教學內(nèi)容:九年義務教育六年制小學數(shù)學第十二冊P71--72
教學目標:1、使學生初步學會運用轉(zhuǎn)化的策略分析問題,靈活確定解決問題的思路,并能根據(jù)問題的特點確定具體的轉(zhuǎn)化方法,從而有效地解決問題。
2、使學生通過回顧曾經(jīng)運用轉(zhuǎn)化策略解決問題的過程,從策略的角度進一步體會知識之間的聯(lián)系,感受轉(zhuǎn)化策略的應用價值。
3、使學生進一步積累運用轉(zhuǎn)化策略解決問題的經(jīng)驗,增強解決問題的策略意識,主動克服在解決問題中遇到的困難,獲得成功的體驗。
教學重點:學生探索怎樣將每個圖形轉(zhuǎn)化成長方形
教學難點:探索運用轉(zhuǎn)化的策略解決問題
設計理念:課堂中,引導學生回憶運用轉(zhuǎn)化策略曾經(jīng)解決過的一些問題,體會轉(zhuǎn)化的策略可以使問題化繁為簡,化未知為已知。學生觀察圖形,初步交流,確定解題策略,在畫一畫的基礎上,進一步交流、探究解題的策略。教學中為學生充分提供自主探索的平臺,進一步感知轉(zhuǎn)化的策略在生活中的應用。
教學步驟 教師活動 學生活動
一、初步交流 確定策略 1、 出示例1
讓學生仔細觀察兩個圖形,獨立思考可以怎樣比較這兩個圖形的面積。
2、 小組交流是怎樣想的。
學生可能有兩種想法:(1)數(shù)方格計算每個圖形的面積后再比較。提醒學生把方格線補畫完整。
(2)將兩個圖形分別轉(zhuǎn)化成長方形,再比較它們的面積。
3、相機揭示課題:用“轉(zhuǎn)化”的策略解決問題
學生觀察
小組交流是怎樣想的
二、探索方法 解決問題 1、 提問:怎樣把這兩個圖形分別轉(zhuǎn)化成長方形呢?自己在方格紙上畫一畫。
2、 交流:(1)第一個圖形是怎樣轉(zhuǎn)化成長方形的?你是怎樣想到把上面的半圓進行平移的?上面的半圓向什么方向平移了幾格?(2)第二個圖形是怎樣轉(zhuǎn)化成長方形的?你是怎樣想到把左右兩個半圓進行旋轉(zhuǎn)的?左右兩個半圓分別按什么方向旋轉(zhuǎn)了多少度?(3)現(xiàn)在你能看出這兩個圖形的面積相等嗎?
3、 小結(jié):剛才我們在解決這個問題時,為什么要把原來的圖形轉(zhuǎn)化成長方形?
4、在以往的學習中,我們曾經(jīng)運用轉(zhuǎn)化的策略解決過哪些問題?
根據(jù)學生發(fā)言,有選擇地板書。
這些運用轉(zhuǎn)化策略解決問題的過程有什么共同點?
小結(jié):轉(zhuǎn)化是一種常見的、極其重要的解決問題的策略。在我們以往的學習中,早就運用這一策略分析并解決問題了。以后再遇到一個陌生問題時,你會怎樣想? 學生在方格紙上畫一畫
小組討論、交流
學生充分發(fā)表想法
學生小結(jié)
三、運用策略 拓展練習
1、 教學“試一試”
出示算式,提問:這道題可以怎樣計算?
出示題目右邊的正方形圖,提出要求:你能說說圖中哪一部分表示這幾個數(shù)的和嗎?
引導:看圖想一想,可以把這一算式轉(zhuǎn)化成怎樣的算式計算?
小結(jié):在解決問題時,要善于從不同的角度靈活地分析問題,這樣有利于我們想到合理的轉(zhuǎn)化方法。
2、 指導完成“練一練”
出示方格紙上的兩個圖形,讓學生思考怎樣計算右邊圖形的周長比較簡便。
引導學生明確:可以把這個圖形轉(zhuǎn)化成長方形計算周長。
提問:如果每個小方格的邊長是1厘米,右邊圖形的周長是多少厘米?
3、 練習十四第1題
出示問題,指導學生理解圖意。
明確圖中每一排的點分別表示每一輪參加比賽的球隊,把兩個點合成一個點的過程表示進行了一場比賽。單場淘汰制就是每場比賽都要淘汰1支球隊。
如果不畫圖,有更簡便 計算方法嗎?
進一步提問:如果有64支球隊,產(chǎn)生冠軍一共要比賽多少場?
4、練習十四第2題
先獨立看圖填空,再交流是怎樣想到轉(zhuǎn)化的方法的,以及分別是怎樣轉(zhuǎn)化的?
5、練習十四第3題
先獨立解答,再交流和評點
討論交流
觀察、思考
獨立解答
說說解決問題的策略是什么
學生數(shù)一數(shù),一共要進行多少場比賽后才能產(chǎn)生冠軍?
小組討論
獨立作業(yè)、交流
四、總結(jié)評價 質(zhì)疑反思 這節(jié)課我們學習了運用轉(zhuǎn)化的策略解決問題,你對轉(zhuǎn)化的策略又有了哪些新的認識?還有哪些疑問? 評價總結(jié)