1. <rp id="zsypk"></rp>

      2. 高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2024-06-08 23:47:49 宇濤 知識(shí)點(diǎn)總結(jié) 我要投稿

        高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

          總結(jié)是在一段時(shí)間內(nèi)對(duì)學(xué)習(xí)和工作生活等表現(xiàn)加以總結(jié)和概括的一種書(shū)面材料,通過(guò)它可以正確認(rèn)識(shí)以往學(xué)習(xí)和工作中的優(yōu)缺點(diǎn),不如立即行動(dòng)起來(lái)寫(xiě)一份總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編收集整理的高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

        高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)

          公式

          1、圓柱體:

          表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

          2、圓錐體:

          表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

          3、正方體

          a-邊長(zhǎng),S=6a2,V=a3

          4、長(zhǎng)方體

          a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc

          5、棱柱

          S-底面積h-高V=Sh

          6、棱錐

          S-底面積h-高V=Sh/3

          7、棱臺(tái)

          S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

          8、擬柱體

          S1-上底面積,S2-下底面積,S0-中截面積

          h-高,V=h(S1+S2+4S0)/6

          9、圓柱

          r-底半徑,h-高,C—底面周長(zhǎng)

          S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

          S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

          10、空心圓柱

          R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

          11、直圓錐

          r-底半徑h-高V=πr^2h/3

          12、圓臺(tái)

          r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

          13、球

          r:半徑

          d:直徑

          V=4/3πr^3=πd^3/6

          14、球缺

          h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

          15、球臺(tái)

          r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

          16、圓環(huán)體

          R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑

          V=2π2Rr2=π2Dd2/4

          17、桶狀體

          D-桶腹直徑d-桶底直徑h-桶高

          V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

          V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

          函數(shù)

          1、函數(shù)的奇偶性

          (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

          (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

          (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

          (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

          (5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

          2、復(fù)合函數(shù)的有關(guān)問(wèn)題

          (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問(wèn)題一定要注意定義域優(yōu)先的原則。

          (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

          3、函數(shù)圖像(或方程曲線的對(duì)稱(chēng)性)

          (1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;

          (2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然;

          (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱(chēng)曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

          (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線C2方程為:f(2a-x,2b-y)=0;

          (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱(chēng);

          (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱(chēng);

          4、函數(shù)的周期性

          (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

          (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù);

          (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);

          (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);

          (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);

          (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

          5、方程k=f(x)有解k∈D(D為f(x)的值域);

          6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

          7、(1)(a>0a≠1,b>0,n∈R+);

          (2)logaN=(a>0,a≠1,b>0,b≠1);

          (3)logab的符號(hào)由口訣“同正異負(fù)”記憶;

          (4)alogaN=N(a>0,a≠1,N>0);

          8、判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):

          (1)A中元素必須都有象且;

          (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

          9、能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

          10、對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:

          (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

          (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

          (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

          (4)周期函數(shù)不存在反函數(shù);

          (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

          (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

          11、處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合

          二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;

          12、依據(jù)單調(diào)性

          利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題;

          13、恒成立問(wèn)題的處理方法

          (1)分離參數(shù)法;

          (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

          a(1)=a,a(n)為公差為r的等差數(shù)列

          通項(xiàng)公式:

          a(n)=a(n-1)+r=a(n-2)+2r=……=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

          可用歸納法證明。

          n=1時(shí),a(1)=a+(1-1)r=a。成立。

          假設(shè)n=k時(shí),等差數(shù)列的通項(xiàng)公式成立。a(k)=a+(k-1)r

          則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

          通項(xiàng)公式也成立。

          因此,由歸納法知,等差數(shù)列的通項(xiàng)公式是正確的。

          求和公式:

          S(n)=a(1)+a(2)+……+a(n)

          =a+(a+r)+……+[a+(n-1)r]

          =na+r[1+2+……+(n-1)]

          =na+n(n-1)r/2

          同樣,可用歸納法證明求和公式。

          a(1)=a,a(n)為公比為r(r不等于0)的等比數(shù)列

          通項(xiàng)公式:

          a(n)=a(n-1)r=a(n-2)r^2=……=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

          可用歸納法證明等比數(shù)列的通項(xiàng)公式。

          求和公式:

          S(n)=a(1)+a(2)+……+a(n)

          =a+ar+……+ar^(n-1)

          =a[1+r+……+r^(n-1)]

          r不等于1時(shí),

          S(n)=a[1-r^n]/[1-r]

          r=1時(shí),

          S(n)=na、

          同樣,可用歸納法證明求和公式。

          課后復(fù)習(xí)

          一、課后及時(shí)回憶

          如果等到把課堂內(nèi)容遺忘得差不多時(shí)才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識(shí)必須及時(shí)復(fù)習(xí)。

          可以一個(gè)人單獨(dú)回憶,也可以幾個(gè)人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書(shū)的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點(diǎn)內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過(guò)程中要不失時(shí)機(jī)整理筆記,因?yàn)檎砉P記也是一種有效的復(fù)習(xí)方法。

          二、定期重復(fù)鞏固

          即使是復(fù)習(xí)過(guò)的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時(shí)間的增長(zhǎng)而逐步減小,間隔也可以逐漸拉長(zhǎng)。可以當(dāng)天鞏固新知識(shí),每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識(shí)即時(shí)回顧,每單元進(jìn)行知識(shí)梳理,每章節(jié)進(jìn)行知識(shí)歸納總結(jié),必須把相關(guān)知識(shí)串聯(lián)在一起,形成知識(shí)網(wǎng)絡(luò),達(dá)到對(duì)知識(shí)和方法的整體把握。

          三、科學(xué)合理安排

          復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實(shí)驗(yàn)證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識(shí)記的材料適當(dāng)分類(lèi),并且與其他的學(xué)習(xí)或娛樂(lè)或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識(shí)記素材的特點(diǎn),把握重復(fù)次數(shù)與間隔時(shí)間,并非間隔時(shí)間越長(zhǎng)越好,而要適合自己的復(fù)習(xí)規(guī)律。

          數(shù)學(xué)的學(xué)習(xí)方法

          1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時(shí)候我們就能帶著問(wèn)題去聽(tīng),把自己沒(méi)看懂的問(wèn)題聽(tīng)懂。

          2.上課專(zhuān)心聽(tīng)講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實(shí)即使是自己看懂了的,也可以看看老師也沒(méi)有另外的理解方法,老師的方法是不是比自己好。聽(tīng)老師有時(shí)候講比自己看更好。

          3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識(shí),還沒(méi)完全被消化吸收成為自己的知識(shí),如果不及時(shí)復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時(shí)間,及時(shí)對(duì)所學(xué)進(jìn)行鞏固。

          4.公式定理牢記。高中數(shù)學(xué)很多題目就是各種公式定理的理解與應(yīng)用,不牢記就別談做題。

          5.通過(guò)習(xí)題鞏固。數(shù)學(xué)是理科,需要通過(guò)一定量的習(xí)題來(lái)鞏固,量變積累到了一定量才能質(zhì)變嘛。這個(gè)并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。

          6.錯(cuò)題反復(fù)研究。自己準(zhǔn)備一個(gè)錯(cuò)題本,把考試時(shí)候做錯(cuò)的題目記錄下來(lái),寫(xiě)上做錯(cuò)的原因,反復(fù)研究,避免再次出錯(cuò)。

          函數(shù)的知識(shí)點(diǎn)

          一、函數(shù)的定義域的常用求法:

          1、分式的分母不等于零;

          2、偶次方根的被開(kāi)方數(shù)大于等于零;

          3、對(duì)數(shù)的真數(shù)大于零;

          4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

          5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

          6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

          二、函數(shù)的解析式的常用求法:

          1、定義法;

          2、換元法;

          3、待定系數(shù)法;

          4、函數(shù)方程法;

          5、參數(shù)法;

          6、配方法

          三、函數(shù)的值域的常用求法:

          1、換元法;

          2、配方法;

          3、判別式法;

          4、幾何法;

          5、不等式法;

          6、單調(diào)性法;

          7、直接法

          四、函數(shù)的最值的常用求法:

          1、配方法;

          2、換元法;

          3、不等式法;

          4、幾何法;

          5、單調(diào)性法

          五、函數(shù)單調(diào)性的常用結(jié)論:

          1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。

          2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。

          3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

          4、奇函數(shù)在對(duì)稱(chēng)區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱(chēng)區(qū)間上的單調(diào)性相反。

          5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

          六、函數(shù)奇偶性的常用結(jié)論:

          1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。

          2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

          3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

          4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。

          5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng),則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。

          數(shù)列的知識(shí)點(diǎn)

          1.數(shù)列的定義、分類(lèi)與通項(xiàng)公式

          (1)數(shù)列的定義:

         、贁(shù)列:按照一定順序排列的一列數(shù)

         、跀(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù)

          (2)數(shù)列的分類(lèi):

          分類(lèi)標(biāo)準(zhǔn)類(lèi)型滿足條件

          項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限

          無(wú)窮數(shù)列項(xiàng)數(shù)無(wú)限

          項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列an+1>an其中n∈N_

          遞減數(shù)列an+1

          常數(shù)列an+1=an

          (3)數(shù)列的通項(xiàng)公式:

          如果數(shù)列{an}的第n項(xiàng)與序號(hào)n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式

          2.數(shù)列的遞推公式

          如果已知數(shù)列{an}的首項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與它的前一項(xiàng)an-1(n≥2)(或前幾項(xiàng))間的關(guān)系可用一個(gè)公式來(lái)表示,那么這個(gè)公式叫數(shù)列的遞推公式

          3.對(duì)數(shù)列概念的理解

          (1)數(shù)列是按一定“順序”排列的一列數(shù),一個(gè)數(shù)列不僅與構(gòu)成它的“數(shù)”有關(guān),而且還與這些“數(shù)”的排列順序有關(guān),這有別于集合中元素的無(wú)序性。因此,若組成兩個(gè)數(shù)列的數(shù)相同而排列次序不同,那么它們就是不同的兩個(gè)數(shù)列

          (2)數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集合中的元素不能重復(fù)出現(xiàn),這也是數(shù)列與數(shù)集的區(qū)別

          4.數(shù)列的函數(shù)特征

          數(shù)列是一個(gè)定義域?yàn)檎麛?shù)集N_(或它的有限子集{1,2,3,…,n})的特殊函數(shù),數(shù)列的通項(xiàng)公式也就是相應(yīng)的函數(shù)解析式,即f(n)=an(n∈N_)

          高考數(shù)學(xué)考察的知識(shí)點(diǎn)

          第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

          主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:

          第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;

          第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

          第二、平面向量和三角函數(shù)。

          重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,

          第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。

          第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),

          第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

          第三、數(shù)列。

          數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

          第四、空間向量和立體幾何,在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

          第五、概率和統(tǒng)計(jì)。

          這一板塊主要是屬于數(shù)學(xué)應(yīng)用問(wèn)題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

          第六、解析幾何。

          這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類(lèi)題,我總結(jié)下面五類(lèi)?嫉念}型,包括:

          第一類(lèi)所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法;

          第二類(lèi)我們所講的動(dòng)點(diǎn)問(wèn)題;

          第三類(lèi)是弦長(zhǎng)問(wèn)題;

          第四類(lèi)是對(duì)稱(chēng)問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn);

          第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,

          當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

          第七、押軸題。

          考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

          平面圖形知識(shí)點(diǎn)

          1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

          2.判定兩個(gè)平面平行的方法:

          (1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);

          (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

          (3)證明兩平面同垂直于一條直線。

          3.兩個(gè)平面平行的主要性質(zhì):

          (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;

          (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;

          (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;

          (4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

          (5)夾在兩個(gè)平行平面間的平行線段相等;

          (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

          高三數(shù)學(xué)知識(shí)點(diǎn)

          第一部分集合

          (1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

         。2)注意:討論的時(shí)候不要遺忘了的情況。

          第二部分函數(shù)與導(dǎo)數(shù)

          1、映射:注意

         、俚谝粋(gè)集合中的元素必須有象;

         、谝粚(duì)一,或多對(duì)一。

          2、函數(shù)值域的求法:

         、俜治龇ǎ

         、谂浞椒;

         、叟袆e式法;

         、芾煤瘮(shù)單調(diào)性

          ⑤換元法;

         、蘩镁挡坏仁剑

         、呃脭(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);

         、嗬煤瘮(shù)有界性;

          ⑨導(dǎo)數(shù)法

          3、復(fù)合函數(shù)的有關(guān)問(wèn)題

         。1)復(fù)合函數(shù)定義域求法:

         、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

         、谌鬴[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

          (2)復(fù)合函數(shù)單調(diào)性的判定:

         、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

         、诜謩e研究?jī)?nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

         、鄹鶕(jù)“同性則增,異性則減”來(lái)判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

          注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

          4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問(wèn)題,先分段解決,再下結(jié)論。

          5、函數(shù)的奇偶性

         、藕瘮(shù)的定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件;

          ⑵是奇函數(shù);

         、鞘桥己瘮(shù);

         、绕婧瘮(shù)在原點(diǎn)有定義,則;

         、稍陉P(guān)于原點(diǎn)對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

         。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

          1、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

          2、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

          3、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱(chēng);

          4、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對(duì)稱(chēng)。

          5、函數(shù)是奇函數(shù)或是偶函數(shù)稱(chēng)為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

          6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱(chēng))。

          高考數(shù)學(xué)知識(shí)點(diǎn)

          三角函數(shù)。

          注意歸一公式、誘導(dǎo)公式的正確性。

          數(shù)列題。

          1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫(xiě)上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

          2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫(xiě)上綜上:由①②得證;

          3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

          立體幾何題。

          1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

          2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

          3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

          概率問(wèn)題。

          1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

          2、搞清是什么概率模型,套用哪個(gè)公式;

          3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

          4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

          5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;

          6、注意放回抽樣,不放回抽樣;

          正弦、余弦典型例題。

          1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

          2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

          3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

          4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

          5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

          正弦、余弦解題訣竅。

          1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

          2、已知三邊,或兩邊及其夾角用余弦定理

          3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

        【高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)范文12-12

        高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)12篇12-08

        高三化學(xué)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)12-13

        高三化學(xué)復(fù)習(xí)知識(shí)點(diǎn)10-24

        高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-27

        高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-08

        高三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-24

        初中數(shù)學(xué)總復(fù)習(xí)圓知識(shí)點(diǎn)總結(jié)12-16

        高三數(shù)學(xué)復(fù)習(xí)策略09-28

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>