1. <rp id="zsypk"></rp>

      2. 四年級數(shù)學《三角形內(nèi)角和》說課稿

        時間:2022-12-04 14:06:20 數(shù)學說課稿 我要投稿

        四年級數(shù)學《三角形內(nèi)角和》說課稿

          作為一名教師,總歸要編寫說課稿,借助說課稿可以提高教學質(zhì)量,取得良好的教學效果。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編為大家收集的四年級數(shù)學《三角形內(nèi)角和》說課稿,歡迎大家借鑒與參考,希望對大家有所幫助。

        四年級數(shù)學《三角形內(nèi)角和》說課稿

        四年級數(shù)學《三角形內(nèi)角和》說課稿1

          一,說教材

          (一)教材的地位和作用

          《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義.

          (二)教學目標

          基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

          1.通過"量一量","算一算","拼一拼","折一折"的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題.

          2.通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學思想.

          3.通過數(shù)學活動使學生獲得成功的體驗,增強自信心.培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力.

          (三)教學重,難點

          因為學生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識.對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°.在整個過程中學生要了解的是"內(nèi)角"的概念,如何驗證得出三角形的內(nèi)角和是180°.因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°.

          二,說教法,學法

          本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°.

          因為《課程標準》明確指出:"要結(jié)合有關(guān)內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力".四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段.因此,本節(jié)課,我將重點引導學生從"猜測――驗證"展開學習活動,讓學生感受這種重要的數(shù)學思維方式.

          三,說教學過程

          我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗.

          引入

          呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是"內(nèi)角".( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題.

          【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學, 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學知識背景, 滲透數(shù)學知識之間的聯(lián)系, 有效地避免了新知識的"橫空出現(xiàn)".

          猜測

          提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

          【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°.

          (三)驗證

          (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

          (2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼.

          (3)折-拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°.

          (4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°.

          一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°.從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°.

          【設計意圖】利用已經(jīng)學過的知識構(gòu)建新的數(shù)學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法.在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系.在整個探索過程中, 學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮.

          深化

          質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

          觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變.)

          結(jié)論: 角的兩條邊長了, 但角的大小不變.因為角的大小與邊的長短無關(guān).

          實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小.這樣多次變化, 活動角越來越大, 而另外兩個角越來越小.最后, 當活動角的兩條邊與小棒重合時.

          結(jié)論:活動角就是一個平角180°, 另外兩個角都是0°.

          【設計意圖】小學生由于年齡小, 容易受圖形或物體的外在形式的影響.教師主要是引導學生與角的有關(guān)知識聯(lián)系起來,通過讓學生觀察利用"角的大小與邊的長短無關(guān)"的舊知識來理解說明.

          對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因.

          (五)應用

          1.基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù).

          2.變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎

          3.(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內(nèi)角和是多少

          (2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

          4.智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習十四的習題

          【設計意圖】習題是溝通知識聯(lián)系的有效手段.在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構(gòu)建自己的認知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力.

          第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù).

          第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系.

          第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識.

          第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和.教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構(gòu)建.

          說課板書設計:

          三角形內(nèi)角和

          引入:

          猜測:

          驗證:

          量——算

          撕——拼

          折——拼

        四年級數(shù)學《三角形內(nèi)角和》說課稿2

          《三角形的內(nèi)角和》說課稿

          一、 說教材:

          今天我說課的內(nèi)容是小學數(shù)學人教版實驗教材四年級下冊的《三角形的內(nèi)角和》。三角形的內(nèi)角和是180°是三角形的一個重要性質(zhì),也是“空間與圖形”領域中的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,也是進一步學習幾何知識的基礎。三角形是常見的一種圖形,在平面圖形中,三角形是最簡單的多邊形,也是最基本的多邊形。學生對三角形已經(jīng)有了直觀的認識,能夠從平面圖形中分辨出三角形,還認識了三角形的特性,知道三角形任意兩邊之和大于第三邊以及三角形的分類等有關(guān)三角形的知識。這些都是學生感受、理解、抽象“三角形的內(nèi)角和”的概念的基礎。我們把握好“三角形的內(nèi)角和是180°”這部分內(nèi)容的教學不僅可以加深學生對三角形特征的理解,發(fā)展學生的空間觀念,而且可以通過動手操作,獲取新知,發(fā)展學生的思維能力和解決實際問題的能力。同時也為以后學習更復雜的幾何圖形知識打下堅實的基礎。

          二、說教學目標:

          1、知識目標:知道三角形內(nèi)角和是180°。

          2、能力目標:①通過學生測量、撕拼、折疊、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。

         、谀苓\用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。

          3、情感目標:①讓學生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;

          ②體驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。

          三、說重點和難點:

          重點:探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°。

          難點:通過小組討論、動手操作等方式,讓學生自己探索和發(fā)現(xiàn)三角形內(nèi)角的度數(shù)和等于180°,并能應用這一規(guī)律解決實際問題。

          四、說教法和學法

          新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗。因此,我主要采用的教學方法是:直觀教學法和動手操作實驗法。在教學中,根據(jù)學生的年齡特征,整節(jié)課我以學生為主的 “活動教學”貫穿全過程。設計有獨立活動、同桌活動及分小組活動。在具體活動中,雖然小學生的遺忘性較強,但不得不承認學生已學過了三角形的內(nèi)角和,所以一開始我大膽放手讓學生說,從學生說中導入故事,“三角形三兄弟的爭吵”,引出與學生要學習的內(nèi)容——三角形的內(nèi)角,然后設疑:三角形內(nèi)角和是多少?由于學生在小學學過這樣的知識,所以很輕松地就可以答出。所以我直接讓學生分小組討論:有什么辦法可以驗證得出這樣的結(jié)論。讓學生大膽猜想,自主探索三角形的內(nèi)角和。再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角和是180度。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又培養(yǎng)了學生動手操作能力和創(chuàng)新精神。

          五、 說教學過程:

          本節(jié)課的教學過程我設計了六個教學環(huán)節(jié):一是創(chuàng)設情境,導入新課;二是自主探究,證實規(guī)律;三是應用延伸,解決問題;四是深化思維,拓展知識;五是課堂總結(jié);六是作業(yè)布置。下面就具體的教學環(huán)節(jié)說說我的設想。

          (一)創(chuàng)設情境,導入新課:

          教學的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。開始上課,我就大膽放手讓學生說三角形的特性、分類等有關(guān)知識,從學生說中導入故事,“三角形三兄弟的爭吵”,引出與學生要學習的內(nèi)容——三角形的內(nèi)角和,然后設疑:三角形內(nèi)角和是多少?從而激發(fā)學生探究數(shù)學的愿望和興趣。

          (二)自主探究,證實規(guī)律:

          1、理解標目:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結(jié)果,所以一開始我先不急于動手探索,先讓學生明白什么是三角形的內(nèi)角和。

          2、 猜想:目標明確后,我就讓學生大膽猜想,形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。

          3、 驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{既驗證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,不是隨意放開讓學生盲目的操作,而是把放和引有機的結(jié)合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量量、拼一拼、折一折――說說、議議――小結(jié)。

          4、 鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如:根據(jù)普遍三角形兩個角求一個角,根據(jù)特殊的三角形求出三角形的三個角的度數(shù){具體在練習一,第二、應用延伸練習一中都有體現(xiàn)},從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的`是數(shù)學思維得到不斷的發(fā)展。

          5、 拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我給學生出了一道通過對本節(jié)課所學知識的遷移就可以完成的問題,對學生進行思維訓練,既培養(yǎng)了學生應用知識的能力,又培養(yǎng)了學生的創(chuàng)新意識和創(chuàng)新精神。

          6、說課堂總結(jié)

          采用用先讓學生歸納補充,然后教師再補充的方式進行:⑴這節(jié)課我們學了什么知識?你有什么收獲?(2)看書設疑。充分發(fā)揮學生的主體意識,培養(yǎng)學生的語言概括能力。

          六.說教學板書

          這是一節(jié)操作課,學生要掌握的概念較少,所以整個板書我以表格為主,主要把學生大量的驗證成果展示出,讓學生親自動手后再通過觀察,一目了然,得出結(jié)論——三角形的內(nèi)角和是180度。簡間但又層層涉及,形式活潑,色彩也較豐富。

          總之,本節(jié)課教學活動中我力求充分體現(xiàn)一下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關(guān)注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。

        四年級數(shù)學《三角形內(nèi)角和》說課稿3

          一、說教材

          “三角形的內(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關(guān)系,也是進一步學習幾何的基礎。經(jīng)過第一學段以及本單元的學習,學生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎。

          為方便教師領會教材編寫的意圖與理念,開展有效的教學,更好的發(fā)展學生的空間觀念,培養(yǎng)學生的各種能力,教材在呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識形成的過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活的組織教學提供了清晰的思路。主要體現(xiàn)在:概念的形成不直接給出結(jié)論,而是提供豐富的動手實踐的素材,設計思考性較強的問題,讓學生通過探索、實驗、發(fā)現(xiàn)、討論、交流等獲得。從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力,不斷提高自己的思維水平;趯滩囊陨系恼J識及課程標準的要求,我擬定本節(jié)課的教學目標為:

          1、知識目標:知道三角形內(nèi)角和是180°。

          2、能力目標:①通過學生猜、測、拼、折、觀察等活動,培養(yǎng)學生探索、發(fā)現(xiàn)能力、觀察能力和動手操作能力。②能運用三角形內(nèi)角和是180°這一規(guī)律解決實際問題。

          3、情感目標:①讓學生在探索活動中產(chǎn)生對數(shù)學的好奇心,發(fā)展學生的空間觀念;②體驗探索的樂趣和成功的快樂,增強學好數(shù)學的信心。

          教學重點:三角形內(nèi)角和是180°的實際應用。

          教學難點:探索三角形的內(nèi)角和是180°

          {二、教學用具}

          本節(jié)課采用課件、不同形狀的三角形、量件器等。

          三、說教法

          新課程標準的基本理念就是要讓學生“人人學有價值的數(shù)學”。強調(diào)“教學要從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。要激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;而教師只是學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關(guān)注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預定的目標發(fā)展的作用”。因此,我運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。

          四、說學法

          學法是學生再生知識的法寶。為了使學生能在整節(jié)課的探索活動中積極主動參與動手實踐、自主探究、合作交流的學習活動,我設計了獨立活動、二人活動及分小組活動。在具體活動中,我讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)是18度。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。

          五、說教學流程

          “將課堂還給學生,讓課堂煥發(fā)生命的活力”,“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者。在整個教學設計上力求充分體現(xiàn)“以學生發(fā)展為本”教育理念,我將教學流程擬定為“設疑導入——大膽猜想——動手驗證——鞏固內(nèi)化&mdash

         ;—拓展延伸”,努力構(gòu)建探索型的課堂教學模式。

          1、設疑導入

          教學的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。伊始上課,我想以前面學過的知識“三角形的分類”為切入點,給出不同形狀的三角形,讓學生說出它們的名稱,有銳角三角形、直角三角形、鈍角三角形,隨后我提出挑戰(zhàn),讓學生畫一個很特殊的三角形:即含有兩個直角的三角形,結(jié)果是可想而知的,學生是不可能畫出來的,想知道為什么呢?學了“三角形內(nèi)角和”我們就知道了。板書課題:三角形內(nèi)角和。這樣,我在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,為學生進一步學習打好基礎。

          2、大膽猜想

          學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時我讓學生大膽猜想:為什么不能畫出有兩個直角的三角形呢?猜一猜三角形的內(nèi)角和”大約是多少度?學生猜想時我在黑板上書寫幾個比較接近的度數(shù)。這樣形成統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。

          3、動手驗證

          學生形成統(tǒng)一的猜想后,我就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{既驗證三角形的內(nèi)角和是否是180度?},在活動中,我既不像過去那樣告訴學生怎么動手去驗證,讓學生做機械的操作員,也不是隨意放開讓學生盲目的操作,我想把放和引有機的結(jié)合起來,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量量不同形狀的三角形的三個內(nèi)角拼一拼將三角形的三個內(nèi)角可以拼成一個什么角,折一折將三角形的三個內(nèi)角可以折成一個什么角,看一看無論是量、還是拼、或者是折我們得到的三角形內(nèi)角和都是多少度?。

          4、鞏固內(nèi)化:

          俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,我力爭注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用。

          1、釋疑練習:讓學生用所學的知識說一說為什么畫不出含有兩個直角的三角形?目的是解釋課前的設疑,從中培養(yǎng)學生應用意識和解決問題的能力;

          2、基本練習:鞏固本節(jié)課所學的知識。

          3、變式練習:目的是是學生將知識轉(zhuǎn)化成能力。

          4、綜合練習:目的是讓學生感受數(shù)學與生活的聯(lián)系,培養(yǎng)運用所學知識解決實際問題的能力。

          5、拓展創(chuàng)新:力求體現(xiàn)“不同的人在數(shù)學上得到不同的發(fā)展”這一新課程理念。

          數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,我給學生出了一道通過對本節(jié)課所學知識的遷移就可以完成的問題,對學生進行思維訓練,既培養(yǎng)了學生應用知識的能力,又培養(yǎng)了學生的創(chuàng)新意識和創(chuàng)新精神。

          總之,在本節(jié)課教學活動中我力求充分體現(xiàn)一下特點:以學生發(fā)展為本,以學生為主體,以思維訓練為主線的教學思想;充分關(guān)注學生的自主探究與合作交流,注重培養(yǎng)學生的創(chuàng)新意識和實踐能力。

        四年級數(shù)學《三角形內(nèi)角和》說課稿4

          一,說教材

          (一)教材的地位和作用

          《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關(guān)系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。

          (二)教學目標

          基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:

          1。通過量一量;算一算;拼一拼折一折的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題。

          2。通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透轉(zhuǎn)化;的數(shù)學思想。

          3。通過數(shù)學活動使學生獲得成功的體驗,增強自信心。培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力。

          (三)教學重,難點

          因為學生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學生要了解的是內(nèi)角的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°。

          二,說教法,學法

          本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。

          因為《課程標準》明確指出要結(jié)合有關(guān)內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。

          三,說教學過程

          我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。

          引入

          呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是內(nèi)角;。( 把圖形中相鄰兩邊的夾角稱為內(nèi)角) 長方形有幾個內(nèi)角 (四個)它的內(nèi)角有什么特點 (都是直角)這四個內(nèi)角的和是多少 (360°)三角形有幾個內(nèi)角呢 從而引入課題。

          【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學, 將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中, 拓展了三角形內(nèi)角和的數(shù)學知識背景, 滲透數(shù)學知識之間的聯(lián)系, 有效地避免了新知識的橫空出現(xiàn)

          猜測

          提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢

          【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°。

          (三)驗證

          (1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度

         。2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

         。3)折—拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。

         。4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。

          一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。

          【設計意圖】利用已經(jīng)學過的知識構(gòu)建新的數(shù)學知識, 這不僅有助于學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系

          起來, 并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系。在整個探索過程中學生積極思考并大膽發(fā)言, 他們的創(chuàng)造性思維得到了充分發(fā)揮。

          深化

          質(zhì)疑: 大小不同的三角形, 它們的內(nèi)角和會是一樣嗎

          觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了, 但角的大小沒有變。)

          結(jié)論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關(guān)。

          實驗: 教師先在黑板上固定小棒, 然后用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最后, 當活動角的兩條邊與小棒重合時。

          結(jié)論:活動角就是一個平角180°, 另外兩個角都是0°。

          【設計意圖】小學生由于年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關(guān)知識聯(lián)系起來,通過讓學生觀察利用角的大小與邊的長短無關(guān)的舊知識來理解說明。

          對于利用精巧的小教具的演示, 讓學生通過觀察,交流,想象, 充分感受三角形三個角之間的聯(lián)系和變化, 感悟三角形內(nèi)角和不變的原因。

          (五)應用

          1;A練習:書本練習十四的習題9,求出三角形各個角的度數(shù)。

          2。變式練習:一個三角形可能有兩個直角嗎 一個三角形可能有兩個鈍角嗎 你能用今天所學的知識說明嗎3。(1)將兩個完全一樣的直角三角形拼成一個大三角形, 這個大三角形的內(nèi)角和是多少

          (2) 將一個大三角形分成兩個小三角形, 這兩個小三角形的內(nèi)角和分別是多少

          4。智力大挑戰(zhàn): 你能求出下面圖形的內(nèi)角和嗎 書本練習十四的習題

          【設計意圖】習題是溝通知識聯(lián)系的有效手段。在本節(jié)課的四個層次的練習中, 能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構(gòu)建自己的認知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

          第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

          第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

          第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

          第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構(gòu)建。能充分注意溝通知識之間的內(nèi)在聯(lián)系, 使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知, 構(gòu)建自己的認知結(jié)構(gòu), 從而發(fā)展思維, 提高綜合運用知識解決問題的能力。

          第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù)。

          第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征, 較好地溝通了知識之間的聯(lián)系。

          第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的 變化情況, 進一步理解三角形內(nèi)角和的知識。

          第四題是對三角形內(nèi)角和知識的進一步拓展, 引導學生進一步研究多邊形的內(nèi)角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律, 以此促進學生對多邊形內(nèi)角和知識的整體構(gòu)建。

        四年級數(shù)學《三角形內(nèi)角和》說課稿5

        各位老師:

          下午好!

          今天我們相聚在云周小學,共同行走在“生本”課堂的道路上。作為一名新教師,我也是抱著一種學習的心態(tài)來評課。應老師的這節(jié)《三角形內(nèi)角和》,無論是他的設計,還是他對課的演繹,都充分體現(xiàn)了“以生為本”的理念。

          這節(jié)課有以下幾點值得我們?nèi)ヌ接懀?/p>

          一、學生的起點在哪里?

          既然是生本課堂,那我們在備課之前,就要做到備學生,找起點。新課導入時,應老師花了一些時間復習三角形的分類和平角的知識,充分喚醒學生對三角形的認知,分類是為了抓住三角形的本質(zhì),縮小驗證時選材的范圍,而三個角拼成一個平角的練習,則為學生之后的驗證搭好一個腳手架,降低他們學習的難度。但從課堂上來看,部分學生已經(jīng)知道三角形內(nèi)角和是180°,而且當出示平角那道題時,學生立刻說出180°是三角形內(nèi)角和,而沒有想到平角,這需要我們來反思這個環(huán)節(jié)的必要性。為什么學生會聯(lián)想到內(nèi)角和呢?我想可能是應老師在此之前詢問了:“三角形有幾個角?如果告訴你兩個角,會求第三個角嗎?”同樣是為了復習,卻產(chǎn)生了負遷移,反而沒有達成預定的效果。再此之后又介紹“內(nèi)角”等概念,這樣難免有回課嫌疑。課堂選材要有取舍,我覺得這個環(huán)節(jié)可以刪除。

          二、既然量正確了,為什么還要拼?

          有位老師說過:“數(shù)學老師和語文老師就是不一樣,語文老師會發(fā)散,將一句簡單的話復雜化;而數(shù)學老師會收斂,將復雜的例題、方法融匯成一句話。”所以數(shù)學課上必須讓學生親身經(jīng)歷知識的發(fā)展過程。在探究過程中,應老師放手讓學生想方法驗證猜想,學生首先會想到量出內(nèi)角并相加,從反饋來看,學生量得的結(jié)果都是180°,既然得到想要的結(jié)果了,再拼不是多此一舉了嗎?課堂上應老師也對學生的精確結(jié)果趕到意外,究竟量角的誤差在哪里?

          學生的心里總是不敢犯錯的,這就會讓很多數(shù)據(jù)失真。其實誤差不僅僅只是存在于內(nèi)角總和,還存在于每個內(nèi)角的度數(shù)。課堂反饋上,對于同樣的銳角,學生量出了“60°,40°,80°和55°,45°,80°”同樣一個三角形,為什么內(nèi)角度數(shù)會有所不同,此時通過對比,讓學生明白量角時有誤差,容易改變角度,看來量不是最準確的方法,而撕角拼角則不會改變它的大小。我想這就是我們?yōu)槭裁磳⒘饣ㄔ诩羝捶ㄉ狭恕?/p>

          三、如何凸顯內(nèi)角和的本質(zhì)?

          通過各種方法的驗證,我們知道了三角形的內(nèi)角和是180°,難道點到即止嗎?應老師巧妙借助幾何畫板,改變?nèi)切蔚男螤詈痛笮,并引導學生觀察什么變了,什么不變?這一簡單的演示卻寓意深遠,無論形狀大小如何改變,三角形內(nèi)角和永遠是180°,這也從另一個角度說明了三角形為什么具有穩(wěn)定性,只要確定兩個角,第三個角永遠的唯一的。結(jié)論只是靜態(tài)的文字,而課件是動態(tài)的演示,這種動靜結(jié)合的美渲染了我們的眼球,同時也凸顯了內(nèi)角和的本質(zhì),讓結(jié)論更具說服力。

          四、練習設計的創(chuàng)新點在哪里?

          練習是一節(jié)課的精髓,這節(jié)課的練習主要分三層,一算二辨三延伸。應老師在練習的設計上很注重一材多用,而且非常有坡度性,這也是本節(jié)課最大的亮點。在“只知道一個角”的環(huán)節(jié)中,應老師設計了只露出一個70°角的等腰三角形,求另兩個角。大多數(shù)學生只想到一種情況后,便沾沾自喜,不會更深入思考問題,因為在學生潛意識中總認為正確答案只有一個。這也給了我們一個啟示,關(guān)注答案,更要關(guān)注學生解題的意識,引導學生從多維角度思考問題。

          這里我有一個的想法,這個想法也來源于作業(yè)本的習題。能不能把70°角改成40°,當學生算出答案后,詢問學生,如果按角分,這是一個什么三角形?溝通按角分和按邊分三角形的橫向聯(lián)系,在練習中溫故而知新。再設計已知一個角是140°的等腰三角形的練習,打破學生的思維定勢,并不是所有等腰三角形都有兩種可能。之后再詢問:“一個角都不知道,如何求內(nèi)角!弊尵毩暩邔哟涡浴

          應老師這節(jié)課還有很多值得我們學習的地方,比如應老師自如的教態(tài)、親切的語言讓學生倍感溫暖;精心準備的教具讓課堂不再沉悶;精彩的練習讓知識落到實處。以上是我對這節(jié)課一些不成熟的想法,希望各位老師給予批評和指正。

        四年級數(shù)學《三角形內(nèi)角和》說課稿6

          大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鉆研教材,充分了解學生的基礎上,我準備從以下幾個方面進行說課:

          一、教材分析

          “三角形的內(nèi)角和”是三角形的一個重要性質(zhì),它有助于學生理解三角形內(nèi)角之間的關(guān)系,是進一步學習幾何的基礎。

          二、教學目標

          1、知識與技能:明確三角形的內(nèi)角的概念,使學生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運用這一規(guī)律解決問題。

          2、過程和方法:通過學生猜、量、拼、折、觀察等活動,培養(yǎng)學生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。

          3、情感與態(tài)度:使學生感受數(shù)學圖形之美及轉(zhuǎn)化思想,體驗數(shù)學就在我們身邊。

          三、教學重難點

          教學重點:動手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進行簡單的運用。

          教學難點:采用多種途徑驗證三角形的內(nèi)角和是180°。

          四、學情分析

          通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎知識,會量角,部分學生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個結(jié)論。

          五、教學法分析

          本節(jié)課采用自主探索、合作交流的教學方法,學生自主參與知識的構(gòu)建。領悟轉(zhuǎn)化思想在解決問題中的應用。

          六、課前準備

          1、教師準備:多媒體課件、三角形教具。

          2、學生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。

          七、教學過程

          (一)、創(chuàng)設情境,激趣導入

          導入:“同學們,有三位老朋友已經(jīng)恭候我們多時了。“(出示三角形動畫課件),讓學生依次說出各是什么三角形。

          課件分別閃爍三角形三個內(nèi)角,并介紹:“這三個角叫做三角形的內(nèi)角,把三個角的度數(shù)加起來,就是三角形的內(nèi)角和。請學生畫一個三角形,要求:有兩個直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內(nèi)角和。板書課題。

         。ǘ、自主探究、合作交流

          1、探索特殊三角形內(nèi)角和 

          拿出自己的一副三角板,同桌之間互相說一說各個角的度數(shù)。

          三角形內(nèi)角和是多少度呢?指名匯報。90°+30°+60°=180°

          90°+45°+45°=180°

          從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

          2、探索一般三角形的內(nèi)角和

          一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。

          3、匯報交流

          請小組代表匯報方法。

          1)量:你測量的三個內(nèi)角分別是多少度?和呢?(有不同意見)

          沒有統(tǒng)一的結(jié)果,有沒有其他方法?

          2)剪―拼:把三角形的三個內(nèi)角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結(jié)論。(學生嘗試驗證)

          3)折拼:學生邊演示邊匯報。把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角。所以得出三角形的內(nèi)角和是180°。(學生嘗試驗證)

          4)教師課件驗證結(jié)果。

          請看屏幕,老師也來驗證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個怎樣的結(jié)論?

          學生回答后教師板書:三角形的內(nèi)角和是180°

          為什么有的小組用測量的方法不能得到180°?(誤差)

          4、驗證深化

          質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?(一樣)

          誰能說一說不能畫出有兩個直角的三角形的原因?

         。ㄈ、應用規(guī)律,解決問題:

          揭示規(guī)律后,學生要掌握知識,就要通過解答實際問題。

          1、為了讓學生積極參與,我設計了闖關(guān)的活動來激勵學生的興趣。闖關(guān)成功會獲得小獎章。

          第一關(guān):基礎練習,要求學生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個角,求第三個角(課件出示)

          第二關(guān),提高練習,

         、僖阎妊切蔚牡捉,求頂角。②求等邊三角形每個角的度數(shù)是多少。直角三角形已知一個銳角,求另一個。

          讓學生靈活應用隱含條件來解決問題,進一步提高能力。

          2、小組合作練習,完成相應做一做。

          (四)、課堂總結(jié),效果檢測。

          一節(jié)成功的好課要有一個好的開頭,更要有一個完美的結(jié)尾,數(shù)學是使人變聰明的學科,通過這節(jié)課的學習,你收獲了什么?學生們暢所欲言。接下來老師要檢查大家的學習效果,學生完成答題卡,組長評判,集體匯報。

         。ㄎ澹┳鳂I(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。

          八、板書設計

          通過這樣的設計,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,使學生在自主中學習,在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長。以上便是我對《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!

        【四年級數(shù)學《三角形內(nèi)角和》說課稿】相關(guān)文章:

        小學數(shù)學《三角形的內(nèi)角和》說課稿10-24

        小學數(shù)學《三角形的內(nèi)角和》說課稿02-11

        小學數(shù)學《三角形內(nèi)角和》說課稿02-09

        小學數(shù)學《三角形的內(nèi)角和》的說課稿02-10

        《三角形的內(nèi)角和》數(shù)學說課稿08-06

        人教版數(shù)學三角形內(nèi)角和說課稿范文11-14

        人教版小學數(shù)學《三角形內(nèi)角和》說課稿02-08

        小學數(shù)學《三角形的內(nèi)角和》說課稿范文02-11

        三角形的內(nèi)角和說課稿06-26

        《三角形內(nèi)角和》說課稿07-06

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>