1. <rp id="zsypk"></rp>

      2. 高二數(shù)學(xué)的知識點總結(jié)

        時間:2023-03-07 18:31:28 總結(jié) 我要投稿

        高二數(shù)學(xué)的知識點總結(jié)

          數(shù)學(xué)是我們學(xué)習(xí)中非常重要的一門課程,數(shù)學(xué)與我們的生活密切相關(guān), 所以我們一定要耐心的去將數(shù)學(xué)知識學(xué)好。下面是小編整理收集的高二數(shù)學(xué)的知識點總結(jié),歡迎閱讀參考!

        高二數(shù)學(xué)的知識點總結(jié)

        高二數(shù)學(xué)的知識點總結(jié)1

          排列組合公式/排列組合計算公式

          排列P------和順序有關(guān)

          組合C-------不牽涉到順序的問題

          排列分順序,組合不分

          例如把5本不同的書分給3個人,有幾種分法."排列"

          把5本書分給3個人,有幾種分法"組合"

          1.排列及計算公式

          從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.

          p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).

          2.組合及計算公式

          從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號

          c(n,m)表示.

          c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

          3.其他排列與組合公式

          從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

          n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為n!/(n1!*n2!*...*nk!).

          k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).

          排列(Pnm(n為下標(biāo),m為上標(biāo)))

          Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

          組合(Cnm(n為下標(biāo),m為上標(biāo)))

          Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

          20xx-07-0813:30

          公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的'元素個數(shù)!-階乘,如9!=9*8*7*6*5*4*3*2*1

          從N倒數(shù)r個,表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);

          因為從n到(n-r+1)個數(shù)為n-(n-r+1)=r

          舉例:

          Q1:有從1到9共計9個號碼球,請問,可以組成多少個三位數(shù)?

          A1:123和213是兩個不同的排列數(shù)。即對排列順序有要求的,既屬于“排列P”計算范疇。

          上問題中,任何一個號碼只能用一次,顯然不會出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9*8*7個三位數(shù)。計算公式=P(3,9)=9*8*7,(從9倒數(shù)3個的乘積)

          Q2:有從1到9共計9個號碼球,請問,如果三個一組,代表“三國聯(lián)盟”,可以組合成多少個“三國聯(lián)盟”?

          A2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合C”計算范疇。

          上問題中,將所有的包括排列數(shù)的個數(shù)去除掉屬于重復(fù)的個數(shù)即為最終組合數(shù)C(3,9)=9*8*7/3*2*1

          排列、組合的概念和公式典型例題分析

          例1設(shè)有3名學(xué)生和4個課外小組.(1)每名學(xué)生都只參加一個課外小組;(2)每名學(xué)生都只參加一個課外小組,而且每個小組至多有一名學(xué)生參加.各有多少種不同同方法?

          解(1)由于每名學(xué)生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數(shù),因此共有種不同方法.

          (2)由于每名學(xué)生都只參加一個課外小組,而且每個小組至多有一名學(xué)生參加,因此共有種不同方法.

          點評由于要讓3名學(xué)生逐個選擇課外小組,故兩問都用乘法原理進(jìn)行計算.

          例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

          解依題意,符合要求的排法可分為第一個排、、中的某一個,共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:

          ∴符合題意的不同排法共有9種.

          點評按照分“類”的思路,本題應(yīng)用了加法原理.為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數(shù)問題的一種數(shù)學(xué)模型.

          例3判斷下列問題是排列問題還是組合問題?并計算出結(jié)果.

          (1)高三年級學(xué)生會有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?

          (2)高二年級數(shù)學(xué)課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競賽,有多少種不同的選法?

          (3)有2,3,5,7,11,13,17,19八個質(zhì)數(shù):①從中任取兩個數(shù)求它們的商可以有多少種不同的商?②從中任取兩個求它的積,可以得到多少個不同的積?

          (4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?

          分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題.其他類似分析.

          (1)①是排列問題,共用了封信;②是組合問題,共需握手(次).

          (2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法.

          (3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積.

          (4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法.

          例4證明.

          證明左式

          右式.

          ∴等式成立.

          點評這是一個排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過程得以簡化.

          例5化簡.

          解法一原式

          解法二原式

          點評解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個性質(zhì),都使變形過程得以簡化.

          例6解方程:(1);(2).

          解(1)原方程

          解得.

          (2)原方程可變?yōu)?/p>

          ∵,,

          ∴原方程可化為.

          即,解得

          第六章排列組合、二項式定理

          一、考綱要求

          1.掌握加法原理及乘法原理,并能用這兩個原理分析解決一些簡單的問題.

          2.理解排列、組合的意義,掌握排列數(shù)、組合數(shù)的計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的問題.

          3.掌握二項式定理和二項式系數(shù)的性質(zhì),并能用它們計算和論證一些簡單問題.

          二、知識結(jié)構(gòu)

          三、知識點、能力點提示

          (一)加法原理乘法原理

          說明加法原理、乘法原理是學(xué)習(xí)排列組合的基礎(chǔ),掌握此兩原理為處理排列、組合中有關(guān)問題提供了理論根據(jù).

        高二數(shù)學(xué)的知識點總結(jié)2

          在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

          1.任意角

          (1)角的分類:

         、侔葱D(zhuǎn)方向不同分為正角、負(fù)角、零角.

         、诎唇K邊位置不同分為象限角和軸線角.

          (2)終邊相同的角:

          終邊與角相同的角可寫成+k360(kZ).

          (3)弧度制:

         、1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.

         、谝(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑.

         、塾没《茸鰡挝粊矶攘拷堑闹贫冉凶龌《戎.比值與所取的r的大小無關(guān),僅與角的大小有關(guān).

         、芑《扰c角度的換算:360弧度;180弧度.

          ⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.

          2.任意角的`三角函數(shù)

          (1)任意角的三角函數(shù)定義:

          設(shè)是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù).

          (2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦.

          3.三角函數(shù)線

          設(shè)角的頂點在坐標(biāo)原點,始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M.由三角函數(shù)的定義知,點P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan =AT.我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線.

        高二數(shù)學(xué)的知識點總結(jié)3

          一、事件

          1.在條件SS的必然事件.

          2.在條件S下,一定不會發(fā)生的事件,叫做相對于條件S的不可能事件.

          3.在條件SS的隨機(jī)事件.

          二、概率和頻率

          1.用概率度量隨機(jī)事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).

          2.在相同條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA

          nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.

          3.對于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).

          三、事件的關(guān)系與運算

          四、概率的`幾個基本性質(zhì)

          1.概率的取值范圍:

          2.必然事件的概率P(E)=3.不可能事件的概率P(F)=

          4.概率的加法公式:

          如果事件A與事件B互斥,則P(AB)=P(A)+P(B).

          5.對立事件的概率:

          若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).

        高二數(shù)學(xué)的知識點總結(jié)4

          導(dǎo)數(shù): 導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

          1、導(dǎo)數(shù)的定義: 在點 處的導(dǎo)數(shù)記作 .

          2. 導(dǎo)數(shù)的`幾何物理意義:曲線 在點 處切線的斜率

         、賙=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t) 表示即時速度。a=v/(t) 表示加速度。

          3.常見函數(shù)的導(dǎo)數(shù)公式: ① ;② ;③ ;

         、 ;⑥ ;⑦ ;⑧ 。

          4.導(dǎo)數(shù)的四則運算法則:

          5.導(dǎo)數(shù)的應(yīng)用:

          (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個區(qū)間內(nèi)可導(dǎo),如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);

          注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。

          (2)求極值的步驟:

          ①求導(dǎo)數(shù) ;

         、谇蠓匠 的根;

         、哿斜恚簷z驗 在方程 根的左右的符號,如果左正右負(fù),那么函數(shù) 在這個根處取得極大值;如果左負(fù)右正,那么函數(shù) 在這個根處取得極小值;

          (3)求可導(dǎo)函數(shù)最大值與最小值的步驟:

         、∏ 的根; ⅱ把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。

        高二數(shù)學(xué)的知識點總結(jié)5

          (1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;

          (2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;

          (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;

          (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;

          (5)頻數(shù)與頻率:在相同的.條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機(jī)事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。

          (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。

          然說難度比較大,我建議考生,采取分部得分整個試

        高二數(shù)學(xué)的知識點總結(jié)6

          已知函數(shù)有零點(方程有根)求參數(shù)取值常用的'方法

          1、直接法:

          直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

          2、分離參數(shù)法:

          先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

          3、數(shù)形結(jié)合法:

          先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

        高二數(shù)學(xué)的知識點總結(jié)7

          1.1柱、錐、臺、球的結(jié)構(gòu)特征

          1.2空間幾何體的三視圖和直觀圖

          11三視圖:

          正視圖:從前往后

          側(cè)視圖:從左往右

          俯視圖:從上往下

          22畫三視圖的原則:

          長對齊、高對齊、寬相等

          33直觀圖:斜二測畫法

          44斜二測畫法的步驟:

          (1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

          (2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;

          (3).畫法要寫好。

          5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖

          1.3空間幾何體的表面積與體積

          (一)空間幾何體的表面積

          1棱柱、棱錐的表面積:各個面面積之和

          2圓柱的表面積3圓錐的表面積

          4圓臺的表面積

          5球的表面積

          (二)空間幾何體的體積

          1柱體的體積

          2錐體的體積

          3臺體的體積

          4球體的體積

          高二數(shù)學(xué)必修二知識點:直線與平面的位置關(guān)系

          2.1空間點、直線、平面之間的位置關(guān)系

          2.1.1

          1平面含義:平面是無限延展的

          2平面的畫法及表示

          (1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)

          (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。

          3三個公理:

          (1)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)

          符號表示為

          A∈L

          B∈L=>Lα

          A∈α

          B∈α

          公理1作用:判斷直線是否在平面內(nèi)

          (2)公理2:過不在一條直線上的三點,有且只有一個平面。

          符號表示為:A、B、C三點不共線=>有且只有一個平面α,

          使A∈α、B∈α、C∈α。

          公理2作用:確定一個平面的依據(jù)。

          (3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

          符號表示為:P∈α∩β=>α∩β=L,且P∈L

          公理3作用:判定兩個平面是否相交的依據(jù)

          2.1.2空間中直線與直線之間的位置關(guān)系

          1空間的兩條直線有如下三種關(guān)系:

          共面直線

          相交直線:同一平面內(nèi),有且只有一個公共點;

          平行直線:同一平面內(nèi),沒有公共點;

          異面直線:不同在任何一個平面內(nèi),沒有公共點。

          2公理4:平行于同一條直線的兩條直線互相平行。

          符號表示為:設(shè)a、b、c是三條直線

          a∥b

          c∥b

          強(qiáng)調(diào):公理4實質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。

          公理4作用:判斷空間兩條直線平行的依據(jù)。

          3等角定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補(bǔ)

          4注意點:

         、賏與b所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點O一般取在兩直線中的一條上;

          ②兩條異面直線所成的角θ∈(0,);

         、郛(dāng)兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;

         、軆蓷l直線互相垂直,有共面垂直與異面垂直兩種情形;

         、萦嬎阒,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的.角。

          2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系

          1、直線與平面有三種位置關(guān)系:

          (1)直線在平面內(nèi)——有無數(shù)個公共點

          (2)直線與平面相交——有且只有一個公共點

          (3)直線在平面平行——沒有公共點

          指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

          aαa∩α=Aa∥α

          2.2.直線、平面平行的判定及其性質(zhì)

          2.2.1直線與平面平行的判定

          1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

          簡記為:線線平行,則線面平行。

          符號表示:

          aα

          bβ=>a∥α

          a∥b

          2.2.2平面與平面平行的判定

          1、兩個平面平行的判定定理:一個平面內(nèi)的兩條交直線與另一個平面平行,則這兩個平面平行。

          符號表示:

          aβ

          bβ

          a∩b=Pβ∥α

          a∥α

          b∥α

          2、判斷兩平面平行的方法有三種:

          (1)用定義;

          (2)判定定理;

          (3)垂直于同一條直線的兩個平面平行。

          2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)

          1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

          簡記為:線面平行則線線平行。

          符號表示:

          a∥α

          aβa∥b

          α∩β=b

          作用:利用該定理可解決直線間的平行問題。

          2、定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。

          符號表示:

          α∥β

          α∩γ=aa∥b

          β∩γ=b

          作用:可以由平面與平面平行得出直線與直線平行

          2.3直線、平面垂直的判定及其性質(zhì)

          2.3.1直線與平面垂直的判定

          1、定義

          如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時,它們公共點P叫做垂足。

          2、判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

          注意點:a)定理中的“兩條相交直線”這一條件不可忽視;

          b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

          2.3.2平面與平面垂直的判定

          1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形

          2、二面角的記法:二面角α-l-β或α-AB-β

          3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。

          2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)

          1、定理:垂直于同一個平面的兩條直線平行。

          2性質(zhì)定理:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。

        高二數(shù)學(xué)的知識點總結(jié)8

          第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

          主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

          第二:平面向量和三角函數(shù)。

          重點考察三個方面:

          一個是劃減與求值。

          第一,重點掌握公式,重點掌握五組基本公式。

          第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的'性質(zhì)。

          第三,正弦定理和余弦定理來解三角形。難度比較小。

          第三:數(shù)列。

          數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

          第四:空間向量和立體幾何。

          在里面重點考察兩個方面:一個是證明;一個是計算。

          第五:概率和統(tǒng)計。

          這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面:

          第一……等可能的概率。

          第二………事件。

          第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

          第六:解析幾何。

          這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

          第七:押軸題。

          考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

        高二數(shù)學(xué)的知識點總結(jié)9

          排列組合

          排列P------和順序有關(guān)

          組合C-------不牽涉到順序的問題

          排列分順序,組合不分

          例如把5本不同的書分給3個人,有幾種分法."排列"

          把5本書分給3個人,有幾種分法"組合"

          1.排列及計算公式

          從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.

          p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).

          2.組合及計算公式

          從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號

          c(n,m)表示.

          c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

          3.其他排列與組合公式

          從n個元素中取出r個元素的`循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

          n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為

          n!/(n1!_2!_.._k!).

          k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).

          排列(Pnm(n為下標(biāo),m為上標(biāo)))

          Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

          組合(Cnm(n為下標(biāo),m為上標(biāo)))

          Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

          20xx-07-0813:30

          公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如9!=9________

          從N倒數(shù)r個,表達(dá)式應(yīng)該為n_n-1)_n-2)..(n-r+1);

          因為從n到(n-r+1)個數(shù)為n-(n-r+1)=r

        高二數(shù)學(xué)的知識點總結(jié)10

          用樣本的數(shù)字特征估計總體的數(shù)字特征

          1、本均值:

          2、樣本標(biāo)準(zhǔn)差:

          3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。

          雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個估計,但這種估計是合理的,特別是當(dāng)樣本量很大時,它們確實反映了總體的信息。

          4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的'常數(shù),標(biāo)準(zhǔn)差不變

          (2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍

          (3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

          “去掉一個分,去掉一個最低分”中的科學(xué)道理

        高二數(shù)學(xué)的知識點總結(jié)11

          1.有向線段的定義

          線段的端點A為始點,端點B為終點,這時線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.

          2.有向線段的三要素:有向線段包含三個要素:始點、方向和長度.

          3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個要素:大小和方向.

          (2)向量的表示方法:①用兩個大寫的英文字母及前頭表示,有向線段來表示向量時,也稱其為向量.書寫時,則用帶箭頭的小寫字母,,,來表示.

          4.向量的長度(模):如果向量=,那么有向線段的長度表示向量的大小,叫做向量的長度(或模),記作||.

          5.相等向量:如果兩個向量和的方向相同且長度相等,則稱和相等,記作:=.

          6.相反向量:與向量等長且方向相反的向量叫做的相反向量,記作:-.

          7.向量平行(共線):如果兩個向量方向相同或相反,則稱這兩個向量平行,向量平行也稱向量共線.向量平行于向量,記作//.規(guī)定: //.

          8.零向量:長度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問題時,一定要看清題目中是零向量還是非零向量.

          9.單位向量:長度等于1的向量叫做單位向量.

          10.向量的加法運算:

          (1)向量加法的三角形法則

          11.向量的減法運算

          12、兩向量的和差的模與兩向量模的和差之間的關(guān)系

          對于任意兩個向量,,都有|||-|||||+||.

          13.?dāng)?shù)乘向量的.定義:

          實數(shù)和向量的乘積是一個向量,這種運算叫做數(shù)乘向量,記作.

          向量的長度與方向規(guī)定為:(1)||=|

          (2)當(dāng)0時,與方向相同;當(dāng)0時,與方向相反.

          (3)當(dāng)=0時,當(dāng)=時,=.

          14.?dāng)?shù)乘向量的運算律:(1))= (結(jié)合律)

          (2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

          15.平行向量基本定理

          如果向量,則//的充分必要條件是,存在唯一的實數(shù),使得=.

          如果與不共線,若m=n,則m=n=0.

          16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.

          =||,即==(,)

          17.線段中點的向量表達(dá)式

          點M是線段AB的中點,O是平面內(nèi)任意一點,則=(+).

          18.平面向量的直角坐標(biāo)運算:如果=(a1,a2),=(b1,b2),則

          +=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

          19.利用兩點表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).

          20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則

          =a1=b1且a2=b2.

          //a1b2-a2b1=0.特別地,如果b10,b20,則// =.

          21.向量的長度公式:若=(a1,a2),則||=.

          22.平面上兩點間的距離公式:若A(x1,y1),B(x2,y2),則||=.

          23.中點公式

          若點A(x1,y1),點B(x2,y2),點M(x,y)是線段AB的中點,則x=,y= .

          24.重心公式

          在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則

          x=,y=

          25.(1)兩個向量夾角的取值范圍是[0,p],即0,p.

          當(dāng)=0時,與同向;當(dāng)=p時,與反向

          當(dāng)= 時,與垂直,記作.

          (3)向量的內(nèi)積定義:=||||cos.

          其中,||cos叫做向量在向量方向上的正射影的數(shù)量.規(guī)定=0.

          (4)內(nèi)積的幾何意義

          與的內(nèi)積的幾何意義是的模與在方向上的正射影的數(shù)量,或的模與在 方向上的正射影數(shù)量的乘積

          當(dāng)0,90時,0;=90時,

          90時,0.

          26.向量內(nèi)積的運算律:

          (1)交換率

          (2)數(shù)乘結(jié)合律

          (3)分配律

          (4)不滿足組合律

          27.向量內(nèi)積滿足乘法公式

          29.向量內(nèi)積的應(yīng)用:

        高二數(shù)學(xué)的知識點總結(jié)12

          1.萬能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)

          2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a

          3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:單位向量a0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]

          4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)

          5.空間向量:同上推論 (提示:向量a={x,y,z})

          6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2

          7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方

        高二數(shù)學(xué)的知識點總結(jié)13

          一、集合、簡易邏輯(14課時,8個)

          1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

          二、函數(shù)(30課時,12個)

          1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

          三、數(shù)列(12課時,5個)

          1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。

          四、三角函數(shù)(46課時,17個)

          1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

          五、平面向量(12課時,8個)

          1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。

          六、不等式(22課時,5個)

          1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

          七、直線和圓的方程(22課時,12個)

          1.直線的傾斜角和斜率;2.直線方程的'點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。

          八、圓錐曲線(18課時,7個)

          1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì)。

          九、直線、平面、簡單何體(36課時,28個)

          1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

          十、排列、組合、二項式定理(18課時,8個)

          1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。

          十一、概率(12課時,5個)

          1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復(fù)試驗。

          選修Ⅱ(24個)

          十二、概率與統(tǒng)計(14課時,6個)

          1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。

          十三、極限(12課時,6個)

          1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。

          十四、導(dǎo)數(shù)(18課時,8個)

          1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的最大值和最小值。

          十五、復(fù)數(shù)(4課時,4個)

          1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項方程的解法。

        高二數(shù)學(xué)的知識點總結(jié)14

          1、向量的加法

          向量的加法滿足平行四邊形法則和三角形法則。

          AB+BC=AC。

          a+b=(x+x,y+y)。

          a+0=0+a=a。

          向量加法的運算律:

          交換律:a+b=b+a;

          結(jié)合律:(a+b)+c=a+(b+c)。

          2、向量的減法

          如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

          AB-AC=CB. 即“共同起點,指向被減”

          a=(x,y) b=(x,y) 則 a-b=(x-x,y-y).

          3、數(shù)乘向量

          實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

          當(dāng)λ>0時,λa與a同方向;

          當(dāng)λ<0時,λa與a反方向;

          當(dāng)λ=0時,λa=0,方向任意。

          當(dāng)a=0時,對于任意實數(shù)λ,都有λa=0。

          注:按定義知,如果λa=0,那么λ=0或a=0。

          實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的'幾何意義就是將表示向量a的有向線段伸長或壓縮。

          當(dāng)∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

          當(dāng)∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

          數(shù)與向量的乘法滿足下面的運算律

          結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

          向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

          數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

          數(shù)乘向量的消去律:① 如果實數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

          4、向量的的數(shù)量積

          定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

          定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

          向量的數(shù)量積的坐標(biāo)表示:a·b=x·x+y·y。

          向量的數(shù)量積的運算率

          a·b=b·a(交換率);

          (a+b)·c=a·c+b·c(分配率);

          向量的數(shù)量積的性質(zhì)

          a·a=|a|的平方。

          a⊥b 〈=〉a·b=0。

          |a·b|≤|a|·|b|。

        高二數(shù)學(xué)的知識點總結(jié)15

          ●不等式

          1、不等式你會解么?你會解么?如果是寫解集不要忘記寫成集合形式!

          2、的解集是(1,3),那么的解集是什么?

          3、兩類恒成立問題圖象法——恒成立,則=?

          ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

          4、線性規(guī)劃問題

         。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

         。2)目標(biāo)函數(shù)改寫:(注意分析截距與z的關(guān)系)

         。3)平行直線系去畫

          5、基本不等式的形式和變形形式

          如a,b為正數(shù),a,b滿足,則ab的范圍是

          6、運用基本不等式求最值要注意:一正二定三相等!

          如的最小值是的最小值(不要忘記交代是什么時候取到=。。

          一個非常重要的函數(shù)——對勾函數(shù)的圖象是什么?

          運用對勾函數(shù)來處理下面問題的最小值是

          7、★★兩種題型:

          和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的`最小值?

          和——積(直接用基本不等式),如x,y為正數(shù),,則的范圍是?

          不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數(shù),,則的范圍是?

        高二數(shù)學(xué)的知識點總結(jié)16

          一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機(jī)會都相等,就把這種抽樣方法叫做簡單隨機(jī)抽樣。

          簡單隨機(jī)抽樣的特點:

          (1)用簡單隨機(jī)抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為

          (2)簡單隨機(jī)抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;

          (3)簡單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).

          (4)簡單隨機(jī)抽樣是不放回抽樣;它是逐個地進(jìn)行抽取;它是一種等概率抽樣

          簡單抽樣常用方法:

          (1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進(jìn)行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法.(2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的`個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率:

          相關(guān)高中數(shù)學(xué)知識點:系統(tǒng)抽樣

          系統(tǒng)抽樣的概念:

          當(dāng)整體中個體數(shù)較多時,將整體均分為幾個部分,然后按一定的規(guī)則,從每一個部分抽取1個個體而得到所需要的樣本的方法叫系統(tǒng)抽樣。

          系統(tǒng)抽樣的步驟:

          (1)采用隨機(jī)方式將總體中的個體編號;

          (2)將整個編號進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即

          =k不是整數(shù)時,可采用隨機(jī)方法從總體中剔除一些個體,使總體中剩余的個體數(shù)N′滿足是整數(shù);

          (3)在第一段中采用簡單隨機(jī)抽樣方法確定第一個被抽得的個體編號l;

          (4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個體的編號,從而得到整個樣本。

          相關(guān)高中數(shù)學(xué)知識點:分層抽樣

          分層抽樣:

          當(dāng)已知總體由差異明顯的幾部分組成時,常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個部分叫做層。

          利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。

          不放回抽樣和放回抽樣:

          在抽樣中,如果每次抽出個體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個體后再將它放回總體,稱這樣的抽樣為放回抽樣.

          隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣

          分層抽樣的特點:

          (1)分層抽樣適用于差異明顯的幾部分組成的情況;

          (2)在每一層進(jìn)行抽樣時,在采用簡單隨機(jī)抽樣或系統(tǒng)抽樣;

          (3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;

          (4)分層抽樣也是等概率抽樣,而且在每層抽樣時,可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。

        高二數(shù)學(xué)的知識點總結(jié)17

          概率性質(zhì)與公式

          (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

          (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

          (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

          (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

          貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

          如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

          (5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.

        高二數(shù)學(xué)的.知識點總結(jié)18

          考點一:向量的概念、向量的基本定理

          【內(nèi)容解讀】了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

          注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的?杀容^大小。

          考點二:向量的運算

          【內(nèi)容解讀】向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進(jìn)行向量的加減運算;掌握實數(shù)與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關(guān)系;掌握向量的數(shù)量積的運算,體會平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量積的運算,能運用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關(guān)系。

          【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的.坐標(biāo)運算,有時也會與其它內(nèi)容相結(jié)合。

          考點三:定比分點

          【內(nèi)容解讀】掌握線段的定比分點和中點坐標(biāo)公式,并能熟練應(yīng)用,求點分有向線段所成比時,可借助圖形來幫助理解。

          【命題規(guī)律】重點考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

          考點四:向量與三角函數(shù)的綜合問題

          【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達(dá)到了高考中試題的覆蓋面的要求。

          【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

          考點五:平面向量與函數(shù)問題的交匯

          【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

          【命題規(guī)律】命題多以解答題為主,屬中檔題。

          考點六:平面向量在平面幾何中的應(yīng)用

          【內(nèi)容解讀】向量的坐標(biāo)表示實際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運算和向量運算,從而使問題得到解決.

          【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

        高二數(shù)學(xué)的知識點總結(jié)19

          一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

          二、函數(shù)(30課時,12個)1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

          三、數(shù)列(12課時,5個)1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式.

          四、三角函數(shù)(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

          五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移.

          六、不等式(22課時,5個)1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

          七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

          八、圓錐曲線(18課時,7個)1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì).九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

          十、排列、組合、二項式定理(18課時,8個)1.分類計數(shù)原理與分步計數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì).

          十一、概率(12課時,5個)1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復(fù)試驗.選修Ⅱ(24個)

          十二、概率與統(tǒng)計(14課時,6個)1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸.

          十三、極限(12課時,6個)1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性.

          十四、導(dǎo)數(shù)(18課時,8個)1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的最大值和最小值.

          十五、復(fù)數(shù)(4課時,4個)1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達(dá)70%左右,而且把這一項作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!相信對你的學(xué)習(xí)會有幫助的,祝你成功!答案補(bǔ)充一試全國高中數(shù)學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內(nèi)到三邊距離之積最大的點,重心。幾何不等式。簡單的'等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積最大。在周長一定的簡單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡單的函數(shù)方程。n個變元的平均不等式,柯西不等式,排序不等式及應(yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡單的組合恒等式。一元n次方程(多項式)根的個數(shù),根與系數(shù)的關(guān)系,實系數(shù)方程虛根成對定理。簡單的初等數(shù)論問題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費馬小定理,歐拉函數(shù),孫子定理,格點及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

        高二數(shù)學(xué)的知識點總結(jié)20

          分層抽樣

          先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

          兩種方法

          1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

          2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

          2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個個同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

          分層標(biāo)準(zhǔn)

          (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

          (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

          (3)以那些有明顯分層區(qū)分的變量作為分層變量。

          分層的比例問題

          (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

          (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實際的比例結(jié)構(gòu)。

          (1)定義:

          對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點。

          (2)函數(shù)的零點與相應(yīng)方程的'根、函數(shù)的圖象與x軸交點間的關(guān)系:

          方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點。

          (3)函數(shù)零點的判定(零點存在性定理):

          如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

          二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關(guān)系

          三二分法

          對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進(jìn)而得到零點近似值的方法叫做二分法。

          1、函數(shù)的零點不是點:

          函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標(biāo),所以函數(shù)的零點是一個數(shù),而不是一個點.在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標(biāo)。

          2、對函數(shù)零點存在的判斷中,必須強(qiáng)調(diào):

          (1)、f(x)在[a,b]上連續(xù);

          (2)、f(a)·f(b)<0;

          (3)、在(a,b)內(nèi)存在零點。

          這是零點存在的一個充分條件,但不必要。

          3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號。

          利用函數(shù)零點的存在性定理判斷零點所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點。

          四判斷函數(shù)零點個數(shù)的常用方法

          1、解方程法:

          令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

          2、零點存在性定理法:

          利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。

          3、數(shù)形結(jié)合法:

          轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。

          已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法

          1、直接法:

          直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

          2、分離參數(shù)法:

          先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

          3、數(shù)形結(jié)合法:

          先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

        【高二數(shù)學(xué)的知識點總結(jié)】相關(guān)文章:

        高二的數(shù)學(xué)的知識點總結(jié)04-22

        數(shù)學(xué)高二知識點總結(jié)04-22

        高二數(shù)學(xué)的數(shù)列知識點總結(jié)12-02

        高二數(shù)學(xué)下冊知識點總結(jié)03-30

        高二數(shù)學(xué)知識點總結(jié)08-04

        高二數(shù)學(xué)知識點總結(jié)02-19

        數(shù)學(xué)高二知識點總結(jié)歸納12-29

        高二數(shù)學(xué)知識點總結(jié)12-18

        高二數(shù)學(xué)知識點總結(jié)12-04

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>