1. <rp id="zsypk"></rp>

      2. 高三數(shù)學(xué)知識點(diǎn)總結(jié)

        時(shí)間:2023-03-07 17:13:14 總結(jié) 我要投稿

        高三數(shù)學(xué)知識點(diǎn)總結(jié)

        高三數(shù)學(xué)知識點(diǎn)總結(jié)1

          求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?以下是小編整理的高三數(shù)學(xué)知識點(diǎn)總結(jié),歡迎閱讀。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)


          

          1. 對于集合,一定要抓住集合的代表元素,及元素的確定性、互異性、無序性。

          中元素各表示什么?

          注重借助于數(shù)軸和文氏圖解集合問題。

          空集是一切集合的子集,是一切非空集合的真子集。

          3. 注意下列性質(zhì):

          (3)德摩根定律:

          4. 你會(huì)用補(bǔ)集思想解決問題嗎?(排除法、間接法)

          的取值范圍。

          6. 命題的四種形式及其相互關(guān)系是什么?

          (互為逆否關(guān)系的命題是等價(jià)命題。)

          原命題與逆否命題同真、同假;逆命題與否命題同真同假。

          7. 對映射的概念了解嗎?映射f:AB,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?

          (一對一,多對一,允許B中有元素?zé)o原象。)

          8. 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

          (定義域、對應(yīng)法則、值域)

          9. 求函數(shù)的定義域有哪些常見類型?

          10. 如何求復(fù)合函數(shù)的定義域?

          義域是_____________。

          11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

          12. 反函數(shù)存在的條件是什么?

          (一一對應(yīng)函數(shù))

          求反函數(shù)的步驟掌握了嗎?

          (①反解x;②互換x、y;③注明定義域)

          13. 反函數(shù)的性質(zhì)有哪些?

         、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;

         、诒4媪嗽瓉砗瘮(shù)的單調(diào)性、奇函數(shù)性;

          14. 如何用定義證明函數(shù)的單調(diào)性?

          (取值、作差、判正負(fù))

          如何判斷復(fù)合函數(shù)的單調(diào)性?)

          15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

          值是( )

          A. 0B. 1C. 2D. 3

          a的最大值為3)

          16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

          (f(x)定義域關(guān)于原點(diǎn)對稱)

          注意如下結(jié)論:

          (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

          17. 你熟悉周期函數(shù)的定義嗎?

          函數(shù),T是一個(gè)周期。)

          如:

          18. 你掌握常用的`圖象變換了嗎?

          注意如下翻折變換:

          19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?

          的雙曲線。

          應(yīng)用:①三個(gè)二次(二次函數(shù)、二次方程、二次不等式)的關(guān)系二次方程

         、谇箝]區(qū)間[m,n]上的最值。

         、矍髤^(qū)間定(動(dòng)),對稱軸動(dòng)(定)的最值問題。

          ④一元二次方程根的分布問題。

          由圖象記性質(zhì)! (注意底數(shù)的限定!)

          利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?

          20. 你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎?

          21. 如何解抽象函數(shù)問題?

          (賦值法、結(jié)構(gòu)變換法)

          22. 掌握求函數(shù)值域的常用方法了嗎?

          (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)

          如求下列函數(shù)的最值:

          23. 你記得弧度的定義嗎?能寫出圓心角為,半徑為R的弧長公式和扇形面積公式嗎?

          24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義

          25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點(diǎn)、對稱軸嗎?

          (x,y)作圖象。

          27. 在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面先求出某一個(gè)三角函數(shù)值,再判定角的范圍。

          28. 在解含有正、余弦函數(shù)的問題時(shí),你注意(到)運(yùn)用函數(shù)的有界性了嗎?

          29. 熟練掌握三角函數(shù)圖象變換了嗎?

          (平移變換、伸縮變換)

          平移公式:

          圖象?

          30. 熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?

          奇、偶指k取奇、偶數(shù)。

          A. 正值或負(fù)值B. 負(fù)值C. 非負(fù)值D. 正值

          31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?

          理解公式之間的聯(lián)系:

          應(yīng)用以上公式對三角函數(shù)式化簡。(化簡要求:項(xiàng)數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)

          具體方法:

          (2)名的變換:化弦或化切

          (3)次數(shù)的變換:升、降冪公式

          (4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。

          32. 正、余弦定理的各種表達(dá)形式你還記得嗎?如何實(shí)現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?

          (應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)

          33. 用反三角函數(shù)表示角時(shí)要注意角的范圍。

          34. 不等式的性質(zhì)有哪些?

          答案:C

          35. 利用均值不等式:

          值?(一正、二定、三相等)

          注意如下結(jié)論:

          36. 不等式證明的基本方法都掌握了嗎?

          (比較法、分析法、綜合法、數(shù)學(xué)歸納法等)

          并注意簡單放縮法的應(yīng)用。

          (移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)

          38. 用穿軸法解高次不等式奇穿,偶切,從最大根的右上方開始

          39. 解含有參數(shù)的不等式要注意對字母參數(shù)的討論

          40. 對含有兩個(gè)絕對值的不等式如何去解?

          (找零點(diǎn),分段討論,去掉絕對值符號,最后取各段的并集。)

          證明:

          (按不等號方向放縮)

          42. 不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或△問題)

          43. 等差數(shù)列的定義與性質(zhì)

          0的二次函數(shù))

          項(xiàng),即:

          44. 等比數(shù)列的定義與性質(zhì)

          46. 你熟悉求數(shù)列通項(xiàng)公式的常用方法嗎?

          例如:(1)求差(商)法

          解:

          [練習(xí)]

          (2)疊乘法

          解:

          (3)等差型遞推公式

          [練習(xí)]

          (4)等比型遞推公式

          [練習(xí)]

          (5)倒數(shù)法

          47. 你熟悉求數(shù)列前n項(xiàng)和的常用方法嗎?

          例如:(1)裂項(xiàng)法:把數(shù)列各項(xiàng)拆成兩項(xiàng)或多項(xiàng)之和,使之出現(xiàn)成對互為相反數(shù)的項(xiàng)。

          解:

          [練習(xí)]

          (2)錯(cuò)位相減法:

          (3)倒序相加法:把數(shù)列的各項(xiàng)順序倒寫,再與原來順序的數(shù)列相加。

          [練習(xí)]

          48. 你知道儲(chǔ)蓄、貸款問題嗎?

          △零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型:

          若每期存入本金p元,每期利率為r,n期后,本利和為:

          △若按復(fù)利,如貸款問題按揭貸款的每期還款計(jì)算模型(按揭貸款分期等額歸還本息的借款種類)

          若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足

          p貸款數(shù),r利率,n還款期數(shù)

          49. 解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。

          (2)排列:從n個(gè)不同元素中,任取m(mn)個(gè)元素,按照一定的順序排成一

          (3)組合:從n個(gè)不同元素中任取m(mn)個(gè)元素并組成一組,叫做從n個(gè)不

          50. 解排列與組合問題的規(guī)律是:

          相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時(shí)可以逐一排出結(jié)果。

          如:學(xué)號為1,2,3,4的四名學(xué)生的考試成績

          則這四位同學(xué)考試成績的所有可能情況是( )

          A. 24B. 15C. 12D. 10

          解析:可分成兩類:

          (2)中間兩個(gè)分?jǐn)?shù)相等

          相同兩數(shù)分別取90,91,92,對應(yīng)的排列可以數(shù)出來,分別有3,4,3種,有10種。

          共有5+10=15(種)情況

          51. 二項(xiàng)式定理

          性質(zhì):

          (3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大且為第

          表示)

          52. 你對隨機(jī)事件之間的關(guān)系熟悉嗎?

          的和(并)。

          (5)互斥事件(互不相容事件):A與B不能同時(shí)發(fā)生叫做A、B互斥。

          (6)對立事件(互逆事件):

          (7)獨(dú)立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。

          53. 對某一事件概率的求法:

          分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即

          (5)如果在一次試驗(yàn)中A發(fā)生的概率是p,那么在n次獨(dú)立重復(fù)試驗(yàn)中A恰好發(fā)生

          如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。

          (1)從中任取2件都是次品;

          (2)從中任取5件恰有2件次品;

          (3)從中有放回地任取3件至少有2件次品;

          解析:有放回地抽取3次(每次抽1件),n=103

          而至少有2件次品為恰有2次品和三件都是次品

          (4)從中依次取5件恰有2件次品。

          解析:∵一件一件抽取(有順序)

          分清(1)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)排列問題。

          54. 抽樣方法主要有:簡單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽取;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。

          55. 對總體分布的估計(jì)用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計(jì)總體的期望和方差。

          要熟悉樣本頻率直方圖的作法:

          (2)決定組距和組數(shù);

          (3)決定分點(diǎn);

          (4)列頻率分布表;

          (5)畫頻率直方圖。

          如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機(jī)抽樣,則組成此參賽隊(duì)的概率為____________。

          56. 你對向量的有關(guān)概念清楚嗎?

          (1)向量既有大小又有方向的量。

          在此規(guī)定下向量可以在平面(或空間)平行移動(dòng)而不改變。

          (6)并線向量(平行向量)方向相同或相反的向量。

          規(guī)定零向量與任意向量平行。

          (7)向量的加、減法如圖:

          (8)平面向量基本定理(向量的分解定理)

          的一組基底。

          (9)向量的坐標(biāo)表示

          表示。

          57. 平面向量的數(shù)量積

          數(shù)量積的幾何意義:

          (2)數(shù)量積的運(yùn)算法則

          58. 線段的定比分點(diǎn)

          ※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?

          59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?

          平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

        高三數(shù)學(xué)知識點(diǎn)總結(jié)2

          必修一

          第一章:集合和函數(shù)的基本概念

          這一章的易錯(cuò)點(diǎn),都集中在空集這一概念上,而每次考試基本都會(huì)在選填題上涉及這一概念,一個(gè)不小心就會(huì)丟分。次一級的知識點(diǎn)就是集合的韋恩圖、會(huì)畫圖,掌握了這些,集合的“并、補(bǔ)、交、非”也就解決了。

          還有函數(shù)的定義域和函數(shù)的單調(diào)性、增減性的概念,這些都是函數(shù)的基礎(chǔ)而且不難理解。在第一輪復(fù)習(xí)中一定要反復(fù)去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。

          第二章:基本初等函數(shù)

          ——指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運(yùn)算性質(zhì)及圖像

          函數(shù)的幾大要素和相關(guān)考點(diǎn)基本都在函數(shù)圖像上有所體現(xiàn),單調(diào)性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數(shù)的運(yùn)算公式,多記多用,多做一點(diǎn)練習(xí),基本就沒問題。

          函數(shù)圖像是這一章的重難點(diǎn),而且圖像問題是不能靠記憶的,必須要理解,要會(huì)熟練的畫出函數(shù)圖像,定義域、值域、零點(diǎn)等等。對于冪函數(shù)還要搞清楚當(dāng)指數(shù)冪大于一和小于一時(shí)圖像的不同及函數(shù)值的大小關(guān)系,這也是?键c(diǎn)。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關(guān)系及其相互之間要怎樣轉(zhuǎn)化等問題,需要著重回看課本例題。

          第三章:函數(shù)的應(yīng)用

          這一章主要考是函數(shù)與方程的結(jié)合,其實(shí)就是函數(shù)的零點(diǎn),也就是函數(shù)圖像與X軸的交點(diǎn)。這三者之間的轉(zhuǎn)化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì)在這三者之間靈活轉(zhuǎn)化,以求能最簡單的解決問題。關(guān)于證明零點(diǎn)的方法,直接計(jì)算加得必有零點(diǎn),連續(xù)函數(shù)在x軸上方下方有定義則有零點(diǎn)等等,這些難點(diǎn)對應(yīng)的證明方法都要記住,多練習(xí)。二次函數(shù)的零點(diǎn)的Δ判別法,這個(gè)需要你看懂定義,多畫多做題。

          必修二

          第一章:空間幾何

          三視圖和直觀圖的繪制不算難,但是從三視圖復(fù)原出實(shí)物從而計(jì)算就需要比較強(qiáng)的空間感,要能從三張平面圖中慢慢在腦海中畫出實(shí)物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書上的例圖,把實(shí)物圖和平面圖結(jié)合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個(gè)立方體來找感覺)。

          在做題時(shí)結(jié)合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺(tái)體的表面積和體積,把公式記牢問題就不大。

          第二章:點(diǎn)、直線、平面之間的位置關(guān)系

          這一章除了面與面的相交外,對空間概念的要求不強(qiáng),大部分都可以直接畫圖,這就要求學(xué)生多看圖。自己畫草圖的時(shí)候要嚴(yán)格注意好實(shí)線虛線,這是個(gè)規(guī)范性問題。

          關(guān)于這一章的內(nèi)容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語言、文字語言、數(shù)學(xué)表達(dá)式表示出來。只要這些全部過關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,大多同學(xué)即使知道有這個(gè)概念,也無法理解怎么在二面里面做出這個(gè)角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒有什么捷徑可走。

          第三章:直線與方程

          這一章主要講斜率與直線的位置關(guān)系,只要搞清楚直線平行、垂直的斜率表示問題就錯(cuò)不了。需要注意的是當(dāng)直線垂直時(shí)斜率不存在的情況是考試中的?键c(diǎn)。另外直線方程的幾種形式所涉及到的一般公式,會(huì)用就行,要求不高。點(diǎn)與點(diǎn)的距離、點(diǎn)與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什么難點(diǎn)。

          第四章:圓與方程

          能熟練地把一般式方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時(shí)就要注意開方后定義域或值域的.限制。通過點(diǎn)到點(diǎn)的距離、點(diǎn)到直線的距離、圓半徑的大小關(guān)系來判斷點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。

          必修三

          總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計(jì)算。

          程序框圖與三種算法語句的結(jié)合,及框圖的算法表示,不要用常規(guī)的語言來理解,否則你會(huì)在這樣的題型中栽跟頭。

          秦九韶算法是重點(diǎn),要牢記算法的公式。

          統(tǒng)計(jì)就是對一堆數(shù)據(jù)的處理,考試也是以計(jì)算為主,會(huì)從條形圖中計(jì)算出中位數(shù)等數(shù)字特征,對于回歸問題,只要記住公式,也就是個(gè)計(jì)算問題。

          概率,主要就只幾何概型、古典概型。幾何概型只要會(huì)找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。

          必修四

          第一章:三角函數(shù)

          考試必在這一塊出題,且題量不小!誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì),沒有太大難度,只要會(huì)畫圖就行。難度都在三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相上,及根據(jù)最值計(jì)算A、B的值和周期,及恒等變化時(shí)的圖像及性質(zhì)變化,這部分的知識點(diǎn)內(nèi)容較多,需要多花時(shí)間,不要再定義上死扣,要從圖像和例題入手。

          第二章:平面向量

          向量的運(yùn)算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計(jì)算的時(shí)候記住要“同起點(diǎn)的向量”這一條就OK了。向量共線和垂直的數(shù)學(xué)表達(dá),是計(jì)算當(dāng)中經(jīng)常用到的公式。向量的共線定理、基本定理、數(shù)量積公式。分點(diǎn)坐標(biāo)公式是重點(diǎn)內(nèi)容,也是難點(diǎn)內(nèi)容,要花心思記憶。

          第三章:三角恒等變換

          這一章公式特別多,像差倍半角公式這類內(nèi)容常會(huì)出現(xiàn),所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點(diǎn),就是三角恒等變換是有一定規(guī)律的,記憶的時(shí)候可以集合三角函數(shù)去記。

          必修五

          第一章:解三角形

          掌握正弦、余弦公式及其變式、推論、三角面積公式即可。

          第二章:數(shù)列

          等差、等比數(shù)列的通項(xiàng)公式、前n項(xiàng)及一些性質(zhì)常出現(xiàn)于填空、解答題中,這部分內(nèi)容學(xué)起來比較簡單,但考驗(yàn)對其推導(dǎo)、計(jì)算、活用的層面較深,因此要仔細(xì)?荚囶}中,通項(xiàng)公式、前n項(xiàng)和的內(nèi)容出現(xiàn)頻次較多,這類題看到后要帶有目的的去推導(dǎo)就沒問題了。

          第三章:不等式

          這一章一般用線性規(guī)劃的形式來考察學(xué)生,這種題通常是和實(shí)際問題聯(lián)系的,所以要會(huì)讀題,從題中找不等式,畫出線性規(guī)劃圖,然后再根據(jù)實(shí)際問題的限制要求來求最值。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)3

          1、三類角的求法:

          ①找出或作出有關(guān)的角。

          ②證明其符合定義,并指出所求作的角。

          ③計(jì)算大。ń庵苯侨切,或用余弦定理)。

          2、正棱柱——底面為正多邊形的直棱柱

          正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。

          正棱錐的計(jì)算集中在四個(gè)直角三角形中:

          3、怎樣判斷直線l與圓C的位置關(guān)系?

          圓心到直線的距離與圓的半徑比較。

          直線與圓相交時(shí),注意利用圓的“垂徑定理”。

          4、對線性規(guī)劃問題:

          作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。

          培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養(yǎng)興趣呢?

          (1)欣賞數(shù)學(xué)的美感

          比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……

          通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個(gè)定點(diǎn)的距離之差的絕對值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。

         。2)注意到數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

          例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的`還款方式,用數(shù)列的知識就可以理解、學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊

         。3)采用靈活的教學(xué)手段,與時(shí)俱進(jìn)。

          利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。

         。4)適當(dāng)看一些科普類的書籍和文章。

          比如:學(xué)圓錐曲線的時(shí)候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)4

          不等式的解集:

         、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

         、谝粋(gè)含有未知數(shù)的不等式的'所有解,組成這個(gè)不等式的解集。

         、矍蟛坏仁浇饧倪^程叫做解不等式。

          不等式的判定:

         、俪R姷牟坏忍栍小>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

         、谠诓坏仁健癮>b”或“a

          ③不等號的開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

         、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)5

          第一部分集合

         。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

         。2)注意:討論的時(shí)候不要遺忘了的情況。

          第二部分函數(shù)與導(dǎo)數(shù)

          1、映射:注意①第一個(gè)集合中的元素必須有象;②一對一,或多對一。

          2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

          3、復(fù)合函數(shù)的有關(guān)問題

         。1)復(fù)合函數(shù)定義域求法:

         、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

         、谌鬴[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

         。2)復(fù)合函數(shù)單調(diào)性的判定:

          ①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

          ②分別研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

         、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

          注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

          4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

          5、函數(shù)的奇偶性

         、藕瘮(shù)的定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件;

         、剖瞧婧瘮(shù);

         、鞘桥己瘮(shù);

         、绕婧瘮(shù)在原點(diǎn)有定義,則;

         、稍陉P(guān)于原點(diǎn)對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

         。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

          1、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

          2、對于函數(shù)f(x),如果對于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

          3、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的'圖象關(guān)于點(diǎn)(a,b)成中心對稱;

          4、一般地,對于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱。

          5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

          6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱)。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)6

          三角函數(shù)。

          注意歸一公式、誘導(dǎo)公式的正確性。

          數(shù)列題。

          1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;

          2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

          3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

          立體幾何題。

          1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

          2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;

          3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

          概率問題。

          1、搞清隨機(jī)試驗(yàn)包含的'所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

          2、搞清是什么概率模型,套用哪個(gè)公式;

          3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

          4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

          5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;

          6、注意放回抽樣,不放回抽樣;

          正弦、余弦典型例題。

          1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

          2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

          3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

          4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

          5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

          正弦、余弦解題訣竅。

          1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

          2、已知三邊,或兩邊及其夾角用余弦定理

          3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)7

          高三數(shù)學(xué)每輪復(fù)習(xí)要領(lǐng)

          一、高三數(shù)學(xué)復(fù)習(xí),大體可分四個(gè)階段,每一個(gè)階段的復(fù)習(xí)方法與側(cè)重點(diǎn)都各不相同,要求也層層加深,因此,同學(xué)們在每一個(gè)階段都應(yīng)該有不同的復(fù)習(xí)方案,采用不同的方法和策略。

          1.第一階段,即第一輪復(fù)習(xí),也稱“知識篇”,大致就是高三第一學(xué)期。在這一階段,老師將帶領(lǐng)同學(xué)們重溫高一、高二所學(xué)課程,但這絕不只是以前所學(xué)知識的簡單重復(fù),而是站在更高的角度,對舊知識產(chǎn)生全新認(rèn)識的重要過程。因?yàn)樵诟咭、高二時(shí),老師是以知識點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,你學(xué)的往往時(shí)零碎的、散亂的知識點(diǎn),而在第一輪復(fù)習(xí)時(shí),老師的主線索是知識的縱向聯(lián)系與橫向聯(lián)系,以章節(jié)為單位,將那些零碎的、散亂的知識點(diǎn)串聯(lián)起來,并將他們系統(tǒng)化、綜合化,側(cè)重點(diǎn)在于各個(gè)知識點(diǎn)之間的融會(huì)貫通。所以大家在復(fù)習(xí)過程中應(yīng)做到: ①立足課本,迅速激活已學(xué)過的各個(gè)知識點(diǎn)。(建議大家在高三前的一個(gè)暑假里通讀高一、高二教材) ②注意所做題目使用知識點(diǎn)覆蓋范圍的變化,有意識地思考、研究這些知識點(diǎn)在課本中所處的地位和相互之間的聯(lián)系。注意到老師選題的綜合性在不斷地加強(qiáng)。 ③明了課本從前到后的知識結(jié)構(gòu),將整個(gè)知識體系框架化、網(wǎng)絡(luò)化。能提煉解題所用知識點(diǎn),并說出其出處。 ④經(jīng)常將使用最多的知識點(diǎn)總結(jié)起來,研究重點(diǎn)知識所在章節(jié),并了解各章節(jié)在課本中的地位和作用。

          2.第二輪復(fù)習(xí),通常稱為“方法篇”。大約從第二學(xué)期開學(xué)到四月中旬結(jié)束。在這一階段,老師將以方法、技巧為主線,主要研究數(shù)學(xué)思想方法。老師的復(fù)習(xí),不再重視知識結(jié)構(gòu)的先后次序,而是以提高同學(xué)們解決問題、分析問題的能力為目的,提出、分析、解決問題的思路用“配方法、待定系數(shù)法、換元法、數(shù)形結(jié)合、分類討論”等方法解決一類問題、一系列問題。同學(xué)們應(yīng)做到: ①主動(dòng)將有關(guān)知識進(jìn)行必要的拆分、加工重組。找出某個(gè)知識點(diǎn)會(huì)在一系列題目中出現(xiàn),某種方法可以解決一類問題。 ②分析題目時(shí),由原來的注重知識點(diǎn),漸漸地向探尋解題的思路、方法轉(zhuǎn)變。 ③從現(xiàn)在開始,解題一定要非常規(guī)范,俗語說:“不怕難題不得分,就怕每題都扣分”,所以大家務(wù)必將解題過程寫得層次分明,結(jié)構(gòu)完整。 ④適當(dāng)選做各地模擬試卷和以往高考題,逐漸弄清高考考查的范圍和重點(diǎn)。

          3.第三輪復(fù)習(xí),大約一個(gè)月的時(shí)間,也稱為“策略篇”。老師主要講述“選擇題的解發(fā)、填空題的解法、應(yīng)用題的解法、探究性命題的解法、綜合題的解法、創(chuàng)新性題的解法”,教給同學(xué)們一些解題的特殊方法,特殊技巧,以提高同學(xué)們的解題速度和應(yīng)對策略為目的。同學(xué)們應(yīng)做到: ①解題時(shí),會(huì)從多種方法中選擇最省時(shí)、最省事的方法,力求多方位,多角度的思考問題,逐漸適應(yīng)高考對“減縮思維”的要求。 ②注意自己的解題速度,審題要慢,思維要全,下筆要準(zhǔn),答題要快。 ③養(yǎng)成在解題過程中分析命題者的意圖的習(xí)慣,思考命題者是怎樣將考查的知識點(diǎn)有機(jī)的結(jié)合起來的,有那些思想方法被復(fù)合在其中,對命題者想要考我什么,我應(yīng)該會(huì)什么,做到心知肚明。

          4.最后,就是沖刺階段,也稱為“備考篇”。在這一階段,老師會(huì)將復(fù)習(xí)的主動(dòng)權(quán)交給你自己。以前,學(xué)習(xí)的重點(diǎn)、難點(diǎn)、方法、思路都是以老師的意志為主線,但是,現(xiàn)在你要直接、主動(dòng)的研讀《考試說明》,研究近年來的高考試題,掌握高考信息、命題動(dòng)向,并做到: ①檢索自己的知識系統(tǒng),緊抓薄弱點(diǎn),并針對性地做專門的訓(xùn)練和突擊措施(可請老師專門為你拎一拎);鎖定重中之重,掌握最重要的知識到爐火純青的地步。 ②抓思維易錯(cuò)點(diǎn),注重典型題型。 ③瀏覽自己以前做過的`習(xí)題、試卷,回憶自己學(xué)習(xí)相關(guān)知識的歷程,做好“再”糾錯(cuò)工作。 ④博覽群書,博聞強(qiáng)記,使自己見多識廣,注意那些背景新、方法新,知識具有代表性的問題。 ⑤不做難題、偏題、怪題,保持情緒穩(wěn)定,充滿信心,準(zhǔn)備應(yīng)考。

          二、高三數(shù)學(xué)復(fù)習(xí)中的幾個(gè)注意點(diǎn)

          1.復(fù)習(xí)資料要精,不可超過兩套,使用過程中,始終注重其系統(tǒng)性。千萬不要貪多,資料多了,不但使自己身陷題海,不能自拔,而且會(huì)因?yàn)槟愕念櫞耸П,而使知識體系得不到延續(xù)。

          2.有的同學(xué)漠視自己作業(yè)和考試中出現(xiàn)的錯(cuò)誤,將他們簡單的歸結(jié)為粗心大意。這是很嚴(yán)重的錯(cuò)誤想法,我們的錯(cuò)誤都有其必然性,一定要究根問底,找出真正的原因,及時(shí)改正,并記住這樣的教訓(xùn)。

          3.千萬不要以為“高考以能力立意”,就是要去鉆難題、偏題、怪題。這里的能力是指:思維能力,對現(xiàn)實(shí)生活的觀察分析力,創(chuàng)造性的想象能力,探究性實(shí)驗(yàn)動(dòng)手能力,理解運(yùn)用實(shí)際問題的能力,分析和解決問題的探究創(chuàng)新能力,處理、運(yùn)用信息的能力,新材料、新情景、新問題應(yīng)變理解能力,其重點(diǎn)是概念觀點(diǎn)形成和規(guī)律的認(rèn)識過程,它往往蘊(yùn)藏在最簡單、最基礎(chǔ)的題目活事實(shí)之中。不是鉆牛角尖能鉆出來的能力。

          4.合理看待來自老師和社會(huì)各界的猜題、壓題信息,不可迷信。因?yàn),他們也不是神,我們上了考場只能憑自己的實(shí)力,憑自己的智慧去打拼,所以,我們應(yīng)該踏踏實(shí)實(shí)、認(rèn)認(rèn)真真做好復(fù)習(xí)應(yīng)考工作。

          高中數(shù)學(xué)學(xué)習(xí)方法

          1一本書

          就是教科書,這是基礎(chǔ)的基礎(chǔ),但是被中等生最忽視的。筆者高中時(shí),先看教科書再做題,所以往往同學(xué)做到第5題,我才剛開始,但當(dāng)我做了20題時(shí),反過來發(fā)現(xiàn)同學(xué)做到第17題,這就是磨刀不誤砍柴工。最后不僅省時(shí),而且比同學(xué)多鞏固了書本知識,然后從書本原理到題目及從題目到原理走了一個(gè)來回,培養(yǎng)了以理論解決實(shí)際問題的能力,提高了以不變應(yīng)萬變的能力。一句話,省時(shí)又高效。為擺脫題海打下了基礎(chǔ)。

          2兩方法

          1)找到已知與求解的“橋梁”。主要針對中等題及難題,利用已知,推一步或幾步,完成轉(zhuǎn)化,從求解往后推幾步,看看還缺什么,再去回憶腦袋里的知識點(diǎn)及解過的經(jīng)典題,把已知與求解的差距補(bǔ)上,這個(gè)就是“橋梁”原理。

          2)有些題按上述方法還遇到困難,可能需要另辟蹊徑,如從定義出發(fā)或需要再審視已知條件,可能還未用盡已知條件或有些暗含的已知條件未挖掘出來。

          3三部曲:

          1)先看教科書,真正搞懂課本例題,并做課后練習(xí)(雖然看上去很簡單,但是實(shí)質(zhì)上就是要你檢查自己是否真的掌握這些基本知識點(diǎn).),

          2)利用歷年高考真題, 這些題很有價(jià)值,先掩著答案,根據(jù)你之前課本學(xué)的基礎(chǔ)內(nèi)容,嘗試自己親自動(dòng)手做一下,再對答案,明白其原理.,真正弄懂它,看看能否舉一反三,可問老師及同學(xué),也可請家教,最后達(dá)到觸類旁通。

          3)同步練習(xí),必須緊跟課程,不能賴下來的,一步一個(gè)腳印去做.

          數(shù)學(xué)知識點(diǎn)較多,容易忘記,但以上的步驟你都能做到的話,那么就不那么容易遺忘,即使忘記,你也可以翻閱以前的內(nèi)容重新鞏固一遍.

          4四層次

          1)

          基本知識點(diǎn)。含概念、定義、定理、公式等,這是基礎(chǔ),這個(gè)不過關(guān),其他免談。筆者平時(shí)先看教科書,就是這個(gè)道理。--這部分,雖然重要,但筆者輔導(dǎo)不作重點(diǎn),只是檢查與提醒,因?yàn)榭勺詫W(xué)及問自己老師同學(xué)。會(huì)這個(gè)的人太容易找到了。

          2)

          數(shù)學(xué)思想與數(shù)學(xué)技能。數(shù)學(xué)思想如方程函數(shù)思想、數(shù)形結(jié)合思想、對稱思想、分類討論思想,化歸思想;數(shù)學(xué)技能如配方、待定系數(shù)法等。筆者由于這方面強(qiáng),故多年不做題或見到陌生題均不慌,因?yàn)檫@些思想能力是深入骨髓的。

          3)

          數(shù)學(xué)模型與中間結(jié)論。數(shù)學(xué)模型就是具體題目的解題套路,中間結(jié)論可使學(xué)生減少解題步驟,加快解題速度,減少出錯(cuò)機(jī)會(huì)。這些有了2數(shù)學(xué)思想與數(shù)學(xué)技能,就能自己推導(dǎo)出來,但要注意總結(jié)與積累。

          4)

          特殊解題技巧。這個(gè)要求以上3方面都較強(qiáng),聰明加靈感,平時(shí)善于總結(jié)與歸納,看透事物本源,熟能生巧,觸類旁通。故對中等生不作過高要求,所謂可遇而不可求。筆者對高考實(shí)考試卷的選擇與填空,特別是選擇,有相當(dāng)部分,有的試卷甚至一半以上可在題讀完后,幾秒得出正確答案。憑的就是這個(gè)本事。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)8

          1.不等式的定義

          在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

          2.比較兩個(gè)實(shí)數(shù)的大小

          兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的'運(yùn)算性質(zhì)來定義的,

          有a-b>0?;a-b=0?;a-b<0?.

          另外,若b>0,則有>1?;=1?;<1?.

          概括為:作差法,作商法,中間量法等.

          3.不等式的性質(zhì)

          (1)對稱性:a>b?;

          (2)傳遞性:a>b,b>c?;

          (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

          (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

          (5)可乘方:a>b>0?(n∈N,n≥2);

          (6)可開方:a>b>0?(n∈N,n≥2).

          復(fù)習(xí)指導(dǎo)

          1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

          2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

          3.“兩條常用性質(zhì)”

          (1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

         、踑>b>0,0;④0

          (2)若a>b>0,m>0,則

          ①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

        高三數(shù)學(xué)知識點(diǎn)總結(jié)9

         、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

         、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形。

         、翘厥饫忮F的頂點(diǎn)在底面的射影位置:

         、倮忮F的側(cè)棱長均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。

         、诶忮F的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。

         、劾忮F的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。

          ④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心。

         、萑忮F有兩組對棱垂直,則頂點(diǎn)在底面的射影為三角形垂心。

         、奕忮F的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心。

         、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的.交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

         、嗝總(gè)四面體都有內(nèi)切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑。

          [注]:

          i、各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

          ii、若一個(gè)三角錐,兩條對角線互相垂直,則第三對角線必然垂直。

          簡證:AB⊥CD,AC⊥BD

          BC⊥AD。令得,已知?jiǎng)t。

          iii、空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形。

          iv、若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形。

          簡證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

          EFGH為長方形。若對角線等,則為正方形。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)10

          付正軍:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。

          第二個(gè)是平面向量和三角函數(shù)。重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

          第三,是數(shù)列,數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

          第四,空間向量和立體幾何。在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

          第五,概率和統(tǒng)計(jì),這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一等可能的概率,第二事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

          第六,解析幾何,這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量最高的.題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

          第七,押軸題,考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)11

          任一x=A,x=B,記做AB

          AB,BAA=B

          AB={x|x=A,且x=B}

          AB={x|x=A,或x=B}

          Card(AB)=card(A)+card(B)—card(AB)

         。1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

         。2)AB,A是B成立的充分條件

          BA,A是B成立的必要條件

          AB,A是B成立的充要條件

          1、集合元素具有

         、俅_定性;

         、诨ギ愋裕

         、蹮o序性

          2、集合表示方法

          ①列舉法;

          ②描述法;

         、垌f恩圖;

         、軘(shù)軸法

          (3)集合的運(yùn)算

         、貯∩(B∪C)=(A∩B)∪(A∩C)

         、贑u(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

         。4)集合的'性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n—1;

          非空真子集數(shù):2n—2

        高三數(shù)學(xué)知識點(diǎn)總結(jié)12

          1.等差數(shù)列的定義

          如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的'差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

          2.等差數(shù)列的通項(xiàng)公式

          若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d.

          3.等差中項(xiàng)

          如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng).

          4.等差數(shù)列的常用性質(zhì)

          (1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_).

          (2)若{an}為等差數(shù)列,且m+n=p+q,

          則am+an=ap+aq(m,n,p,q∈N_).

          (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

          (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

          (5)S2n-1=(2n-1)an.

          (6)若n為偶數(shù),則S偶-S奇=nd/2;

          若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng)).

          注意:

          一個(gè)推導(dǎo)

          利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:

          Sn=a1+a2+a3+…+an,①

          Sn=an+an-1+…+a1,②

         、+②得:Sn=n(a1+an)/2

          兩個(gè)技巧

          已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

          (1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

          (2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對稱設(shè)元.

          四種方法

          等差數(shù)列的判斷方法

          (1)定義法:對于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);

          (2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;

          (3)通項(xiàng)公式法:驗(yàn)證an=pn+q;

          (4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn.

          注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

        高三數(shù)學(xué)知識點(diǎn)總結(jié)13

          不等式的解集:

         、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

         、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

          ③求不等式解集的過程叫做解不等式。

          不等式的判定:

          ①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

          ②在不等式“a>b”或“a

         、鄄坏忍柕.開口所對的數(shù)較大,不等號的尖頭所對的數(shù)較小;

          ④在列不等式時(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

          任一x?A,x?B,記做AB

          AB,BAA=B

          AB={x|x?A,且x?B}

          AB={x|x?A,或x?B}

          Card(AB)=card(A)+card(B)-card(AB)

          (1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

          (2)AB,A是B成立的充分條件

          BA,A是B成立的必要條件

          AB,A是B成立的充要條件

          1.集合元素具有①確定性;②互異性;③無序性

          2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

          (3)集合的運(yùn)算

          ①A∩(B∪C)=(A∩B)∪(A∩C)

         、贑u(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

          (4)集合的性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n-1;

          非空真子集數(shù):2n-2

        高三數(shù)學(xué)知識點(diǎn)總結(jié)14

          1.數(shù)列的定義

          按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).

          (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

          (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

          (4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.

          (5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

          2.數(shù)列的分類

          (1)根據(jù)數(shù)列的項(xiàng)數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時(shí),對于有窮數(shù)列,要把末項(xiàng)寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

          (2)按照項(xiàng)與項(xiàng)之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動(dòng)數(shù)列、常數(shù)列.

          3.數(shù)列的通項(xiàng)公式

          數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個(gè)規(guī)律通常是用式子f(n)來表示的,

          這兩個(gè)通項(xiàng)公式形式上雖然不同,但表示同一個(gè)數(shù)列,正像每個(gè)函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個(gè)數(shù)列都能寫出它的通項(xiàng)公式;有的數(shù)列雖然有通項(xiàng)公式,但在形式上,又不一定是的,僅僅知道一個(gè)數(shù)列前面的有限項(xiàng),無其他說明,數(shù)列是不能確定的,通項(xiàng)公式更非.如:數(shù)列1,2,3,4,…,

          由公式寫出的后續(xù)項(xiàng)就不一樣了,因此,通項(xiàng)公式的歸納不僅要看它的前幾項(xiàng),更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項(xiàng)寫出其通項(xiàng)公式,沒有通用的方法可循.

          再強(qiáng)調(diào)對于數(shù)列通項(xiàng)公式的理解注意以下幾點(diǎn):

          (1)數(shù)列的通項(xiàng)公式實(shí)際上是一個(gè)以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.

          (2)如果知道了數(shù)列的通項(xiàng)公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數(shù)列的各項(xiàng);同時(shí),用數(shù)列的通項(xiàng)公式也可判斷某數(shù)是否是某數(shù)列中的一項(xiàng),如果是的話,是第幾項(xiàng).

          (3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項(xiàng)公式.

          如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項(xiàng)公式.

          (4)有的數(shù)列的通項(xiàng)公式,形式上不一定是的,正如舉例中的:

          (5)有些數(shù)列,只給出它的前幾項(xiàng),并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項(xiàng)歸納出的數(shù)列通項(xiàng)公式并不.

          4.數(shù)列的圖象

          對于數(shù)列4,5,6,7,8,9,10每一項(xiàng)的序號與這一項(xiàng)有下面的對應(yīng)關(guān)系:

          序號:1234567

          項(xiàng):45678910

          這就是說,上面可以看成是一個(gè)序號集合到另一個(gè)數(shù)的`集合的映射.因此,從映射、函數(shù)的觀點(diǎn)看,數(shù)列可以看作是一個(gè)定義域?yàn)檎疦(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時(shí),對應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

          由于數(shù)列的項(xiàng)是函數(shù)值,序號是自變量,數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)和解析式.

          數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的

          數(shù)列用圖象來表示,可以以序號為橫坐標(biāo),相應(yīng)的項(xiàng)為縱坐標(biāo),描點(diǎn)畫圖來表示一個(gè)數(shù)列,在畫圖時(shí),為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

          把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個(gè)或有限個(gè)孤立的點(diǎn).

          5.遞推數(shù)列

          一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個(gè)數(shù)列:4,5,6,7,8,9,10.①

          數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)15

          1、圓柱體:

          表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

          2、圓錐體:

          表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

          3、正方體

          a—邊長,S=6a2,V=a3

          4、長方體

          a—長,b—寬,c—高S=2(ab+ac+bc)V=abc

          5、棱柱

          S—底面積h—高V=Sh

          6、棱錐

          S—底面積h—高V=Sh/3

          7、棱臺(tái)

          S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

          8、擬柱體

          S1—上底面積,S2—下底面積,S0—中截面積

          h—高,V=h(S1+S2+4S0)/6

          9、圓柱

          r—底半徑,h—高,C—底面周長

          S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

          S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

          10、空心圓柱

          R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

          11、直圓錐

          r—底半徑h—高V=πr^2h/3

          12、圓臺(tái)

          r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

          13、球

          r—半徑d—直徑V=4/3πr^3=πd^3/6

          14、球缺

          h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

          15、球臺(tái)

          r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

          16、圓環(huán)體

          R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

          V=2π2Rr2=π2Dd2/4

          17、桶狀體

          D—桶腹直徑d—桶底直徑h—桶高

          V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

          V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

        高三數(shù)學(xué)知識點(diǎn)總結(jié)16

          復(fù)數(shù)的概念:

          形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。

          復(fù)數(shù)的表示:

          復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實(shí)部,b叫復(fù)數(shù)的虛部。

          復(fù)數(shù)的幾何意義:

          (1)復(fù)平面、實(shí)軸、虛軸:

          點(diǎn)Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)

          (2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合是一一對應(yīng)關(guān)系,即

          這是因?yàn),每一個(gè)復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個(gè)點(diǎn)和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個(gè)點(diǎn),有惟一的一個(gè)復(fù)數(shù)和它對應(yīng)。

          這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。

          復(fù)數(shù)的模:

          復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=

          虛數(shù)單位i:

          (1)它的'平方等于-1,即i2=-1;

          (2)實(shí)數(shù)可以與它進(jìn)行四則運(yùn)算,進(jìn)行四則運(yùn)算時(shí),原有加、乘運(yùn)算律仍然成立

          (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

          (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

          復(fù)數(shù)模的性質(zhì):

          復(fù)數(shù)與實(shí)數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:

          對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時(shí),復(fù)數(shù)a+bi(a、b∈R)是實(shí)數(shù)a;當(dāng)b≠0時(shí),復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時(shí),z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時(shí),z就是實(shí)數(shù)0。

        高三數(shù)學(xué)知識點(diǎn)總結(jié)17

          高考數(shù)學(xué)必考知識點(diǎn)歸納必修一:

          1、集合與函數(shù)的概念(這部分知識抽象,較難理解)2、基本的.初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù))3、函數(shù)的性質(zhì)及應(yīng)用(比較抽象,較難理解)

          高考數(shù)學(xué)必考知識點(diǎn)歸納必修二:

          1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問題,包括線面角和面面角。

          這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的鈍角等等一些問題,需要學(xué)生的立體意識較強(qiáng)。這部分知識高考占22---27分

          2、直線方程:高考時(shí)不單獨(dú)命題,易和圓錐曲線結(jié)合命題

          3、圓方程

          高考數(shù)學(xué)必考知識點(diǎn)歸納必修三:

          1、算法初步:高考必考內(nèi)容,5分(選擇或填空)2、統(tǒng)計(jì):3、概率:高考必考內(nèi)容,09年理科占到15分,文科數(shù)學(xué)占到5分。

          高考數(shù)學(xué)必考知識點(diǎn)歸納必修四:

          1、三角函數(shù):(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數(shù)混合起來考查。

          2、平面向量:高考不單獨(dú)命題,易和三角函數(shù)、圓錐曲線結(jié)合命題。09年理科占到5分,文科占到13分。

          高考數(shù)學(xué)必考知識點(diǎn)歸納必修五:

          1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數(shù)學(xué)占到13分左右2、數(shù)列:高考必考,17---22分3、不等式:(線性規(guī)劃,聽課時(shí)易理解,但做題較復(fù)雜,應(yīng)掌握技巧。高考必考5分)不等式不單獨(dú)命題,一般和函數(shù)結(jié)合求最值、解集。

          高考數(shù)學(xué)必考知識點(diǎn)歸納文科選修:

          選修1--1:重點(diǎn):高考占30分

          1、邏輯用語:一般不考,若考也是和集合放一塊考2、圓錐曲線:3、導(dǎo)數(shù)、導(dǎo)數(shù)的應(yīng)用(高考必考)

          選修1--2:

          1、統(tǒng)計(jì):2、推理證明:一般不考,若考會(huì)是填空題3、復(fù)數(shù):(新課標(biāo)比老課本難的多,高考必考內(nèi)容)。

          高考數(shù)學(xué)必考知識點(diǎn)歸納理科選修:

          選修2--1:1、邏輯用語2、圓錐曲線3、空間向量:(利用空間向量可以把立體幾何做題簡便化)選修2--2:1、導(dǎo)數(shù)與微積分2、推理證明:一般不考3、復(fù)數(shù)

          選修2--3:1、計(jì)數(shù)原理:(排列組合、二項(xiàng)式定理)掌握這部分知識點(diǎn)需要大量做題找規(guī)律,無技巧。高考必考,10分2、隨機(jī)變量及其分布:不單獨(dú)命題3、統(tǒng)計(jì):

          高考的知識板塊

          集合與簡單邏輯:5分或不考

          函數(shù):高考60分:①、指數(shù)函數(shù)②對數(shù)函數(shù)③二次函數(shù)④三次函數(shù)⑤三角函數(shù)⑥抽象函數(shù)(無函數(shù)表達(dá)式,不易理解,難點(diǎn))

          平面向量與解三角形

          立體幾何:22分左右

          不等式:(線性規(guī)則)5分必考

          數(shù)列:17分(一道大題+一道選擇或填空)易和函數(shù)結(jié)合命題

          平面解析幾何:(30分左右)

          計(jì)算原理:10分左右

          概率統(tǒng)計(jì):12分----17分

          復(fù)數(shù):5分

        高三數(shù)學(xué)知識點(diǎn)總結(jié)18

          1.課程內(nèi)容:

          必修課程由5個(gè)模塊組成:

          必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))

          必修2:立體幾何初步、平面解析幾何初步。

          必修3:算法初步、統(tǒng)計(jì)、概率。

          必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。

          必修5:解三角形、數(shù)列、不等式。

          以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。

          上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識的發(fā)生、發(fā)展過程和實(shí)際應(yīng)用,而不在技巧與難度上做過高的要求。

          此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。

          2.重難點(diǎn)及考點(diǎn):

          重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)

          難點(diǎn):函數(shù)、圓錐曲線

          高考相關(guān)考點(diǎn):

         、偶吓c簡易邏輯:集合的概念與運(yùn)算、簡易邏輯、充要條件

         、坪瘮(shù):映射與函數(shù)、函數(shù)解析式與定義域、值域與最值、反函數(shù)、三大性質(zhì)、函數(shù)圖象、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、函數(shù)的應(yīng)用

         、菙(shù)列:數(shù)列的有關(guān)概念、等差數(shù)列、等比數(shù)列、數(shù)列求和、數(shù)列的應(yīng)用

          ⑷三角函數(shù):有關(guān)概念、同角關(guān)系與誘導(dǎo)公式、和、差、倍、半公式、求值、化簡、證明、三角函數(shù)的圖象與性質(zhì)、三角函數(shù)的應(yīng)用

         、善矫嫦蛄浚河嘘P(guān)概念與初等運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及其應(yīng)用

         、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應(yīng)用

         、酥本和圓的方程:直線的方程、兩直線的位置關(guān)系、線性規(guī)劃、圓、直線與圓的位置關(guān)系

          ⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關(guān)系、軌跡問題、圓錐曲線的應(yīng)用

         、椭本、平面、簡單幾何體:空間直線、直線與平面、平面與平面、棱柱、棱錐、球、空間向量

          ⑽排列、組合和概率:排列、組合應(yīng)用題、二項(xiàng)式定理及其應(yīng)用

         、细怕逝c統(tǒng)計(jì):概率、分布列、期望、方差、抽樣、正態(tài)分布

         、袑(dǎo)數(shù):導(dǎo)數(shù)的概念、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用

          ⒀復(fù)數(shù):復(fù)數(shù)的概念與運(yùn)算

         、僬忮F各側(cè)棱相等,各側(cè)面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

         、谡忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形,正棱錐的高、側(cè)棱、側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形.

         、翘厥饫忮F的頂點(diǎn)在底面的射影位置:

         、倮忮F的側(cè)棱長均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

         、诶忮F的側(cè)棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

         、劾忮F的各側(cè)面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

          ④棱錐的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內(nèi)心.

         、萑忮F有兩組對棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.

         、奕忮F的三條側(cè)棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.

         、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

         、嗝總(gè)四面體都有內(nèi)切球,球心

          是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.

          [注]:i.各個(gè)側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側(cè)面的等腰三角形不知是否全等)

          ii.若一個(gè)三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

          簡證:AB⊥CD,AC⊥BD

          BC⊥AD.令得,已知?jiǎng)t.

          iii.空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點(diǎn)的四邊形一定是矩形.

          iv.若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點(diǎn)的四邊是一定是正方形.

          簡證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

          EFGH為長方形.若對角線等,則為正方形.

          立體幾何初步

          (1)棱柱:

          定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

          分類:以底面多邊形的邊數(shù)作為分類的.標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

          表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱

          幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

          (2)棱錐

          定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

          表示:用各頂點(diǎn)字母,如五棱錐

          幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

          (3)棱臺(tái):

          定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

          分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

          表示:用各頂點(diǎn)字母,如五棱臺(tái)

          幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

          (4)圓柱:

          定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

          幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

          (5)圓錐:

          定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

          幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

          (6)圓臺(tái):

          定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

          幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

          (7)球體:

          定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

          幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

          (1)先看“充分條件和必要條件”

          當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

          但為什么說q是p的必要條件呢?

          事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

          (2)再看“充要條件”

          若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作p<=>q

          (3)定義與充要條件

          數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

          顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。

          “充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。

          (4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

          1.函數(shù)的奇偶性

          (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

          (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

          (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

          (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

          (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

          2.復(fù)合函數(shù)的有關(guān)問題

          (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

          (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

          3.函數(shù)圖像(或方程曲線的對稱性)

          (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;

          (2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;

          (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

          (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

          (5)若函數(shù)y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

          (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

          4.函數(shù)的周期性

          (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

          (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

          (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

          (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

          (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

          (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

          5.方程k=f(x)有解k∈D(D為f(x)的值域);

          6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

          7.(1)(a>0,a≠1,b>0,n∈R+);

          (2)logaN=(a>0,a≠1,b>0,b≠1);

          (3)logab的符號由口訣“同正異負(fù)”記憶;

          (4)alogaN=N(a>0,a≠1,N>0);

          8.判斷對應(yīng)是否為映射時(shí),抓住兩點(diǎn):

          (1)A中元素必須都有象且;

          (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

          9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

          10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

          (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

          (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

          (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);

          (4)周期函數(shù)不存在反函數(shù);

          (5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;

          (6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

          11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合

          二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

          12.依據(jù)單調(diào)性

          利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;

          13.恒成立問題的處理方法

          (1)分離參數(shù)法;

          (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

        高三數(shù)學(xué)知識點(diǎn)總結(jié)19

          第二部分函數(shù)與導(dǎo)數(shù)

          1.映射:注意①第一個(gè)集合中的元素必須有象;②一對一,或多對一。

          2.函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;

         、輷Q元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

          3.復(fù)合函數(shù)的有關(guān)問題

          (1)復(fù)合函數(shù)定義域求法:

         、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

          (2)復(fù)合函數(shù)單調(diào)性的判定:

          ①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

         、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

         、鄹鶕(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

          注意:外函數(shù)的定義域是內(nèi)函數(shù)的'值域。

          4.分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

          5.函數(shù)的奇偶性

         、藕瘮(shù)的定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件;

          ⑵是奇函數(shù);

         、鞘桥己瘮(shù);

          ⑷奇函數(shù)在原點(diǎn)有定義,則;

         、稍陉P(guān)于原點(diǎn)對稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

          (6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

        高三數(shù)學(xué)知識點(diǎn)總結(jié)20

          Card(AB)=card(A)+card(B)-card(AB)

          (1)命題

          原命題若p則q

          逆命題若q則p

          否命題若p則q

          逆否命題若q,則p

          (2)AB,A是B成立的充分條件

          BA,A是B成立的必要條件

          AB,A是B成立的充要條件

          1.集合元素具有①確定性;②互異性;③無序性

          2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

          (3)集合的運(yùn)算

         、貯∩(B∪C)=(A∩B)∪(A∩C)

          ②Cu(A∩B)=CuA∪CuB

          Cu(A∪B)=CuA∩CuB

          (4)集合的'性質(zhì)

          n元集合的字集數(shù):2n

          真子集數(shù):2n-1;

          非空真子集數(shù):2n-2

          高三數(shù)學(xué)知識點(diǎn)2

          兩個(gè)復(fù)數(shù)相等的定義:

          如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di

          a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

          a=0,b=0.

          復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實(shí)數(shù)問題解決的途徑。

          復(fù)數(shù)相等特別提醒:

          一般地,兩個(gè)復(fù)數(shù)只能說相等或不相等,而不能比較大小。如果兩個(gè)復(fù)數(shù)都是實(shí)數(shù),就可以比較大小,也只有當(dāng)兩個(gè)復(fù)數(shù)全是實(shí)數(shù)時(shí)才能比較大小。

          解復(fù)數(shù)相等問題的方法步驟:

          (1)把給的復(fù)數(shù)化成復(fù)數(shù)的標(biāo)準(zhǔn)形式;

          (2)根據(jù)復(fù)數(shù)相等的充要條件解之。

        【高三數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:

        高三數(shù)學(xué)高考知識點(diǎn)總結(jié)09-24

        高三數(shù)學(xué)復(fù)習(xí)知識點(diǎn)總結(jié)12-08

        高三數(shù)學(xué)重要知識點(diǎn)總結(jié)12-28

        高三數(shù)學(xué)知識點(diǎn)總結(jié)09-21

        高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納01-24

        高三數(shù)學(xué)知識點(diǎn)總結(jié)最新10-21

        高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納09-08

        高三數(shù)學(xué)知識點(diǎn)歸納總結(jié)08-13

        數(shù)學(xué)必考知識點(diǎn)總結(jié)高三五篇08-03

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>