學(xué)生提供各種便利,為學(xué)生的學(xué)習(xí)服務(wù);建立一個(gè)接納的、支持性的、寬容的課堂氣氛;作為學(xué)習(xí)的參與者,與學(xué)生分享自己的感情和想法;和學(xué)生一道尋找真理,能夠承認(rèn)自己的過失和錯(cuò)誤。教學(xué)情境的營造是教師走進(jìn)新課程中所面臨的挑戰(zhàn),適應(yīng)新一輪基礎(chǔ)教育課程改革的教學(xué)情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們?cè)诮虒W(xué)活動(dòng)的全過程中去探索、研究、發(fā)現(xiàn)、形成。

          二、教材分析與處理:

          三角形的內(nèi)角和定理揭示了組成三角形的三個(gè)角的數(shù)量關(guān)系,此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ),三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

          三、學(xué)生分析

          處于這個(gè)年齡階段的學(xué)生有能力自己動(dòng)手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實(shí)際的數(shù)學(xué)建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗(yàn)成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時(shí)注意問題的開放性與可擴(kuò)展性。

          四、教學(xué)目標(biāo):

          1.知識(shí)目標(biāo):在情境教學(xué)中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學(xué)生親身經(jīng)歷知識(shí)的發(fā)生過程,并能進(jìn)行簡單應(yīng)用。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會(huì)方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學(xué)中,通過有效措施讓學(xué)生在對(duì)解決問題過程的反思中,獲得解決問題的經(jīng)驗(yàn),進(jìn)行富有個(gè)性的學(xué)習(xí)。

          2.能力目標(biāo):通過拼圖實(shí)踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學(xué)生的的邏輯推理、大膽猜想、動(dòng)手實(shí)踐等能力。

          3.德育目標(biāo):通過添置輔助線教學(xué),滲透美的思想和方法教育。

          4.情感、態(tài)度、價(jià)值觀:在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生樂于學(xué)數(shù)學(xué),遇到困難不避讓,在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)自信心,在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。

          五、重難點(diǎn)的確立:

          1.重點(diǎn):三角形的內(nèi)角和定理探究與證明。

          2.難點(diǎn):三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

          六、教法、學(xué)法和教學(xué)手段:

          采用“問題情境-建立模型-解釋、應(yīng)用與拓展”的模式展開教學(xué)。

          采用對(duì)話式、嘗試教學(xué)、問題教學(xué)、分層教學(xué)等多種教學(xué)方法,以達(dá)到教學(xué)目的。

          教學(xué)過程設(shè)計(jì):

          一、創(chuàng)設(shè)情境,懸念引入

          一堂新課的引入是老師與學(xué)生交往活動(dòng)的開始,是學(xué)生學(xué)習(xí)新知識(shí)的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關(guān)鍵。一個(gè)成功的引入,是讓學(xué)生感覺到他熟知的生活,可使學(xué)生迅速投入到課堂中來,對(duì)知識(shí)在最短的時(shí)間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學(xué)活動(dòng)將成為他們樂此不疲的快事了。

          具體做法:拋出問題:“學(xué)校后勤部折疊長梯(電腦顯示圖形)打開時(shí)頂端的角是多少度呢?一名學(xué)生測出了兩個(gè)梯腿與地面的成角后,立即說出了答案,你知道其中的道理嗎?”待學(xué)生思考片刻后,我因勢利導(dǎo),指出學(xué)習(xí)了本節(jié)課你便能夠回答這個(gè)問題了。從而引入新課。

          二、探索新知

          1.動(dòng)手實(shí)踐,嘗試發(fā)現(xiàn):要求學(xué)生將事先準(zhǔn)備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點(diǎn)重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學(xué)生會(huì)發(fā)現(xiàn),三者拼成一個(gè)平角。此時(shí)讓學(xué)生互相觀察拼圖,驗(yàn)證結(jié)果。從觀察交流中,互學(xué)方法,達(dá)到生生互動(dòng)。待交流充分,分小組張貼所拼圖形,教師點(diǎn)評(píng),總結(jié)分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對(duì)有合作精神的小組給與表揚(yáng)。

         。▽⑵磮D展示在黑板上)

          2.嘗試猜想:教師提問,從活動(dòng)中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時(shí)我走到學(xué)生中去,對(duì)有困難的小組給與適當(dāng)?shù)囊龑?dǎo)。之后由學(xué)生匯報(bào)組內(nèi)的發(fā)現(xiàn)。即三角形三個(gè)內(nèi)角的和等于180度。

          3.證明猜想:先幫助學(xué)生回憶命題證明的基本步驟,然后讓學(xué)生獨(dú)立完成畫圖、寫出已知、求證的步驟,其他同學(xué)補(bǔ)充完善。下面讓學(xué)生對(duì)照剛才的動(dòng)手實(shí)踐,分小組探求證明方法。此環(huán)節(jié)應(yīng)留給學(xué)生充分的思考、討論、發(fā)現(xiàn)、體驗(yàn)的時(shí)間,讓學(xué)生在交流中互取所長,合作探索,找到證明的切入點(diǎn),體驗(yàn)成功。對(duì)有困難的學(xué)生要多加關(guān)注和指導(dǎo),不放棄任何一個(gè)學(xué)生,借此增進(jìn)教師與學(xué)有困難學(xué)生之間的關(guān)系,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。合作探究后,匯報(bào)證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線創(chuàng)造條件,以達(dá)到證明的目的。

          4.學(xué)以致用,反饋練習(xí)

         。1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

          解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

          ∴∠B+∠C=100°在△ABC中,

         。2)已知:∠A=80°,∠B=52°,則∠C=?

          解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

          又∵∠A=80°∠B=52°(已知)

          ∴∠C=48°

         。3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

         。4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

         。5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

          解:設(shè)∠A=x°,則∠B=3x°,∠C=5x°

          由三角形內(nèi)角和定理得,x+3x+5x=180

          解得,x=20

          ∴∠A=20°∠B=60°∠C=100°

          (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

          第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學(xué)生以圖形由簡單到繁的直觀演示。

          通過這組練習(xí)滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。

          5.鞏固提高,以生為本

         。1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=--度。

          (2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=--度,∠ADC=--度。

          本組練習(xí)是三角形內(nèi)角和定理與平角定義及角平分線等知識(shí)的綜合應(yīng)用.能較好的培養(yǎng)學(xué)生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗(yàn)。

          6.思維拓展,開放發(fā)散

          如圖,已知△PAD中,∠APD=120°,B、C為AD上的點(diǎn),△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關(guān)系。

          本題旨在激發(fā)學(xué)生獨(dú)立思考和創(chuàng)新意識(shí),培養(yǎng)創(chuàng)新精神和實(shí)踐能力,發(fā)展個(gè)性思維。

          三、歸納總結(jié),同化順應(yīng)

          1.學(xué)生談體會(huì)

          2.教師總結(jié),出示本節(jié)知識(shí)要點(diǎn)

          3.教師點(diǎn)評(píng),對(duì)學(xué)生在課堂上的積極合作,大膽思考給與肯定,提出希望。

          四、作業(yè):

          1、必做題:習(xí)題3.1第10、11、12題

          2.選做題:習(xí)題3.1第13、14題

          五、板書設(shè)計(jì)

          三角形內(nèi)角和

          學(xué)生拼圖展示已知:求證:

          證明:開放題:

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿11

          一,說教材

         。ㄒ唬┙滩牡牡匚缓妥饔

          《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級(jí)下冊(cè)第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個(gè)重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,學(xué)習(xí),掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

          (二)教學(xué)目標(biāo)

          基于以上對(duì)教材的分析以及對(duì)教學(xué)現(xiàn)狀的思考,我從知識(shí)與技能,教學(xué)過程與方法,情感態(tài)度價(jià)值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):

          1、通過量一量;算一算;拼一拼折一折的小組活動(dòng)的方法,探索發(fā)現(xiàn)驗(yàn)證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識(shí)解決一些簡單問題。

          2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透轉(zhuǎn)化;的數(shù)學(xué)思想。

          3、通過數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心。培養(yǎng)學(xué)生的創(chuàng)新意識(shí),探索精神和實(shí)踐能力。

         。ㄈ┙虒W(xué)重,難點(diǎn)

          因?yàn)閷W(xué)生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識(shí)。對(duì)于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個(gè)過程中學(xué)生要了解的是內(nèi)角的概念,如何驗(yàn)證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點(diǎn)是:驗(yàn)證三角形的內(nèi)角和是180°。

          二,說教法,學(xué)法

          本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗(yàn)證三角形的內(nèi)角和是180°。

          因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察,操作,猜想,培養(yǎng)學(xué)生初步的思維能力。四年級(jí)學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識(shí);具備了初步的動(dòng)手操作,主動(dòng)探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從猜測――驗(yàn)證展開學(xué)習(xí)活動(dòng),讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。

          三,說教學(xué)過程

          我以引入,猜測,證實(shí),深化和應(yīng)用五個(gè)活動(dòng)環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。

          引入

          呈現(xiàn)情境:出示多個(gè)已學(xué)的平面圖形,讓學(xué)生認(rèn)識(shí)什么是內(nèi)角;。(把圖形中相鄰兩邊的夾角稱為內(nèi)角)長方形有幾個(gè)內(nèi)角(四個(gè))它的內(nèi)角有什么特點(diǎn)(都是直角)這四個(gè)內(nèi)角的和是多少(360°)三角形有幾個(gè)內(nèi)角呢從而引入課題。

          【設(shè)計(jì)意圖】讓學(xué)生整體感知三角形內(nèi)角和的知識(shí),這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識(shí)背景,滲透數(shù)學(xué)知識(shí)之間的聯(lián)系,有效地避免了新知識(shí)的橫空出現(xiàn)

          猜測

          提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

          【設(shè)計(jì)意圖】引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。

          (三)驗(yàn)證

         。1)量:請(qǐng)學(xué)生每人畫一個(gè)自己喜歡的三角形,接著用量角器量一量,然后把這三個(gè)內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

         。2)撕―拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個(gè)內(nèi)角撕下來拼在一起,成為一個(gè)平角請(qǐng)學(xué)生同桌合作,從學(xué)具中選出一個(gè)三角形,撕下來拼一拼。

         。3)折—拼:把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角,一個(gè)平角是180°,所以得出三角形的內(nèi)角和是180°。

          (4)畫:根據(jù)長方形的內(nèi)角和來驗(yàn)證三角形內(nèi)角和是180°。

          一個(gè)長方形有4個(gè)直角,每個(gè)直角90°,那么長方形的內(nèi)角和就是360°,每個(gè)長方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

          【設(shè)計(jì)意圖】利用已經(jīng)學(xué)過的知識(shí)構(gòu)建新的數(shù)學(xué)知識(shí),這不僅有助于學(xué)生理解新的知識(shí),而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角,長方形四個(gè)內(nèi)角的和等知識(shí)聯(lián)系

          起來,并使學(xué)生在新舊知識(shí)的連接點(diǎn)和新知識(shí)的生長點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系。在整個(gè)探索過程中學(xué)生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。

          深化

          質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會(huì)是一樣嗎

          觀察指著黑板上兩個(gè)大小不同但三個(gè)角對(duì)應(yīng)相等的三角形并說明原因,三角形變大了,但角的大小沒有變。)

          結(jié)論:角的兩條邊長了,但角的大小不變。因?yàn)榻堑拇笮∨c邊的長短無關(guān)。

          實(shí)驗(yàn):教師先在黑板上固定小棒,然后用活動(dòng)角與小棒組成一個(gè)三角形,教師手拿活動(dòng)角的頂點(diǎn)處,往下壓,形成一個(gè)新的三角形,活動(dòng)角在變大,而另外兩個(gè)角在變小。這樣多次變化,活動(dòng)角越來越大,而另外兩個(gè)角越來越小。最后,當(dāng)活動(dòng)角的兩條邊與小棒重合時(shí)。

          結(jié)論:活動(dòng)角就是一個(gè)平角180°,另外兩個(gè)角都是0°。

          【設(shè)計(jì)意圖】小學(xué)生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識(shí)聯(lián)系起來,通過讓學(xué)生觀察利用角的大小與邊的長短無關(guān)的舊知識(shí)來理解說明。

          對(duì)于利用精巧的小教具的演示,讓學(xué)生通過觀察,交流,想象,充分感受三角形三個(gè)角之間的聯(lián)系和變化,感悟三角形內(nèi)角和不變的原因。

          (五)應(yīng)用

          1、基礎(chǔ)練習(xí):書本練習(xí)十四的習(xí)題9,求出三角形各個(gè)角的度數(shù)。

          2、變式練習(xí):一個(gè)三角形可能有兩個(gè)直角嗎一個(gè)三角形可能有兩個(gè)鈍角嗎你能用今天所學(xué)的知識(shí)說明嗎3、(1)將兩個(gè)完全一樣的直角三角形拼成一個(gè)大三角形,這個(gè)大三角形的內(nèi)角和是多少

         。2)將一個(gè)大三角形分成兩個(gè)小三角形,這兩個(gè)小三角形的內(nèi)角和分別是多少

          4、智力大挑戰(zhàn):你能求出下面圖形的內(nèi)角和嗎書本練習(xí)十四的習(xí)題

          【設(shè)計(jì)意圖】習(xí)題是溝通知識(shí)聯(lián)系的有效手段。在本節(jié)課的四個(gè)層次的練習(xí)中,能充分注意溝通知識(shí)之間的內(nèi)在聯(lián)系,使學(xué)生從整體上把握知識(shí)的來龍去脈和縱橫聯(lián)系,逐步形成對(duì)知識(shí)的整體認(rèn)知,構(gòu)建自己的認(rèn)知結(jié)構(gòu),從而發(fā)展思維,提高綜合運(yùn)用知識(shí)解決問題的能力。

          第一題將三角形內(nèi)角和知識(shí)與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運(yùn)用內(nèi)角和知識(shí)和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

          第二題將三角形內(nèi)角和知識(shí)與三角形的分類知識(shí)結(jié)合起來,引導(dǎo)學(xué)生運(yùn)用三角形內(nèi)角和的知識(shí)去解釋直角三角形,鈍角三角形中角的特征,較好地溝通了知識(shí)之間的聯(lián)系。

          第三題通過兩個(gè)三角形的分與合的過程,使學(xué)生感受此過程中三角內(nèi)角的變化情況,進(jìn)一步理解三角形內(nèi)角和的知識(shí)。

          第四題是對(duì)三角形內(nèi)角和知識(shí)的進(jìn)一步拓展,引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和。教學(xué)中,學(xué)生能把這些多邊形分成幾個(gè)三角形,將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律,以此促進(jìn)學(xué)生對(duì)多邊形內(nèi)角和知識(shí)的整體構(gòu)建。能充分注意溝通知識(shí)之間的內(nèi)在聯(lián)系,使學(xué)生從整體上把握知識(shí)的來龍去脈和縱橫聯(lián)系,逐步形成對(duì)知識(shí)的整體認(rèn)知,構(gòu)建自己的認(rèn)知結(jié)構(gòu),從而發(fā)展思維,提高綜合運(yùn)用知識(shí)解決問題的能力。

          第一題將三角形內(nèi)角和知識(shí)與三角形特征結(jié)合起來,引導(dǎo)學(xué)生綜合運(yùn)用內(nèi)角和知識(shí)和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

          第二題將三角形內(nèi)角和知識(shí)與三角形的分類知識(shí)結(jié)合起來,引導(dǎo)學(xué)生運(yùn)用三角形內(nèi)角和的知識(shí)去解釋直角三角形,鈍角三角形中角的特征,較好地溝通了知識(shí)之間的聯(lián)系。

          第三題通過兩個(gè)三角形的分與合的過程,使學(xué)生感受此過程中三角內(nèi)角的變化情況,進(jìn)一步理解三角形內(nèi)角和的知識(shí)。

          第四題是對(duì)三角形內(nèi)角和知識(shí)的進(jìn)一步拓展,引導(dǎo)學(xué)生進(jìn)一步研究多邊形的內(nèi)角和。教學(xué)中,學(xué)生能把這些多邊形分成幾個(gè)三角形,將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律,以此促進(jìn)學(xué)生對(duì)多邊形內(nèi)角和知識(shí)的整體構(gòu)建。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿12

          一、說教材

          “三角形的內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第五單元第3節(jié)的內(nèi)容。本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認(rèn)識(shí)的直接經(jīng)驗(yàn),也已具備了一些相應(yīng)的三角形知識(shí)和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的規(guī)律,打下了堅(jiān)實(shí)的基礎(chǔ)。

          二、說學(xué)情

          一堂成功的課不僅要熟悉教材,還需要我們充分的了解學(xué)生的特點(diǎn)。

          本節(jié)課的授課對(duì)象是四年級(jí)的學(xué)生,從心理特征來說,他們對(duì)于新鮮的知識(shí)充滿著好奇心和強(qiáng)烈的求知欲望,無意注意仍起著主要作用,有意注意正在發(fā)展。

          從認(rèn)知狀況來說,學(xué)生在此之前已經(jīng)學(xué)習(xí)了三角形有關(guān)的知識(shí),對(duì)三角形的內(nèi)角已經(jīng)有了初步的認(rèn)識(shí),這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ),但對(duì)于三角形內(nèi)角和都是180度的理解,學(xué)生可能會(huì)產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明白,深入淺出的分析。

          三、說教學(xué)目標(biāo)

          根據(jù)新課程標(biāo)準(zhǔn),教材特點(diǎn)、學(xué)生實(shí)際,我確定了如下三維教學(xué)目標(biāo)。

          【知識(shí)與技能】通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡單的實(shí)際問題。

          【過程與方法】經(jīng)歷觀察、猜想、驗(yàn)證的過程,提升自身動(dòng)手操作及推理、歸納總結(jié)的能力。

          【情感態(tài)度與價(jià)值觀】在參與學(xué)習(xí)的過程中,感受數(shù)學(xué)的魅力,體驗(yàn)成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

          四、說教學(xué)重難點(diǎn)

          根據(jù)學(xué)生現(xiàn)有的知識(shí)儲(chǔ)備和知識(shí)點(diǎn)本身的難易程度,學(xué)生很難建構(gòu)知識(shí)點(diǎn)之間的聯(lián)系,這也確定了本節(jié)課的重點(diǎn)為三角形內(nèi)角和定理,而三角形內(nèi)角和定理推理的過程為本節(jié)課的難點(diǎn)。

          五、說教法學(xué)法

          新課程明確倡導(dǎo)動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方式,教師不僅是知識(shí)的傳授者,更是學(xué)生探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者,組織者和學(xué)生學(xué)習(xí)的伙伴。在教學(xué)過程中,我將采用創(chuàng)設(shè)情境,直觀演示,觀察,猜測,操作,思考,總結(jié)等方法,把學(xué)生帶進(jìn)開放的,富有挑戰(zhàn)性的問題情景,讓學(xué)生通過自己學(xué)習(xí),合作學(xué)習(xí),和交流等活動(dòng),獲得知識(shí)與能力,掌握解決問題的方法,獲得積極的情感體驗(yàn)。整個(gè)學(xué)習(xí)和探索活動(dòng),體現(xiàn)出開放性思維和多元思維并存的思維方式,教學(xué)生初步學(xué)會(huì)自主梳理知識(shí),探索知識(shí)的方法,使他們親歷自主探究的過程。

          六、教學(xué)過程

         。ㄒ唬⿲(dǎo)入新課

          首先是導(dǎo)入環(huán)節(jié),我會(huì)多媒體課件播放有關(guān)三角形內(nèi)角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個(gè)鈍角,可是其它兩個(gè)角都很小,而我的三個(gè)角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,因?yàn)槿切蔚膬?nèi)角和是180°”。

          根據(jù)視頻中三角形的對(duì)話,順勢引出題目——三角形的內(nèi)角和。

          設(shè)計(jì)意圖:在這個(gè)環(huán)節(jié)中,多媒體課件展示有關(guān)三角形內(nèi)角和的內(nèi)容,激發(fā)學(xué)生深厚的學(xué)習(xí)興趣和求知欲望,快速的進(jìn)入學(xué)習(xí)高潮。

          (二)新課探究

          接下里是新課探究環(huán)節(jié),在這一教學(xué)環(huán)節(jié)中,我首先讓學(xué)生畫幾個(gè)不同類型的三角形。然后同桌互相量一量,算一算,三角形3個(gè)內(nèi)角的和各是多少度?通過測量,學(xué)生可以發(fā)現(xiàn)三角形的內(nèi)角和是180°。

          接著我會(huì)提出一個(gè)問題是不是所有的三角形的內(nèi)角和都是180°,如何進(jìn)行驗(yàn)證你的結(jié)論呢?接下來我會(huì)讓學(xué)生分小組討論,針對(duì)學(xué)生出現(xiàn)的問題,我給予指導(dǎo),討論過后,請(qǐng)同學(xué)匯報(bào),鼓勵(lì)學(xué)生用自己的語言表達(dá),無論學(xué)生回答的全面與否,都給予積極的評(píng)價(jià),其他同學(xué)認(rèn)真傾聽后做出判斷,進(jìn)行補(bǔ)充,提高學(xué)生的注意力。

          通過小組之間的討論,引導(dǎo)學(xué)生采用剪拼的方法進(jìn)行驗(yàn)證,先把一個(gè)三角形的三個(gè)角剪下來,再拼一拼,拼成一個(gè)平角。最后引導(dǎo)學(xué)生總結(jié)出三角形的內(nèi)角和是180°。

          此環(huán)節(jié)通過小組合作,體現(xiàn)以生為本的教學(xué)理念。既培養(yǎng)學(xué)生的推理能力,又鍛煉學(xué)生的語言表達(dá)能力和溝通能力。

         。ㄈ╈柟烫岣

          接下來進(jìn)入鞏固提高環(huán)節(jié)。本環(huán)節(jié)我依據(jù)教學(xué)目標(biāo)和學(xué)生在學(xué)習(xí)中存在的問題,設(shè)計(jì)有針對(duì)性、層次分明的練習(xí)題組。讓學(xué)生在解決這些問題的過程中,進(jìn)一步理解、鞏固新知,訓(xùn)練思維的靈活性、敏捷性、創(chuàng)造性,使學(xué)生的創(chuàng)新精神和實(shí)踐能力得到進(jìn)一步提高。

          練習(xí)題組設(shè)計(jì)如下:

          第二題把這兩個(gè)完全一樣的直角三角形拼組在一起,得到的新三角形的內(nèi)角和是多少度?

          設(shè)計(jì)意圖:通過各種形式的練習(xí),進(jìn)一步提高學(xué)生學(xué)習(xí)興趣,使學(xué)生的認(rèn)知結(jié)構(gòu)更加完善。同時(shí)強(qiáng)化本課的教學(xué)重點(diǎn),突破教學(xué)難點(diǎn)。

         。ㄋ模┬〗Y(jié)作業(yè)

          在小結(jié)環(huán)節(jié),我會(huì)引導(dǎo)學(xué)生同桌之間以“你問我答”的形式回顧本節(jié)課所學(xué)的主要內(nèi)容,這節(jié)課你都學(xué)習(xí)了哪些內(nèi)容?三角形內(nèi)角和定理的推導(dǎo)過程體現(xiàn)了哪種數(shù)學(xué)思想方法?

          這樣設(shè)計(jì)的目的是讓學(xué)生在回顧課堂經(jīng)歷的基礎(chǔ)上,以相互交流、相互啟發(fā)的方式總結(jié)自己的收獲,教師通過概括性引導(dǎo)提升學(xué)生對(duì)三角形的內(nèi)角和定理的認(rèn)識(shí)

          在作業(yè)環(huán)節(jié),我會(huì)讓學(xué)生利用本節(jié)課所學(xué)的知識(shí),思考一下四邊形的內(nèi)角和是多少度?

          這樣設(shè)計(jì)的意圖是學(xué)生在學(xué)習(xí)本節(jié)課內(nèi)容的基礎(chǔ)上,進(jìn)一步對(duì)本節(jié)課的一個(gè)延伸,拓展學(xué)生的思維。

          七、板書設(shè)計(jì)

          為了讓學(xué)生對(duì)本節(jié)課的學(xué)習(xí)形成清晰的思路,同時(shí)還有利于學(xué)生系統(tǒng)性地記憶新知。我的板書設(shè)計(jì)如下。

        三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿13

          教材分析

          “三角形的內(nèi)角和”是三角形的一個(gè)重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)幾何的基礎(chǔ)。本節(jié)課是在學(xué)生學(xué)過角的度量、“三角形的特征”和“三角形的分類”等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的,這些知識(shí)已熟練掌握,但動(dòng)手操作能力和思維創(chuàng)新的意識(shí)還有待培養(yǎng)。

          教學(xué)目標(biāo)

          根據(jù)教學(xué)內(nèi)容及學(xué)生自身的特點(diǎn),我制定了以下教學(xué)目標(biāo):

          1、知識(shí)與技能:明確三角形的內(nèi)角的概念,促使學(xué)生自主探究和發(fā)現(xiàn)三角形內(nèi)角和等于180°。

          2、過程和方法:①通過學(xué)生猜、量、拼、折、觀察等活動(dòng),培養(yǎng)學(xué)生探索、發(fā)現(xiàn)能力、觀察能力和動(dòng)手操作能力。②能運(yùn)用三角形內(nèi)角和是180°這一規(guī)律來解決實(shí)際問題。

          3、情感與態(tài)度:①讓學(xué)生在探索活動(dòng)中產(chǎn)生對(duì)數(shù)學(xué)的好奇心,發(fā)展學(xué)生的空間觀念;②體驗(yàn)探索的樂趣和成功的喜悅,增強(qiáng)學(xué)好數(shù)學(xué)的信心。

          重點(diǎn)和難點(diǎn)

          教學(xué)重點(diǎn):動(dòng)手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進(jìn)行簡單的運(yùn)用。

          教學(xué)難點(diǎn):采用多種途徑驗(yàn)證三角形的內(nèi)角和是180°,來拓寬學(xué)生思路。

          課前準(zhǔn)備

          1、教師準(zhǔn)備:多媒體課件、三角形教具。

          2、學(xué)生準(zhǔn)備:銳角三角形、直角三角形、鈍角三角形各兩個(gè),量角器、剪刀。

          教學(xué)過程

          一、創(chuàng)設(shè)情境,引入新知。

          導(dǎo)入:“同學(xué)們,今天老師請(qǐng)來了一些小朋友和大家一同學(xué)習(xí),你們瞧,他們來了。你們認(rèn)識(shí)嗎?“(出示三角形動(dòng)畫課件),讓學(xué)生依次說出各是什么三角形,通過這樣的復(fù)習(xí)方式,讓學(xué)生回顧了前面所認(rèn)識(shí)的幾種三角形,為下面的教學(xué)做好了鋪墊。

          在此基礎(chǔ)上,我馬上詢問學(xué)生:“你們發(fā)現(xiàn)這些三角形有什么共同點(diǎn)嗎?”通過這樣的引導(dǎo),不少學(xué)生發(fā)現(xiàn)它們都有三個(gè)角,我及時(shí)給予了肯定,并向?qū)W生介紹:“這三個(gè)角就叫做三角形的內(nèi)角,把三個(gè)角的度數(shù)加起來,就是三角形的內(nèi)角和。可是有一次,這些三角形為它們各自內(nèi)角和的大小發(fā)生了爭吵,讓我們一起去看看吧!”

          接著我出示情境課件,【大三角形說:“我的個(gè)頭大,所以我的內(nèi)角和最大!敝苯侨切危环䴕猓骸昂,我才不信呢?”鈍角三角形說:“我有一個(gè)角最大,應(yīng)該是我的內(nèi)角和最大。”“我的大!”、“我的大!”……】就在他們爭論不休時(shí),我關(guān)閉課件,對(duì)學(xué)生說:“同學(xué)們,你們看,他們?yōu)閮?nèi)角和的大小,爭得不可開交,究竟誰說得對(duì)呢?今天這節(jié)課,我們就一起探討三角形的內(nèi)角和!本瓦@樣,在情境中揭示了課題,讓學(xué)生帶著解決問題的強(qiáng)烈欲望來展開探究活動(dòng)。

          二、動(dòng)手操作,自主探究

          1、操作感知。

          為了讓學(xué)生初步感知三角形的內(nèi)角和,請(qǐng)學(xué)生先大膽猜一猜三角形的內(nèi)角和是多少?然后組織學(xué)生畫出一個(gè)任意三角形,測量各角的度數(shù),并計(jì)算出它的內(nèi)角和,由于測量存在誤差,學(xué)生匯報(bào)的結(jié)果有179°、180°、178°、181°等等,用接近180°來概括并板書度量法的結(jié)果,

          2、剪拼驗(yàn)證:

          安排學(xué)生進(jìn)行剪一剪、拼一拼的活動(dòng),自主發(fā)現(xiàn)規(guī)律,掌握規(guī)律。為了完成這些活動(dòng),設(shè)計(jì)四人小組合作的學(xué)習(xí)方式:你們能把

          3、折疊驗(yàn)證:

          為了再一次驗(yàn)證三角形內(nèi)角和等于180°,我又設(shè)計(jì)了“折一折”的學(xué)習(xí)活動(dòng),同樣先采用多媒體進(jìn)行直觀演示,再讓學(xué)生折一折,疊一疊。當(dāng)學(xué)生出現(xiàn)這樣(多媒體演示)的錯(cuò)誤時(shí),我沒有做出消極的評(píng)價(jià),而是把問題交給大家,通過討論、交流,找到正確的折疊方法,讓學(xué)生充分享受成功的喜悅,體會(huì)到了學(xué)習(xí)數(shù)學(xué)的樂趣。在這輕松、活躍的課堂氣氛中,我把學(xué)生得出折疊法的結(jié)論也進(jìn)行了板書。

          三、應(yīng)用規(guī)律,解決實(shí)際問題:

          揭示規(guī)律后,學(xué)生要掌握知識(shí),形成技能和技巧,就要通過解答實(shí)際問題的練習(xí)來鞏固內(nèi)化,為了讓學(xué)生積極參與,我設(shè)計(jì)了闖三關(guān)的活動(dòng)來激勵(lì)學(xué)生做題的興趣。

          第一關(guān):基礎(chǔ)練習(xí),要求學(xué)生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個(gè)角,求第三個(gè)角(課件出示)

          第二關(guān),提高練習(xí),

         、僖阎妊切蔚牡捉牵箜斀。

         、谇蟮冗吶切蚊總(gè)角的度數(shù)是多少。

          這兩個(gè)提高練習(xí)的安排,是為了讓學(xué)生靈活應(yīng)用隱含條件來解決問題,使學(xué)生的思維能力得到了進(jìn)一步提高。

          第三關(guān):拓展練習(xí)。

          針對(duì)不同思維能力的學(xué)生,我設(shè)計(jì)的拓展題目要求學(xué)生應(yīng)用“三角形內(nèi)角和是180°”的規(guī)律,求四邊形和五邊形的內(nèi)角和(多媒體出示)。考慮到學(xué)生空間思維能力的局限性,我用多媒體課件演示,通過畫對(duì)角線的方法,把四邊形和五邊形都分成幾個(gè)小三角形,讓學(xué)生們體會(huì)到學(xué)以致用,通過本道題練習(xí),既能對(duì)學(xué)生進(jìn)行思維訓(xùn)練,又能培養(yǎng)應(yīng)用知識(shí)的能力,更能培養(yǎng)學(xué)生的創(chuàng)新精神。

          這樣的練習(xí)安排可以兼顧不同能力的學(xué)生,從易到難,逐步加深,還富有趣味性。在保證基本教學(xué)要求的同時(shí),盡量滿足學(xué)生的學(xué)習(xí)需要,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。

          四、課堂小結(jié):

          我認(rèn)為一堂成功的好課要有一個(gè)好的開頭,更要講究一個(gè)完整的結(jié)尾,我在課堂的最后進(jìn)行這樣的小結(jié):同學(xué)們通過這節(jié)課的學(xué)習(xí),學(xué)到了什么?有什么感受呢?學(xué)生們個(gè)個(gè)躍躍欲試,暢所欲言,欲罷不能,把整堂課的氣氛推向了最高潮。

          說板書設(shè)計(jì)【多媒體展示板書】

          最后,說說我的板書設(shè)計(jì),遵循了板書的目的性原則、概括性原則、簡煉性原則、直觀性原則,簡潔明了,能幫助學(xué)生把整堂課的學(xué)習(xí)內(nèi)容融入大腦。

          【說課結(jié)束語】

          本節(jié)課通過這樣的設(shè)計(jì),使學(xué)生不僅學(xué)到科學(xué)的探究方法,而且體驗(yàn)到探索的樂趣,領(lǐng)略成功的喜悅,從根本上改變舊的教學(xué)模式,使學(xué)生在自主中學(xué)習(xí),在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長,最終實(shí)現(xiàn)學(xué)生可持續(xù)性發(fā)展。

          以上便是我對(duì)《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!

        【三角形內(nèi)角和四年級(jí)數(shù)學(xué)說課稿】相關(guān)文章:

        小學(xué)數(shù)學(xué)《三角形的內(nèi)角和》說課稿10-24

        小學(xué)數(shù)學(xué)《三角形的內(nèi)角和》的說課稿02-10

        小學(xué)數(shù)學(xué)《三角形的內(nèi)角和》說課稿02-11

        小學(xué)數(shù)學(xué)《三角形內(nèi)角和》說課稿02-09

        《三角形的內(nèi)角和》數(shù)學(xué)說課稿08-06

        人教版數(shù)學(xué)三角形內(nèi)角和說課稿范文11-14

        小學(xué)數(shù)學(xué)《三角形的內(nèi)角和》說課稿范文02-11

        人教版小學(xué)數(shù)學(xué)《三角形內(nèi)角和》說課稿02-08

        三角形的內(nèi)角和說課稿06-26

        《三角形內(nèi)角和》說課稿07-06

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>