高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)(15篇)
總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書(shū)面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),為此要我們寫(xiě)一份總結(jié)。但是卻發(fā)現(xiàn)不知道該寫(xiě)些什么,下面是小編精心整理的高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)1
1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問(wèn)題;以向量知識(shí)為背景的函數(shù)問(wèn)題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過(guò)程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。
2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問(wèn)題。
3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線(xiàn)性規(guī)劃問(wèn)題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來(lái),考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類(lèi)討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。
4.立體幾何知識(shí):20xx年已經(jīng)變得簡(jiǎn)單,20xx年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線(xiàn)面垂直、平行位置關(guān)系的考查,已經(jīng)線(xiàn)面角,面面角和幾何體的體積計(jì)算等問(wèn)題,都是重點(diǎn)考查內(nèi)容。
5.解析幾何知識(shí):小題主要涉及圓錐曲線(xiàn)方程,和直線(xiàn)與圓的位置關(guān)系,以及圓錐曲線(xiàn)幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線(xiàn)和圓的知識(shí),直線(xiàn)與圓錐曲線(xiàn)的知識(shí),涉及圓錐曲線(xiàn)方程,直線(xiàn)與圓錐曲線(xiàn)方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。
6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見(jiàn)函數(shù)入手,導(dǎo)數(shù)工具作用(切線(xiàn)和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。
7.開(kāi)放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開(kāi)放型試題的考查,都是重點(diǎn),理科13,文科14題。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)2
【基本初等函數(shù)】
一、指數(shù)函數(shù)
。ㄒ唬┲笖(shù)與指數(shù)冪的運(yùn)算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand)。
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
。ǘ┲笖(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。
2、指數(shù)函數(shù)的圖象和性質(zhì)
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)3
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
esp:
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線(xiàn),若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)4
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱(chēng)軸如下表:
解析式
頂點(diǎn)坐標(biāo)
對(duì)稱(chēng)軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線(xiàn)x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).
3.拋物線(xiàn)y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.
4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)5
函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1
如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱(chēng)為y=f(x)的單調(diào)減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2)圖象的特點(diǎn)
如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A)定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));
(5)下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
(B)圖象法(從圖象上看升降)
(C)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2)奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
9.利用定義判斷函數(shù)奇偶性的步驟:
1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱(chēng);
2確定f(-x)與f(x)的關(guān)系;
3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),若不對(duì)稱(chēng)則函數(shù)是非奇非偶函數(shù).若對(duì)稱(chēng),(1)再根據(jù)定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;(3)利用定理,或借助函數(shù)的圖象判定.
10、函數(shù)的解析表達(dá)式
(1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法
11.函數(shù)(小)值
1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值
2利用圖象求函數(shù)的(小)值
3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)6
數(shù)學(xué)是利用符號(hào)語(yǔ)言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門(mén)學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識(shí)點(diǎn),希望你喜歡。
一、集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.
2、集合的.中元素的三個(gè)特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性
說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.
3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意。撼S脭(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R
關(guān)于屬于的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上.
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.
①語(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類(lèi):
1.有限集 含有有限個(gè)元素的集合
2.無(wú)限集 含有無(wú)限個(gè)元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.包含關(guān)系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.相等關(guān)系(55,且55,則5=5)
實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同
結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、 任何一個(gè)集合是它本身的子集.AA
、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那么 AC
、 如果AB 同時(shí) BA 那么A=B
3. 不含任何元素的集合叫做空集,記為
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的運(yùn)算
1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.
3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集與補(bǔ)集
(1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)7
一、集合及其表示
1、集合的含義:
“集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。
所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱(chēng)集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱(chēng)為這個(gè)集合的元素。
2、集合的表示
通常用大寫(xiě)字母表示集合,用小寫(xiě)字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負(fù)整數(shù)集(即自然數(shù)集)N正整數(shù)集N_或N+
整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
集合的表示方法:列舉法與描述法。
、倭信e法:{a,b,c……}
、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
③語(yǔ)言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個(gè)特性
(1)無(wú)序性
指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復(fù),A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)8
知識(shí)點(diǎn)總結(jié)
本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱(chēng)變換、翻折變換。
常見(jiàn)考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫(xiě)成開(kāi)區(qū)間,不必考慮端點(diǎn)問(wèn)題。
3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開(kāi)。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)9
高一數(shù)學(xué)必修一知識(shí)點(diǎn)
指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand).
當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長(zhǎng),S=6a2,V=a3
4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)
人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線(xiàn)的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺(tái):
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線(xiàn)為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。
(6)圓臺(tái):
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線(xiàn)交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線(xiàn)為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀(guān)圖——斜二測(cè)畫(huà)法
斜二測(cè)畫(huà)法特點(diǎn):
、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(zhǎng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)10
一:函數(shù)模型及其應(yīng)用
本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識(shí)點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。
1、常見(jiàn)的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對(duì)數(shù)函數(shù)模型、分段函數(shù)模型等。
2、用函數(shù)解應(yīng)用題的基本步驟是:
(1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);
。2)設(shè)量建模;
。3)求解函數(shù)模型;
(4)簡(jiǎn)要回答實(shí)際問(wèn)題。
常見(jiàn)考法:
本節(jié)知識(shí)在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問(wèn)題,屬于拔高題,難度較大。
誤區(qū)提醒:
1、求解應(yīng)用性問(wèn)題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問(wèn)題理解自變量的取值范圍。
2、求解應(yīng)用性問(wèn)題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語(yǔ)言轉(zhuǎn)化成數(shù)學(xué)語(yǔ)言,建立相應(yīng)的數(shù)學(xué)模型。
【典型例題】
例1:
(1)某種儲(chǔ)蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利)。
(2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫(xiě)出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。
例2:
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位是萬(wàn)元)
。1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式。
。2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得利潤(rùn),其利潤(rùn)約為多少萬(wàn)元。(精確到1萬(wàn)元)。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)11
知識(shí)點(diǎn)1
一、集合有關(guān)概念
1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。
2、集合的中元素的三個(gè)特性:
1、元素的確定性;
2、元素的互異性;
3、元素的無(wú)序性
說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。
。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
2、集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
關(guān)于“屬于”的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。
①語(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類(lèi):
1、有限集含有有限個(gè)元素的集合
2、無(wú)限集含有無(wú)限個(gè)元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知識(shí)點(diǎn)2
I、定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)
則稱(chēng)y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II、二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x—h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。
IV、拋物線(xiàn)的性質(zhì)
1、拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=—b/2a。對(duì)稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(—b/2a,(4ac—b^2)/4a)
當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
知識(shí)點(diǎn)3
1、拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)
x=—b/2a。
對(duì)稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(—b/2a,(4ac—b’2)/4a)
當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。
5、常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)
Δ=b’2—4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
Δ=b’2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
Δ=b’2—4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
知識(shí)點(diǎn)4
對(duì)數(shù)函數(shù)
對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:
可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)圖形,因?yàn)樗鼈兓榉春瘮?shù)。
。1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。
。2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。
。3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。
。4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。
(5)顯然對(duì)數(shù)函數(shù)。
知識(shí)點(diǎn)5
方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。
3、函數(shù)零點(diǎn)的求法:
。1)(代數(shù)法)求方程的實(shí)數(shù)根;
。2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。
4、二次函數(shù)的零點(diǎn):
(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。
(2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
。3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
【函數(shù)的應(yīng)用】
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
1(代數(shù)法)求方程的實(shí)數(shù)根;
2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù).
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).
1.最新高一數(shù)學(xué)知識(shí)點(diǎn)5篇總結(jié)
2.最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5篇
3.精選最新高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納5篇
4.最全高一數(shù)學(xué)知識(shí)點(diǎn)歸納5篇
5.高一數(shù)學(xué)知識(shí)點(diǎn)大全5篇
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)13
空間直角坐標(biāo)系定義:
過(guò)定點(diǎn)O,作三條互相垂直的數(shù)軸,它們都以O(shè)為原點(diǎn)且一般具有相同的長(zhǎng)度單位、這三條軸分別叫做x軸(橫軸)、y軸(縱軸)、z軸(豎軸);統(tǒng)稱(chēng)坐標(biāo)軸、通常把x軸和y軸配置在水平面上,而z軸則是鉛垂線(xiàn);它們的正方向要符合右手規(guī)則,即以右手握住z軸,當(dāng)右手的四指從正向x軸以π/2角度轉(zhuǎn)向正向y軸時(shí),大拇指的指向就是z軸的正向,這樣的三條坐標(biāo)軸就組成了一個(gè)空間直角坐標(biāo)系,點(diǎn)O叫做坐標(biāo)原點(diǎn)。
1、右手直角坐標(biāo)系
①右手直角坐標(biāo)系的建立規(guī)則:x軸、y軸、z軸互相垂直,分別指向右手的拇指、食指、中指;
②已知點(diǎn)的坐標(biāo)P(x,y,z)作點(diǎn)的方法與步驟(路徑法):
沿x軸正方向(x>0時(shí))或負(fù)方向(x<0時(shí))移動(dòng)|x|個(gè)單位,再沿y軸正方向(y>0時(shí))或負(fù)方向(y<0時(shí))移動(dòng)|y|個(gè)單位,最后沿x軸正方向(z>0時(shí))或負(fù)方向(z<>
、垡阎c(diǎn)的位置求坐標(biāo)的方法:
過(guò)P作三個(gè)平面分別與x軸、y軸、z軸垂直于A,B,C,點(diǎn)A,B,C在x軸、y軸、z軸的坐標(biāo)分別是a,b,c則(a,b,c)就是點(diǎn)P的坐標(biāo)。
2、在x軸上的點(diǎn)分別可以表示為(a,0,0),(0,b,0),(0,0,c)。
在坐標(biāo)平面xOy,xOz,yOz內(nèi)的點(diǎn)分別可以表示為(a,b,0),(a,0,c),(0,b,c)。
3、點(diǎn)P(a,b,c)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(a,-b,-c);
點(diǎn)P(a,b,c)關(guān)于y軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(-a,b,-c);
點(diǎn)P(a,b,c)關(guān)于z軸的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(-a,-b,c);
點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面xOy的對(duì)稱(chēng)點(diǎn)為(a,b,-c);
點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面xOz的對(duì)稱(chēng)點(diǎn)為(a,-b,c);
點(diǎn)P(a,b,c)關(guān)于坐標(biāo)平面yOz的對(duì)稱(chēng)點(diǎn)為(-a,b,c);
點(diǎn)P(a,b,c)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)(-a,-b,-c)。
4、已知空間兩點(diǎn)P(x1,y1,z1),Q(x2,y2,z2),則線(xiàn)段PQ的中點(diǎn)坐標(biāo)為
5、空間兩點(diǎn)間的距離公式
已知空間兩點(diǎn)P(x1,y1,z1),Q(x2,y2,z2),則兩點(diǎn)的距離為特殊點(diǎn)A(x,y,z)到原點(diǎn)O的距離為
6、以C(x0,y0,z0)為球心,r為半徑的球面方程為
特殊地,以原點(diǎn)為球心,r為半徑的球面方程為x2+y2+z2=r2
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)14
集合間的基本關(guān)系
1.子集,A包含于B,記為:,有兩種可能
(1)A是B的一部分,
(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之:集合A不包含于集合B,記作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的真子集。
2.真子集:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。
例:集合共有個(gè)子集。(13年高考第4題,簡(jiǎn)單)
練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問(wèn)A集合有多少個(gè)子集,并寫(xiě)出子集,B集合有多少個(gè)非空真子集,并將其寫(xiě)出來(lái)。
解析:
集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。
集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫(xiě)出來(lái)。
此處這么羅嗦主要是為了讓同學(xué)們注意寫(xiě)的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場(chǎng)賣(mài)菜算了,絕對(duì)能飛速提高的,那學(xué)數(shù)學(xué)也沒(méi)什么必要了。
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)15
高一數(shù)學(xué)集合有關(guān)概念
集合的含義
集合的中元素的三個(gè)特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3。集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語(yǔ)言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類(lèi):
有限集含有有限個(gè)元素的集合
無(wú)限集含有無(wú)限個(gè)元素的集合
空集不含任何元素的集合例:{x|x2=—5}
【高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15
高一數(shù)學(xué)必修五的知識(shí)點(diǎn)總結(jié)03-30
高一數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)04-11
高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)09-08
高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)11-08
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)12-07
高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)08-09
有關(guān)高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)04-11