1. <rp id="zsypk"></rp>

      2. 函數(shù)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2024-09-18 11:33:21 知識(shí)點(diǎn)總結(jié) 我要投稿

        函數(shù)知識(shí)點(diǎn)總結(jié)(精華15篇)

          總結(jié)是對(duì)某一特定時(shí)間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它能夠給人努力工作的動(dòng)力,快快來寫一份總結(jié)吧?偨Y(jié)你想好怎么寫了嗎?下面是小編精心整理的函數(shù)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

        函數(shù)知識(shí)點(diǎn)總結(jié)(精華15篇)

        函數(shù)知識(shí)點(diǎn)總結(jié)1

          課題

          3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

          教學(xué)目標(biāo)

          1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式

          教學(xué)重點(diǎn)

          掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

          教學(xué)難點(diǎn)

          掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的.概念及其圖形和性質(zhì)

          教學(xué)方法

          講練結(jié)合法

          教學(xué)過程

         。↖)知識(shí)要點(diǎn)(見下表:)

          第三章第29頁(yè)函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無無無b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

          第三章第30頁(yè)b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對(duì)稱軸x,頂點(diǎn)(,)

          2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解

          例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過點(diǎn)Q(3,3)

         。3)拋物線對(duì)稱軸是x2,它在x軸上截出的線段AB長(zhǎng)為2且拋物線過點(diǎn)(1,7)。2,

          解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為

          abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得

          a2,故y2(x1)252x24x3

         。3)∵拋物線對(duì)稱軸為x2;

          ∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對(duì)稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

          ∴所求二次函數(shù)為yx24x2,

          2,0)、B(222,0)

          2)(x22)a(x2)22a,將(1,7)

          5),例2:二次函數(shù)的圖像過點(diǎn)(0,8),(1,(4,0)

         。1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

          例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

          113x1(x)2,知函數(shù)的圖像開口向上,對(duì)稱軸為x

          224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

        函數(shù)知識(shí)點(diǎn)總結(jié)2

          奇函數(shù)和偶函數(shù)的定義

          奇函數(shù):如果函數(shù)f(x)的.定義域中任意x有f(—x)=—f(x),則函數(shù)f(x)稱為奇函數(shù)。

          偶數(shù)函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=f(x),則函數(shù)f(x)稱為偶數(shù)函數(shù)。

          性質(zhì)

          奇函數(shù)性質(zhì):

          1、圖象關(guān)于原點(diǎn)對(duì)稱

          2、滿足f(—x)= — f(x)

          3、關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致

          4、如果奇函數(shù)在x=0上有定義,那么有f(0)=0

          5、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)

          偶函數(shù)性質(zhì):

          1、圖象關(guān)于y軸對(duì)稱

          2、滿足f(—x)= f(x)

          3、關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反

          4、如果一個(gè)函數(shù)既是奇函數(shù)有是偶函數(shù),那么有f(x)=0

          5、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)

          常用運(yùn)算方法

          奇函數(shù)±奇函數(shù)=奇函數(shù)

          偶函數(shù)±偶函數(shù)=偶函數(shù)

          奇函數(shù)×奇函數(shù)=偶函數(shù)

          偶函數(shù)×偶函數(shù)=偶函數(shù)

          奇函數(shù)×偶函數(shù)=奇函數(shù)

          證明方法

          設(shè)f(x),g(x)為奇函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數(shù)加奇函數(shù)還是奇函數(shù);

          若f(x),g(x)為偶函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數(shù)加偶函數(shù)還是偶函數(shù)。

        函數(shù)知識(shí)點(diǎn)總結(jié)3

          1.常量和變量

          在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

          2.函數(shù)

          設(shè)在一個(gè)變化過程中有兩個(gè)變量x與y,如果對(duì)于x在某一范圍的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù).

          3.自變量的取值范圍

          (1)整式:自變量取一切實(shí)數(shù).(2)分式:分母不為零.

          (3)偶次方根:被開方數(shù)為非負(fù)數(shù).

          (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

          4.函數(shù)值

          對(duì)于自變量在取值范圍內(nèi)的一個(gè)確定的值,如當(dāng)x=a時(shí),函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值,叫做x=a時(shí)的函數(shù)值.

          5.函數(shù)的表示法

          (1)解析法;(2)列表法;(3)圖象法.

          6.函數(shù)的圖象

          把自變量x的一個(gè)值和函數(shù)y的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

          (1)寫出函數(shù)解析式及自變量的取值范圍;

          (2)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值;

          (3)描點(diǎn):以表中對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn);

          (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點(diǎn)連接起來.

          7.一次函數(shù)

          (1)一次函數(shù)

          如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

          特別地,當(dāng)b=0時(shí),一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時(shí),y叫做x的正比例函數(shù).

          (2)一次函數(shù)的圖象

          一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點(diǎn)和點(diǎn)的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點(diǎn)的直線.需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價(jià)于“一次函數(shù)y=kx+b(k≠0)的圖象”,因?yàn)檫有直線y=m(此時(shí)k=0)和直線x=n(此時(shí)k不存在),它們不是一次函數(shù)圖象.

          (3)一次函數(shù)的性質(zhì)

          當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小.直線y=kx+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為.

          (4)用函數(shù)觀點(diǎn)看方程(組)與不等式

         、偃魏我辉淮畏匠潭伎梢赞D(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時(shí),求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點(diǎn)的橫坐標(biāo).

         、诙淮畏匠探M對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)值相等,以及這兩個(gè)函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點(diǎn)的坐標(biāo).

         、廴魏我辉淮尾坏仁蕉伎梢赞D(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時(shí),求自變量相應(yīng)的取值范圍.

          8.反比例函數(shù)(1)反比例函數(shù)

         。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

          (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

          (3)反比例函數(shù)的性質(zhì)

         、佼(dāng)k>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的.增大而減。

          ②當(dāng)k<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

         、鄯幢壤瘮(shù)圖象關(guān)于直線y=±x對(duì)稱,關(guān)于原點(diǎn)對(duì)稱.

          (4)k的兩種求法

          ①若點(diǎn)(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

          若雙曲線上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

          (5)正比例函數(shù)和反比例函數(shù)的交點(diǎn)問題

          若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時(shí),兩函數(shù)圖象無交點(diǎn);

          當(dāng)k1k2>0時(shí),兩函數(shù)圖象有兩個(gè)交點(diǎn),坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對(duì)稱.

          1.二次函數(shù)

          如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

          幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

          2.二次函數(shù)的圖象

          二次函數(shù)y=ax2+bx+c的圖象是對(duì)稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

          3.二次函數(shù)的性質(zhì)

          二次函數(shù)y=ax2+bx+c的性質(zhì)對(duì)應(yīng)在它的圖象上,有如下性質(zhì):

          (1)拋物線y=ax2+bx+c的頂點(diǎn)是,對(duì)稱軸是直線,頂點(diǎn)必在對(duì)稱軸上;

          (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<時(shí),y隨x的增大而減;當(dāng)x>時(shí),y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對(duì)于拋物線上的任意一點(diǎn)(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時(shí),y隨x的增大而減;當(dāng)x=時(shí),y有最大值;

          (3)拋物線y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

          (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點(diǎn)的情況:

         。0時(shí),拋物線y=ax2+bx+c與x軸沒有公共點(diǎn).=0時(shí),拋物線y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線的頂點(diǎn);當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標(biāo)分別是和,這兩點(diǎn)的距離為;當(dāng)當(dāng)4.拋物線的平移

          拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.

        函數(shù)知識(shí)點(diǎn)總結(jié)4

          一、二次函數(shù)概念:

          a0)b,c是常數(shù)

          1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).

          2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

          ⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).

          ⑵a,二、二次函數(shù)的基本形式

          1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對(duì)值越大,拋物線的開口越小。

          a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減;x0時(shí),y有最小值0.x0時(shí),y隨x的增大而減。粁0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.

          2.yax2c的性質(zhì):上加下減。

          a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減小;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.

          3.yaxh的性質(zhì):左加右減。

          2a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減小;xh時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.

          4.yaxhk的性質(zhì):

          a的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減;xh時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.

          三、二次函數(shù)圖象的平移

          1.平移步驟:

          方法一:

          ⑴將拋物線解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;

         、票3謷佄锞yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:

          向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

          畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).

          六、二次函數(shù)yax2bxc的性質(zhì)

          b4acb2b1.當(dāng)a0時(shí),拋物線開口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.

          2a4a2a當(dāng)xbbb時(shí),y隨x的.增大而減小;當(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.

          4ab4acb2bb2.當(dāng)a0時(shí),拋物線開口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減小;當(dāng)x時(shí),y有最大值

          2a2a4a

          七、二次函數(shù)解析式的表示方法

          1.一般式:yax2bxc(a,b,c為常數(shù),a0);

          2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);

          3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).

          注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.

          八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系

          1.二次項(xiàng)系數(shù)a

          二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.

         、女(dāng)a0時(shí),拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;

         、飘(dāng)a0時(shí),拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.

          總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大。

          2.一次項(xiàng)系數(shù)b

          在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.

         、旁赼0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a

          總結(jié)起來,在a確定的前提下,b決定了拋物線對(duì)稱軸的位置.

          ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):

          3.常數(shù)項(xiàng)c

          ⑴當(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;

         、飘(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;

         、钱(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點(diǎn)的位置.

          b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

          根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问,才能使解題簡(jiǎn)便.一般來說,有如下幾種情況:

          1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;

          2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(。┲,一般選用頂點(diǎn)式;

          3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;

          4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.

          九、二次函數(shù)圖象的對(duì)稱

          二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)

          1.關(guān)于x軸對(duì)稱

          yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;

          yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;

          2.關(guān)于y軸對(duì)稱

          yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;

          22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;

          3.關(guān)于原點(diǎn)對(duì)稱

          yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;

          4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)

          2222b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;

          2a22yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.n對(duì)稱

          5.關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對(duì)稱的性質(zhì),顯然無論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式.

          十、二次函數(shù)與一元二次方程:

          1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):

          一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):

          ①當(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

          b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.

          a2

         、诋(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);

         、郛(dāng)0時(shí),圖象與x軸沒有交點(diǎn).

          1"當(dāng)a0時(shí),圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;

          2"當(dāng)a0時(shí),圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.

          2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

          3.二次函數(shù)常用解題方法總結(jié):

          ⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;

         、魄蠖魏瘮(shù)的最大(小)值需要利用配方法將二次函數(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;

          ⑶根據(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;

          ⑷二次函數(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).

         、膳c二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:

          0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

          y=3x2y=3(x-2)2y=x22

          y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用

          剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤(rùn)

          最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

        函數(shù)知識(shí)點(diǎn)總結(jié)5

          二次函數(shù)概念

          一般地,把形如y=ax2+bx+c(其中a、b、c是常數(shù),a≠0,b,c可以為0)的函數(shù)叫做二次函數(shù),其中a稱為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù),c為常數(shù)項(xiàng)。x為自變量,y為因變量。等號(hào)右邊自變量的最高次數(shù)是2。二次函數(shù)圖像是軸對(duì)稱圖形。

          注意:“變量”不同于“自變量”,不能說“二次函數(shù)是指變量的最高次數(shù)為二次的多項(xiàng)式函數(shù)”!拔粗獢(shù)”只是一個(gè)數(shù)(具體值未知,但是只取一個(gè)值),“變量”可在實(shí)數(shù)范圍內(nèi)任意取值。在方程中適用“未知數(shù)”的概念(函數(shù)方程、微分方程中是未知函數(shù),但不論是未知數(shù)還是未知函數(shù),一般都表示一個(gè)數(shù)或函數(shù)——也會(huì)遇到特殊情況),但是函數(shù)中的字母表示的是變量,意義已經(jīng)有所不同。從函數(shù)的定義也可看出二者的差別,如同函數(shù)不等于函數(shù)的關(guān)系。

          二次函數(shù)公式大全

          二次函數(shù)

          I.定義與定義表達(dá)式

          一般地,自變量x和因變量y之間存在如下關(guān)系:

          y=ax2+bx+c(a,b,c為常數(shù),a≠0)

          則稱y為x的.二次函數(shù)。

          二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

          II.二次函數(shù)的三種表達(dá)式

          一般式:y=ax2;+bx+c(a,b,c為常數(shù),a≠0)

          頂點(diǎn)式:y=a(x-h)2;+k [拋物線的頂點(diǎn)P(h,k)]

          交點(diǎn)式:y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

          III.二次函數(shù)的圖象

          在平面直角坐標(biāo)系中作出二次函數(shù)y=x??的圖象,

          可以看出,二次函數(shù)的圖象是一條拋物線。

          IV.拋物線的性質(zhì)

          1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

          x = -b/2a。

          對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

          特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

          2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

          P [ -b/2a ,(4ac-b2;)/4a ]。

          當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b2-4ac=0時(shí),P在x軸上。

          3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

          當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

          |a|越大,則拋物線的開口越小。

          4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

          當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

          當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

          5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

          拋物線與y軸交于(0,c)

          6.拋物線與x軸交點(diǎn)個(gè)數(shù)

          Δ= b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

          Δ= b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

          Δ= b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

          V.二次函數(shù)與一元二次方程

          特別地,二次函數(shù)(以下稱函數(shù))y=ax2;+bx+c,

          當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

          即ax2;+bx+c=0

          此時(shí),函數(shù)圖象與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

          函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

        函數(shù)知識(shí)點(diǎn)總結(jié)6

          教學(xué)目標(biāo):

          (1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

          (2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

          教學(xué)重點(diǎn):能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

          教學(xué)難點(diǎn):求出函數(shù)的自變量的取值范圍。

          教學(xué)過程:

          一、問題引新

          1.設(shè)矩形花圃的垂直于墻(墻長(zhǎng)18)的一邊AB的長(zhǎng)為_m,先取_的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的'空格中,

          AB長(zhǎng)_(m) 1 2 3 4 5 6 7 8 9

          BC長(zhǎng)(m) 12

          面積y(m2) 48

          2._的值是否可以任意取?有限定范圍嗎?

          3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,教師可提出問題,(1)當(dāng)AB=_m時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少? y=_(20-2_)

          二、提出問題,解決問題

          1、引導(dǎo)學(xué)生看書第二頁(yè)問題一、二

          2、觀察概括

          y=6_2 d= n /2 (n-3) y= 20 (1-_)2

          以上函數(shù)關(guān)系式有什么共同特點(diǎn)? (都是含有二次項(xiàng))

          3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

          4、課堂練習(xí)

          (1) (口答)下列函數(shù)中,哪些是二次函數(shù)?

          (1)y=5_+1 (2)y=4_2-1

          (3)y=2_3-3_2 (4)y=5_4-3_+1

          (2).P3練習(xí)第1,2題。

          五、小結(jié)敘述二次函數(shù)的定義.

          第二課時(shí):26.1二次函數(shù)(2)

          教學(xué)目標(biāo):

          1、使學(xué)生會(huì)用描點(diǎn)法畫出y=a_2的圖象,理解拋物線的有關(guān)概念。

          2、使學(xué)生經(jīng)歷、探索二次函數(shù)y=a_2圖象性質(zhì)的過程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維習(xí)慣。

          教學(xué)重點(diǎn):使學(xué)生理解拋物線的有關(guān)概念,會(huì)用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象

          教學(xué)難點(diǎn):用描點(diǎn)法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質(zhì)。

        函數(shù)知識(shí)點(diǎn)總結(jié)7

          1、定義與定義表達(dá)式

          一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a

          二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

          2、二次函數(shù)的三種表達(dá)式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點(diǎn)式:y=a(x-h)^2+k [拋物線的頂點(diǎn)p(h,k)]

          交點(diǎn)式:y=a(x-x)(x-x ) [僅限于與x軸有交點(diǎn)a(x,0)和b(x,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

          3、二次函數(shù)的圖像

          在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          4、拋物線的`性質(zhì)

          1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x = -b/2a。

          對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)p。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

          2.拋物線有一個(gè)頂點(diǎn)p,坐標(biāo)為:p ( -b/2a,(4ac-b^2)/4a )當(dāng)-b/2a=0時(shí),p在y軸上;當(dāng)δ= b^2-4ac=0時(shí),p在x軸上。

          3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

          當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a

          4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

          當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

          當(dāng)a與b異號(hào)時(shí)(即ab

          5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

          拋物線與y軸交于(0,c)

          6.拋物線與x軸交點(diǎn)個(gè)數(shù)

          δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

          δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

          δ= b^2-4ac

          5、二次函數(shù)與一元二次方程

          特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

          當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

          此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

          1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸:

          當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

          當(dāng)h

          當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2 +k的圖象;

          當(dāng)h>0,k

          當(dāng)h0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

          當(dāng)h

          因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

          2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a

          3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a

          4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

          (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

          (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

          (a≠0)的兩根.這兩點(diǎn)間的距離ab=|x-x|

          當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

          當(dāng)△0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a

          5.拋物線y=ax^2+bx+c的最值:如果a>0(a

          頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

          y=ax^2+bx+c(a≠0).

          (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

          (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0).

          7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

        函數(shù)知識(shí)點(diǎn)總結(jié)8

          誘導(dǎo)公式的本質(zhì)

          所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

          常用的誘導(dǎo)公式

          公式一: 設(shè)為任意角,終邊相同的角的.同一三角函數(shù)的值相等:

          sin(2k)=sin kz

          cos(2k)=cos kz

          tan(2k)=tan kz

          cot(2k)=cot kz

          公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

          sin()=-sin

          cos()=-cos

          tan()=tan

          cot()=cot

          公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

          sin(-)=-sin

          cos(-)=cos

          tan(-)=-tan

          cot(-)=-cot

          公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

          sin()=sin

          cos()=-cos

          tan()=-tan

          cot()=-cot

        函數(shù)知識(shí)點(diǎn)總結(jié)9

          高一數(shù)學(xué)第三章函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié)

          一、方程的根與函數(shù)的零點(diǎn)

          1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

          2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實(shí)數(shù)根,亦即函數(shù)

          yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

          即:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

          3、函數(shù)零點(diǎn)的求法:

          1(代數(shù)法)求方程f(x)0的實(shí)數(shù)根;○

          2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象○

          聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

          零點(diǎn)存在性定理:如果函數(shù)y=f(x)在區(qū)間〔a,b〕上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。先判定函數(shù)單調(diào)性,然后證明是否有f(a)f(b)第三章函數(shù)的應(yīng)用習(xí)題

          一、選擇題

          1.下列函數(shù)有2個(gè)零點(diǎn)的是()

          222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計(jì)算3x3x80在x(1,2)內(nèi)的根的過程中得:f(1)0,f(1.5)0,

          f(1.25)0,則方程的根落在區(qū)間()

          A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

          3.若方程axxa0有兩個(gè)解,則實(shí)數(shù)a的取值范圍是A、(1,)B、(0,1)C、(0,)D、

          4.函數(shù)f(x)=lnx-2x的零點(diǎn)所在的大致區(qū)間是()A.(1,2)B.2,eC.e,3D.e,

          5.已知方程x3x10僅有一個(gè)正零點(diǎn),則此零點(diǎn)所在的區(qū)間是()

          A.(3,4)B.(2,3)C.(1,2)D.(0,1)

          6.函數(shù)f(x)lnx2x6的零點(diǎn)落在區(qū)間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

          7.已知函數(shù)

          fx的圖象是不間斷的,并有如下的對(duì)應(yīng)值表:x1234567fx8735548那么函數(shù)在區(qū)間(1,6)上的零點(diǎn)至少有()個(gè)A.5B.4C.3D.28.方程2x1x5的解所在的區(qū)間是A(0,1)B(1,2)C(2,3)D(3,4)

          9.方程4x35x60的根所在的區(qū)間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)

          10.已知f(x)2x22x,則在下列區(qū)間中,f(x)0有實(shí)數(shù)解的是()

          )

         。ǎ

          ()

         。(A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的'一個(gè)根所在的區(qū)間為()

          xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

          x12x根的個(gè)數(shù)為()

          A、0B、1C、2D、3二、填空題

          13.下列函數(shù):1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個(gè)零點(diǎn)的函數(shù)的序號(hào)是。

          x214.若方程3x2的實(shí)根在區(qū)間m,n內(nèi),且m,nZ,nm1,

          x則mn.

          222f(x)(x1)(x2)(x2x3)的零點(diǎn)是15、函數(shù)(必須寫全所有的零點(diǎn))。

          擴(kuò)展閱讀:高中數(shù)學(xué)必修一第三章函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié)

          第三章函數(shù)的應(yīng)用

          一、方程的根與函數(shù)的零點(diǎn)

          1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做函數(shù)yf(x)(xD)的零點(diǎn)。

          2、函數(shù)零點(diǎn)的意義:函數(shù)yf(x)的零點(diǎn)就是方程f(x)0實(shí)數(shù)根,亦即函數(shù)

          yf(x)的圖象與x軸交點(diǎn)的橫坐標(biāo)。

          即:方程f(x)0有實(shí)數(shù)根函數(shù)yf(x)的圖象與x軸有交點(diǎn)函數(shù)yf(x)有零點(diǎn).

          3、函數(shù)零點(diǎn)的求法:

          1(代數(shù)法)求方程f(x)0的實(shí)數(shù)根;○

          2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象聯(lián)系起來,○

          并利用函數(shù)的性質(zhì)找出零點(diǎn).

          4、基本初等函數(shù)的零點(diǎn):

         、僬壤瘮(shù)ykx(k0)僅有一個(gè)零點(diǎn)。

          k(k0)沒有零點(diǎn)。x③一次函數(shù)ykxb(k0)僅有一個(gè)零點(diǎn)。

         、诜幢壤瘮(shù)y④二次函數(shù)yax2bxc(a0).

         。1)△>0,方程ax2bxc0(a0)有兩不等實(shí)根,二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

          (2)△=0,方程ax2bxc0(a0)有兩相等實(shí)根,二次函數(shù)的圖象與x軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

          (3)△<0,方程ax2bxc0(a0)無實(shí)根,二次函數(shù)的圖象與x軸無交點(diǎn),二次函數(shù)無零點(diǎn).

          ⑤指數(shù)函數(shù)ya(a0,且a1)沒有零點(diǎn)。⑥對(duì)數(shù)函數(shù)ylogax(a0,且a1)僅有一個(gè)零點(diǎn)1.

         、邇绾瘮(shù)yx,當(dāng)n0時(shí),僅有一個(gè)零點(diǎn)0,當(dāng)n0時(shí),沒有零點(diǎn)。

          5、非基本初等函數(shù)(不可直接求出零點(diǎn)的較復(fù)雜的函數(shù)),函數(shù)先把fx轉(zhuǎn)化成,這另fx0,再把復(fù)雜的函數(shù)拆分成兩個(gè)我們常見的函數(shù)y1,y2(基本初等函數(shù))個(gè)函數(shù)圖像的交點(diǎn)個(gè)數(shù)就是函數(shù)fx零點(diǎn)的個(gè)數(shù)。

          6、選擇題判斷區(qū)間a,b上是否含有零點(diǎn),只需滿足fafb0。Eg:試判斷方程xx2x10在區(qū)間[0,2]內(nèi)是否有實(shí)數(shù)解?并說明理由。

          1

          42x7、確定零點(diǎn)在某區(qū)間a,b個(gè)數(shù)是唯一的條件是:①fx在區(qū)間上連續(xù),且fafb0②在區(qū)間a,b上單調(diào)。Eg:求函數(shù)f(x)2xlg(x1)2的零點(diǎn)個(gè)數(shù)。

          8、函數(shù)零點(diǎn)的性質(zhì):

          從“數(shù)”的角度看:即是使f(x)0的實(shí)數(shù);

          從“形”的角度看:即是函數(shù)f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo);

          若函數(shù)f(x)的圖象在xx0處與x軸相切,則零點(diǎn)x0通常稱為不變號(hào)零點(diǎn);若函數(shù)f(x)的圖象在xx0處與x軸相交,則零點(diǎn)x0通常稱為變號(hào)零點(diǎn).

          Eg:一元二次方程根的分布討論

          一元二次方程根的分布的基本類型

          2axbxc0(a0)的兩實(shí)根為x1,x2,且x1x2.設(shè)一元二次方程

          k為常數(shù),則一元二次方程根的k分布(即x1,x2相對(duì)于k的位置)或根在區(qū)間上的

          分布主要有以下基本類型:

          表一:(兩根與0的大小比較)

          分布情況兩個(gè)負(fù)根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負(fù)根即一個(gè)根小于0,一個(gè)大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結(jié)論0b02af000b02af00f00

          大致圖象(a0)得出的結(jié)論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結(jié)a論)

          af00表二:(兩根與k的大小比較)

          分布情況兩根都小于k即兩根都大于k即一個(gè)根小于k,一個(gè)大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結(jié)論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結(jié)論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結(jié)a論)a0)afk0分布情況大致圖象(得出的結(jié)論表三:(根在區(qū)間上的分布)

          兩根都在m,n內(nèi)兩根有且僅有一根在m,n一根在m,n內(nèi),另一根在p,q內(nèi)(有兩種情況,只畫了一種)內(nèi),mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

          大致圖象(a0)得出的結(jié)論0fm0fn0bmn2a綜合結(jié)論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論

          fmfn0Eg:(1)關(guān)于x的方程x22(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于1,一個(gè)小于1,求m的取值范圍?

          (2)關(guān)于x的方程x2(m3)x2m140有兩實(shí)根在[0,4]內(nèi),求m的取值范圍?

          2(3)關(guān)于x的方程mx2(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍?

          9、二分法的定義

          對(duì)于在區(qū)間[a,b]上連續(xù)不斷,且滿足f(a)f(b)0的函數(shù)

          yf(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,

          使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.

          10、給定精確度ε,用二分法求函數(shù)f(x)零點(diǎn)近似值的步驟:(1)確定區(qū)間[a,b],驗(yàn)證f(a)f(b)0,給定精度;(2)求區(qū)間(a,b)的中點(diǎn)x1;(3)計(jì)算f(x1):

         、偃鬴(x1)=0,則x1就是函數(shù)的零點(diǎn);

          ②若f(a)f(x1)14、根據(jù)散點(diǎn)圖設(shè)想比較接近的可能的函數(shù)模型:一次函數(shù)模型:f(x)kxb(k0);二次函數(shù)模型:g(x)ax2bxc(a0);冪函數(shù)模型:h(x)axb(a0);

          指數(shù)函數(shù)模型:l(x)abxc(a0,b>0,b1)

          利用待定系數(shù)法求出各解析式,并對(duì)各模型進(jìn)行分析評(píng)價(jià),選出合適的函數(shù)模型

        函數(shù)知識(shí)點(diǎn)總結(jié)10

          1.①與(0°≤<360°)終邊相同的角的集合(角與角的終邊重合):|k360,kZ

         、诮K邊在x軸上的角的集合:|k180,kZ③終邊在y軸上的角的集合:|k18090,kZ

         、芙K邊在坐標(biāo)軸上的角的集合:|k90,kZ

          ⑤終邊在y=x軸上的角的集合:|k18045,kZ⑥終邊在yx軸上的角的集合:|k18045,kZ

         、呷艚桥c角的終邊關(guān)于x軸對(duì)稱,則角與角的關(guān)系:360k

         、嗳艚桥c角的終邊關(guān)于y軸對(duì)稱,則角與角的關(guān)系:360k180

         、崛艚桥c角的終邊在一條直線上,則角與角的關(guān)系:180k

         、饨桥c角的終邊互相垂直,則角與角的關(guān)系:360k902.角度與弧度的互換關(guān)系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧長(zhǎng)公式:l||r.扇形面積公式:s12扇形2lr12||r

          2、三角函數(shù)在各象限的符號(hào):(一全二正弦,三切四余弦)

          yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切

          3.三角函數(shù)的定義域:

          三角函數(shù)定義域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2

          f(x)cotxx|xR且xk,kZ

          4、同角三角函數(shù)的基本關(guān)系式:

          sincostan

          cossincot

          tancot1sin2cos217、誘導(dǎo)公式:

          把k2“奇變偶不變,符號(hào)看象限”的三角函數(shù)化為的三角函數(shù),概括為:三角函數(shù)的公式:

          (一)基本關(guān)系

          公式組一sinxcscx=1tanx=sinx22

          cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x

          公式組二公式組三

          sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx

          公式組四公式組五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx

          cot(2x)cotx(二)角與角之間的互換

          cos()coscossinsincos()coscossinsin

          公式組六

          sin(x)sinxcos(x)cosxtan(x)tanx

          cot(x)cotxsin22sincos-2-

          cos2cos2sin2cos112sin

          2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan

          tantan1tantan

          tan()

          5.正弦、余弦、正切、余切函數(shù)的圖象的性質(zhì):

          ysinxycosxytanxycotxyAsinx(A、>0)定義域RR值域周期性奇偶性單調(diào)性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函數(shù)A,A22奇函數(shù)2當(dāng)當(dāng)0,非奇非偶奇函數(shù)偶函數(shù)奇函數(shù)0,上為上為上為增函上為增函數(shù);上為增增函數(shù);增函數(shù);數(shù);上為減函數(shù)函數(shù);上為減函數(shù)上為減上為減上為減函數(shù)函數(shù)函數(shù)注意:①ysinx與ysinx的單調(diào)性正好相反;ycosx與ycosx的單調(diào)性也同樣相反.一般地,若yf(x)在[a,b]上遞增(減),則yf(x)在[a,b]上遞減(增).②ysinx與的ycosx周期是.

          ▲y

          Ox

          0)的周期T③ysin(x)或yx2cos(x)(2.

          ytan的周期為2(TT2,如圖,翻折無效).

         、躽sin(x)的對(duì)稱軸方程是xk2(

          kZ),對(duì)稱中心(

          12k,0);

          ycos(x)的`對(duì)稱軸方程是xk(

          kZ),對(duì)稱中心(k,0);

          yatn(

          x)的對(duì)稱中心(

          k2,0).

          三角函數(shù)圖像

          數(shù)y=Asin(ωx+φ)的振幅|A|,周期T2||,頻率f1T||2,相位x;初

          相(即當(dāng)x=0時(shí)的相位).(當(dāng)A>0,ω>0時(shí)以上公式可去絕對(duì)值符號(hào)),

          由y=sinx的圖象上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)伸長(zhǎng)(當(dāng)|A|>1)或縮短(當(dāng)0<|A|<1)到原來的|A|倍,得到y(tǒng)=Asinx的圖象,叫做振幅變換或叫沿y軸的伸縮變換.(用y/A替換y)

          由y=sinx的圖象上的點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)(0<|ω|<1)或縮短(|ω|>1)到原來的|1|倍,得到y(tǒng)=sinωx的圖象,叫做周期變換或叫做沿x軸的伸縮變換.(用

          ωx替換x)

          由y=sinx的圖象上所有的點(diǎn)向左(當(dāng)φ>0)或向右(當(dāng)φ<0)平行移動(dòng)|φ|個(gè)單位,得到y(tǒng)=sin(x+φ)的圖象,叫做相位變換或叫做沿x軸方向的平移.(用x+φ替換x)

          由y=sinx的圖象上所有的點(diǎn)向上(當(dāng)b>0)或向下(當(dāng)b<0)平行移動(dòng)|b|個(gè)單位,得到y(tǒng)=sinx+b的圖象叫做沿y軸方向的平移.(用y+(-b)替換y)

          由y=sinx的圖象利用圖象變換作函數(shù)y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的圖象,要特別注意:當(dāng)周期變換和相位變換的先后順序不同時(shí),原圖象延x軸量伸縮量的區(qū)別。

        函數(shù)知識(shí)點(diǎn)總結(jié)11

          1.二次函數(shù)的概念

          二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù)。

          2.二次函數(shù)的結(jié)構(gòu)特征:

         、诺忍(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2。

         、剖浅(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng)。

          2.初三數(shù)學(xué)二次函數(shù)的三種表達(dá)式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)。頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]。

          交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]。

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。

          3.二次函數(shù)的性質(zhì)

          1.性質(zhì):

          (1)在一次函數(shù)上的'任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

          (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

          2.k,b與函數(shù)圖像所在象限:當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。當(dāng)b>0時(shí),直線必通過一、二象限;當(dāng)b=0時(shí),直線通過原點(diǎn);當(dāng)b<0時(shí),直線必通過三、四象限。特別地,當(dāng)b=o時(shí),直線通過原點(diǎn)o(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

          4.初三數(shù)學(xué)二次函數(shù)圖像

          對(duì)于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關(guān)于y軸對(duì)稱。

         、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關(guān)于x軸對(duì)稱。

         、踶=ax2+bx+c與y=-ax2-bx+c-b2/2a關(guān)于頂點(diǎn)對(duì)稱。

          ④y=ax2+bx+c與y=-ax2+bx-c關(guān)于原點(diǎn)中心對(duì)稱。(即繞原點(diǎn)旋轉(zhuǎn)180度后得到的圖形)

          對(duì)于頂點(diǎn)式:

         、賧=a(x-h)2+k與y=a(x+h)2+k兩圖像關(guān)于y軸對(duì)稱,即頂點(diǎn)(h,k)和(-h,k)關(guān)于y軸對(duì)稱,橫坐標(biāo)相反、縱坐標(biāo)相同。

         、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關(guān)于x軸對(duì)稱,即頂點(diǎn)(h,k)和(h,-k)關(guān)于x軸對(duì)稱,橫坐標(biāo)相同、縱坐標(biāo)相反。

         、踶=a(x-h)2+k與y=-a(x-h)2+k關(guān)于頂點(diǎn)對(duì)稱,即頂點(diǎn)(h,k)和(h,k)相同,開口方向相反。

         、躽=a(x-h)2+k與y=-a(x+h)2-k關(guān)于原點(diǎn)對(duì)稱,即頂點(diǎn)(h,k)和(-h,-k)關(guān)于原點(diǎn)對(duì)稱,橫坐標(biāo)、縱坐標(biāo)都相反。(其實(shí)①③④就是對(duì)f(x)來說f(-x),-f(x),-f(-x)的情況)

        函數(shù)知識(shí)點(diǎn)總結(jié)12

          基本概念

          1、變量:在一個(gè)變化過程中可以取不同數(shù)值的量。常量:在一個(gè)變化過程中只能取同一數(shù)值的量。

          2、函數(shù):一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。

          *判斷Y是否為X的函數(shù),只要看X取值確定的時(shí)候,Y是否有唯一確定的值與之對(duì)應(yīng)3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。(x的取值范圍)一次函數(shù)

          1..自變量x和因變量y有如下關(guān)系:

          y=kx+b(k為任意不為零實(shí)數(shù),b為任意實(shí)數(shù))則此時(shí)稱y是x的一次函數(shù)。特別的,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為任意不為零實(shí)數(shù))

          定義域:自變量的取值范圍,自變量的取值應(yīng)使函數(shù)有意義;要與實(shí)際有意義。2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。一次函數(shù)性質(zhì):

          1在一次函數(shù)上的'任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

          2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。3.函數(shù)不是數(shù),它是指某一變量過程中兩個(gè)變量之間的關(guān)系。

          特別地,當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。4、特殊位置關(guān)系

          當(dāng)平面直角坐標(biāo)系中兩直線平行時(shí),其函數(shù)解析式中K值(即一次項(xiàng)系數(shù))相等

          當(dāng)平面直角坐標(biāo)系中兩直線垂直時(shí),其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個(gè)K值的乘積為-1)

          應(yīng)用

          一次函數(shù)y=kx+b的性質(zhì)是:(1)當(dāng)k>0時(shí),y隨x的增大而增大;(2)當(dāng)ky2,則x1與x2的大小關(guān)系是()

          A.x1>x2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當(dāng)k>0時(shí),y隨x的增大而增大”,得x1>x2。故選A。

          判斷函數(shù)圖象的位置例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

          解:由kb>0,知k、b同號(hào)。因?yàn)閥隨x的增大而減小,所以k

         。5)實(shí)際問題中,函數(shù)定義域還要和實(shí)際情況相符合,使之有意義。5、函數(shù)的圖像

          一般來說,對(duì)于一個(gè)函數(shù),如果把自變量與函數(shù)的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個(gè)函數(shù)的圖象.

          6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。7、描點(diǎn)法畫函數(shù)圖形的一般步驟

          第一步:列表(表中給出一些自變量的值及其對(duì)應(yīng)的函數(shù)值);

          第二步:描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對(duì)應(yīng)的各點(diǎn));第三步:連線(按照橫坐標(biāo)由小到大的順序把所描出的各點(diǎn)用平滑曲線連接起來)。8、函數(shù)的表示方法

          列表法:一目了然,使用起來方便,但列出的對(duì)應(yīng)值是有限的,不易看出自變量與函數(shù)之間的對(duì)應(yīng)規(guī)律。

          解析式法:簡(jiǎn)單明了,能夠準(zhǔn)確地反映整個(gè)變化過程中自變量與函數(shù)之間的相依關(guān)系,但有些實(shí)際問題中的函數(shù)關(guān)系,不能用解析式表示。

          圖象法:形象直觀,但只能近似地表達(dá)兩個(gè)變量之間的函數(shù)關(guān)系。9、正比例函數(shù)及性質(zhì)

          一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零解析式:y=kx(k是常數(shù),k≠0)必過點(diǎn):(0,0)、(1,k)

          走向:k>0時(shí),圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時(shí),向上平移;當(dāng)b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;當(dāng)b

          .函數(shù)y=ax+b與y=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置正確的是()

          將直線y=3x向下平移5個(gè)單位,得到直線;將直線y=-x-5向上平移5個(gè)單位,得到直線.若直線yxa和直線yxb的交點(diǎn)坐標(biāo)為(m,8),則ab____________.

          已知函數(shù)y=3x+1,當(dāng)自變量增加m時(shí),相應(yīng)的函數(shù)值增加()A.3m+1B.3mC.mD.3m-111、一次函數(shù)y=kx+b的圖象的畫法.根據(jù)幾何知識(shí):經(jīng)過兩點(diǎn)能畫出一條直線,并且只能畫出一條直線,即兩點(diǎn)確定一條直線,所以畫一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點(diǎn):(0,b),坐標(biāo)或縱坐標(biāo)為0的點(diǎn).

          b>0經(jīng)過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時(shí),向上平移;當(dāng)b

          (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b①

          和y2=kx2+b②

         。3)解這個(gè)二元一次方程,得到k,b的值。(4)最后得到一次函數(shù)的表達(dá)式。15、一元一次方程與一次函數(shù)的關(guān)系

          任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.

        函數(shù)知識(shí)點(diǎn)總結(jié)13

          一、知識(shí)導(dǎo)學(xué)

          1.二次函數(shù)的概念、圖像和性質(zhì).(1)注意解題中靈活運(yùn)用二次函數(shù)的一般式二次函數(shù)的頂點(diǎn)式二次函數(shù)的坐標(biāo)式

          f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)

          (a0)

         。2)解二次函數(shù)的問題(如單調(diào)性、最值、值域、二次三項(xiàng)式的恒正恒負(fù)、二次方程根的范圍等)要充分利用好兩種方法:配方、圖像,很多二次函數(shù)都用數(shù)形結(jié)合的思想去解.

         、

          f(x)ax2bxc(a0),當(dāng)b24ac0時(shí)圖像與x軸有兩個(gè)交點(diǎn).

          M(x1,0)N(x2,0),|MN|=|x1-x2|=

          .|a|②二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點(diǎn)或二次函數(shù)的頂點(diǎn)處取得.2.指數(shù)函數(shù)

          ①amyax(a0,a1)和對(duì)數(shù)函數(shù)ylogax(a0,a1)的概念和性質(zhì).

         。1)有理指數(shù)冪的意義、冪的運(yùn)算法則:

          anamn;②(am)namn;③(ab)nanbn(這時(shí)m,n是有理數(shù))

          MlogaMlogaNNlogcb1MlogaM;logab

          nlogcaloga對(duì)數(shù)的概念及其運(yùn)算性質(zhì)、換底公式.

          loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指數(shù)函數(shù)的圖像、單調(diào)性與特殊點(diǎn).對(duì)數(shù)函數(shù)的圖像、單調(diào)性與特殊點(diǎn).

         、僦笖(shù)函數(shù)圖像永遠(yuǎn)在x軸上方,當(dāng)a>1時(shí),圖像越接近y軸,底數(shù)a越大;當(dāng)0錯(cuò)解:∵18

          5,∴l(xiāng)og185b

          log1845log185log189ba∴l(xiāng)og3645log1836log184log189log184a5,∴l(xiāng)og185b

          log1845log185log189∴l(xiāng)og3645log1836log184log189bb錯(cuò)因:因?qū)π再|(zhì)不熟而導(dǎo)致題目沒解完.正解:∵18

          bababa

          182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的兩個(gè)根都大于1的充要條件.

          2錯(cuò)解:由于方程f(x)axbxc0(a0)對(duì)應(yīng)的二次函數(shù)為

          f(x)ax2bxc的圖像與x軸交點(diǎn)的橫坐標(biāo)都大于1即可.

          f(1)0f(1)0故需滿足b,所以充要條件是b

          112a2a錯(cuò)因:上述解法中,只考慮到二次函數(shù)與x軸交點(diǎn)坐標(biāo)要大于1,卻忽視了最基本的的前題條件,應(yīng)讓二次函數(shù)圖像與x軸有

          交點(diǎn)才行,即滿足△≥0,故上述解法得到的不是充要條件,而是必要不充分條件.

          f(1)0b正解:充要條件是12a2b4ac0y36x126x5的單調(diào)區(qū)間.

          x2xx錯(cuò)解:令6t,則y361265=t12t5

          [例3]求函數(shù)

          ∴當(dāng)t≥6,即x≥1時(shí),y為關(guān)于t的增函數(shù),當(dāng)t≤6,即x≤1時(shí),y為關(guān)于t的減函數(shù)∴函數(shù)

          y36x126x5的單調(diào)遞減區(qū)間是(,6],單調(diào)遞增區(qū)間為[6,)

          x錯(cuò)因:本題為復(fù)合函數(shù),該解法未考慮中間變量的取值范圍.正解:令6∴函數(shù)

          t,則t6x為增函數(shù),y36x126x5=t212t5=(t6)241

          ∴當(dāng)t≥6,即x≥1時(shí),y為關(guān)于t的增函數(shù),當(dāng)t≤6,即x≤1時(shí),y為關(guān)于t的減函數(shù)

          y36x126x5的單調(diào)遞減區(qū)間是(,1],單調(diào)遞增區(qū)間為[1,)

          [例4]已知yloga(2ax)在[0,1]上是x的減函數(shù),則a的取值范圍是錯(cuò)解:∵yloga(2ax)是由ylogau,u2ax復(fù)合而成,又a>0∴u2ax在[0,1]上是x的減函數(shù),由復(fù)合函數(shù)關(guān)系知,ylogau應(yīng)為增函數(shù),∴a>1

          錯(cuò)因:錯(cuò)因:解題中雖然考慮了對(duì)數(shù)函數(shù)與一次函數(shù)復(fù)合關(guān)系,卻忽視了數(shù)定義域的限制,單調(diào)區(qū)間應(yīng)是定義域的某個(gè)子區(qū)間,即函數(shù)應(yīng)在[0,1]上有意義.

          yloga(2ax)是由ylogau,u2ax復(fù)合而成,又a>0∴u2ax在[0,1]上是x的減函數(shù),

          由復(fù)合函數(shù)關(guān)系知,ylogau應(yīng)為增函數(shù),∴a>1

          又由于x在[0,1]上時(shí)yloga(2ax)有意義,u2ax又是減函數(shù),∴x=1時(shí),u2ax取最小值是

          正解:∵

          umin2a>0即可,∴a<2,綜上可知所求的取值范圍是1<a<2[例5]已知函數(shù)f(x)loga(3ax).

         。1)當(dāng)x[0,2]時(shí)f(x)恒有意義,求實(shí)數(shù)a的取值范圍.

          (2)是否存在這樣的實(shí)數(shù)a使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為

          存在,請(qǐng)說明理由.分析:函數(shù)

          1,如果存在,試求出a的值;如果不

          f(x)為復(fù)合函數(shù),且含參數(shù),要結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)具體分析找到正確的解題思路,是否存在性問題,分析時(shí)一

          0,a1

          般先假設(shè)存在后再證明.

          解:(1)由假設(shè),3ax>0,對(duì)一切x[0,2]恒成立,a顯然,函數(shù)g(x)=3ax在[0,2]上為減函數(shù),從而g(2)=32a>0得到a<(2)假設(shè)存在這樣的實(shí)數(shù)a,由題設(shè)知∴a=

          32∴a的取值范圍是(0,1)∪(1,

          32)

          f(1)1,即f(1)loga(3a)=1

          32此時(shí)

          f(x)loga(33x)當(dāng)x2時(shí),f(x)沒有意義,故這樣的實(shí)數(shù)不存在.2,

          12x4xa[例6]已知函數(shù)f(x)=lg,其中a為常數(shù),若當(dāng)x∈(-∞,1]時(shí),f(x)有意義,求實(shí)數(shù)a的取值范圍.

          a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),當(dāng)x∈(-∞,1]時(shí),y=x與y=x都

          24424x2xa2a1333是減函數(shù),∴y=(11)在(-∞,1]上是增函數(shù),(11)max=-,∴a>-,故a的取值范圍是(-,+∞).

          4444x2x422

          2

          xx[例7]若(a1)解:∵冪函數(shù)

          13(32a)1313,試求a的取值范圍.

          yx有兩個(gè)單調(diào)區(qū)間,

          ∴根據(jù)a1和32a的正、負(fù)情況,有以下關(guān)系a10a1032a0.①32a0.②a132aa132a解三個(gè)不等式組:①得

          a10.③32a023,

          23<a<

          32,②無解,③a<-1,∴a的取值范圍是(-∞,-1)∪(

          32)

          [例8]已知a>0且a≠1,f(logax)=

          a1(x-

          xa21)

          (1)求f(x);(2)判斷f(x)的奇偶性與單調(diào)性;

          2

          (3)對(duì)于f(x),當(dāng)x∈(-1,1)時(shí),有f(1-m)+f(1-m)<0,求m的集合M.

          分析:先用換元法求出f(x)的表達(dá)式;再利用有關(guān)函數(shù)的性質(zhì)判斷其奇偶性和單調(diào)性;然后利用以上結(jié)論解第三問.解:(1)令t=logax(t∈R),則xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)為奇函數(shù).當(dāng)a1時(shí),20,a1a1u(x)axax為增函數(shù),當(dāng)0a1時(shí),類似可判斷f(x)為增函數(shù).綜上,無論a1或0a1,f(x)在R上都是增函數(shù).

          (3)f(1m)f(1m2)0,f(x)是奇函數(shù)且在R上是增函數(shù),f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型習(xí)題導(dǎo)練1.函數(shù)

          f(x)axb的圖像如圖,其中a、b為常數(shù),則下列結(jié)論正確的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0

          x的值為()

          yC.1或4C.2

          2

          2、已知2lg(x-2y)=lgx+lgy,則A.13、方程loga(x1)xA.04、函數(shù)f(x)與g(x)=(

          2B.4B.1

          x

          D.4或8D.3

          ()

          2(0A.

          0,nB.,0C.

          0,2

          D.

          2,0

          5、圖中曲線是冪函數(shù)y=x在第一象限的圖像,已知n可取±2,±

          1四個(gè)值,則相應(yīng)于曲線c1、c2、c3、c4的n依次為()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-

          2222226.求函數(shù)y=log2

          2(x-5x+6)的定義域、值域、單調(diào)區(qū)間.7.若x滿足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.

          8.已知定義在R上的函數(shù)f(x)2xa2x,a為常數(shù)(1)如果f(x)=f(x),求a的值;

         。2)當(dāng)

          f(x)滿足(1)時(shí),用單調(diào)性定義討論f(x)的.單調(diào)性.

          基本初等函數(shù)綜合訓(xùn)練B組

          一、選擇題

          1.若函數(shù)

          f(x)logax(0a1)在區(qū)間[a,2a]上的最大值是最小值的3倍,則a的值為()

          A.214B.22C.4D.12

          2.若函數(shù)yloga(xb)(a0,a1)的圖象過兩點(diǎn)(1,0)

          和(0,1),則()

          A.a(chǎn)2,b2B.a(chǎn)2,b2

          C.a(chǎn)2,b1D.a(chǎn)2,b23.已知f(x6)log2x,那么f(8)等于()

          A.43B.8C.18D.12

          4.函數(shù)ylgx()

          A.是偶函數(shù),在區(qū)間(,0)上單調(diào)遞增B.是偶函數(shù),在區(qū)間(,0)上單調(diào)遞減C.是奇函數(shù),在區(qū)間(0,)上單調(diào)遞增D.是奇函數(shù),在區(qū)間(0,)上單調(diào)遞減

          5.已知函數(shù)f(x)lg1x1x.若f(a)b.則f(a)()A.bB.bC.11bD.b

          6.函數(shù)f(x)logax1在(0,1)上遞減,那么f(x)在(1,)上()

          A.遞增且無最大值B.遞減且無最小值C.遞增且有最大值D.遞減且有最小值

          二、填空題1.若

          f(x)2x2xlga是奇函數(shù),則實(shí)數(shù)a=_________。

          2.函數(shù)

          f(x)log1x22x5的值域是__________.

          23.已知log147a,log145b,則用a,b表示log3528。4.設(shè)

          A1,y,lgxy,B0,x,y,且AB,則x;y。5.計(jì)算:

          322log325。

          ex16.函數(shù)y的值域是__________.

          xe1三、解答題

          1.比較下列各組數(shù)值的大。海1)1.7

          2.解方程:(1)9

          3.已知

          4.已知函數(shù)

          參考答案

          一、選擇題

          x3.3和0.82.1;(2)3.30.7和3.40.8;(3)

          3,log827,log9252231x27(2)6x4x9x

          y4x32x3,當(dāng)其值域?yàn)閇1,7]時(shí),求x的取值范圍。

          f(x)loga(aax)(a1),求f(x)的定義域和值域;

          1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2

          3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即為偶函數(shù)

          x,x0時(shí),u是x的減函數(shù),即ylgx在區(qū)間(,0)上單調(diào)遞減

          1x1xlgf(x).則f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的遞減區(qū)間,即a1,(1,)是u的遞增區(qū)間,即f(x)遞增且無最大值。

          二、填空題1.

          1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.

          2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,

          而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528

          ablog1435141log14log14(214)1log14271(1log147)2a

          log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴l(xiāng)g(xy)0,xy1

          51,∴x1,而x1,∴x1,且y1

          3215.

          5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答題1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1

          0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,

          3.333332log22log222log23,log332log333log35,223∴l(xiāng)og925log827.

          2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330

          3x90,3x32,

          x22x4x22x2x(2)()()1,()()10

          39332251()x0,則()x,332

          xlog23512

          3.解:由已知得14x32x37,

          xxxx43237(21)(24)0,得x即

          xxx43231(21)(22)0xx即021,或224∴x0,或1x2。

          xx4.解:aa0,aa,x1,即定義域?yàn)?,1);

          ax0,0aaxa,loga(aax)1,即值域?yàn)?,1)。

          擴(kuò)展閱讀:高一數(shù)學(xué)上冊(cè) 第二章基本初等函數(shù)之對(duì)數(shù)函數(shù)知識(shí)點(diǎn)總結(jié)及練習(xí)題(含答案)

          〖2.2〗對(duì)數(shù)函數(shù)

          【2.2.1】對(duì)數(shù)與對(duì)數(shù)運(yùn)算

          (1)對(duì)數(shù)的定義

         、偃鬭xN(a0,且a1),則x叫做以a為底N的對(duì)數(shù),記作xlogaN,其中a叫做底數(shù),

          N叫做真數(shù).

         、谪(fù)數(shù)和零沒有對(duì)數(shù).③對(duì)數(shù)式與指數(shù)式的互化:xlogaNaxN(a0,a1,N0).

          (2)幾個(gè)重要的對(duì)數(shù)恒等式:loga10,logaa1,logaabb.

          N;自然對(duì)數(shù):lnN,即loge(3)常用對(duì)數(shù)與自然對(duì)數(shù):常用對(duì)數(shù):lgN,即log10…).e2.71828(4)對(duì)數(shù)的運(yùn)算性質(zhì)如果a0,a1,M①加法:logaN(其中

          0,N0,那么

          MlogaNloga(MN)

          M②減法:logaMlogaNlogaN③數(shù)乘:nlogaMlogaMn(nR)

         、

          alogaNN

          nlogaM(b0,nR)bn⑤logabM⑥換底公式:logaNlogbN(b0,且b1)

          logba【2.2.2】對(duì)數(shù)函數(shù)及其性質(zhì)

         。5)對(duì)數(shù)函數(shù)函數(shù)名稱定義函數(shù)對(duì)數(shù)函數(shù)ylogax(a0且a1)叫做對(duì)數(shù)函數(shù)a1yx10a1yx1ylogaxylogax圖象O(1,0)O(1,0)xx定義域值域過定點(diǎn)奇偶性(0,)R圖象過定點(diǎn)(1,0),即當(dāng)x1時(shí),y0.非奇非偶單調(diào)性在(0,)上是增函數(shù)在(0,)上是減函數(shù)logax0(x1)函數(shù)值的變化情況logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a變化對(duì)圖象的影響在第一象限內(nèi),a越大圖象越靠低,越靠近x軸在第一象限內(nèi),a越小圖象越靠低,越靠近x軸在第四象限內(nèi),a越大圖象越靠高,越靠近y軸在第四象限內(nèi),a越小圖象越靠高,越靠近y軸(6)反函數(shù)的概念

          設(shè)函數(shù)果對(duì)于

          yf(x)的定義域?yàn)锳,值域?yàn)镃,從式子yf(x)中解出x,得式子x(y).如

          y在C中的任何一個(gè)值,通過式子x(y),x在A中都有唯一確定的值和它對(duì)應(yīng),那么式子

          x(y)表示x是y的函數(shù),函數(shù)x(y)叫做函數(shù)yf(x)的反函數(shù),記作xf1(y),習(xí)慣

          上改寫成

          yf1(x).

          (7)反函數(shù)的求法

         、俅_定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式③將xyf(x)中反解出xf1(y);

          f1(y)改寫成yf1(x),并注明反函數(shù)的定義域.

          (8)反函數(shù)的性質(zhì)

         、僭瘮(shù)②函數(shù)

          yf(x)與反函數(shù)yf1(x)的圖象關(guān)于直線yx對(duì)稱.

          yf(x)的定義域、值域分別是其反函數(shù)yf1(x)的值域、定義域.

          yf(x)的圖象上,則P"(b,a)在反函數(shù)yf1(x)的圖象上.

         、廴鬚(a,b)在原函數(shù)④一般地,函數(shù)

          yf(x)要有反函數(shù)則它必須為單調(diào)函數(shù).

          一、選擇題:1.

          log89的值是log23A.

          ()

          23B.1C.

          32D.2

          2.已知x=2+1,則log4(x3-x-6)等于

          A.

         。ǎ〤.0

          D.

          32B.

          54123.已知lg2=a,lg3=b,則

          lg12等于lg15()

          A.

          2ab

          1abB.

          a2b

          1abC.

          2ab

          1abD.

          a2b

          1ab4.已知2lg(x-2y)=lgx+lgy,則x的值為

          yA.1

          B.4

          ()C.1或4C.(C.ln5

          D.4或-1()

          5.函數(shù)y=log1(2x1)的定義域?yàn)?/p>

          2A.(

          1,+∞)B.[1,+∞)2B.5e

          1,1]2D.(-∞,1)()D.log5e()

          y6.已知f(ex)=x,則f(5)等于

          A.e5

          7.若f(x)logax(a0且a1),且f1(2)1,則f(x)的圖像是

          yyyABCD

          8.設(shè)集合A{x|x10},B{x|log2x0|},則AB等于

          A.{x|x1}C.{x|x1}

          B.{x|x0}D.{x|x1或x1}

          2OxOxOxOx()

          9.函數(shù)ylnx1,x(1,)的反函數(shù)為()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空題

        函數(shù)知識(shí)點(diǎn)總結(jié)14

          特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。

          當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。

          此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

          1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。

          當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。

          當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。

          當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

          當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

          當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。

          因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。

          2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。

          3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的`增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。

          4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

          (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。

          (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。

          當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。

          5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。

          頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。

          6.用待定系數(shù)法求二次函數(shù)的解析式

          (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。

          (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。

          (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

        函數(shù)知識(shí)點(diǎn)總結(jié)15

          一、函數(shù)的定義域的常用求法:

          1、分式的分母不等于零;

          2、偶次方根的被開方數(shù)大于等于零;

          3、對(duì)數(shù)的真數(shù)大于零;

          4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

          5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

          6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

          二、函數(shù)的解析式的常用求法:

          1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法

          三、函數(shù)的值域的常用求法:

          1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法

          四、函數(shù)的最值的常用求法:

          1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法

          五、函數(shù)單調(diào)性的常用結(jié)論:

          1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)

          2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)

          3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

          4、奇函數(shù)在對(duì)稱區(qū)間上的.單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

          5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

          六、函數(shù)奇偶性的常用結(jié)論:

          1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)

          2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

          3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

          4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。

          5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。

        【函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

        函數(shù)知識(shí)點(diǎn)總結(jié)02-10

        函數(shù)知識(shí)點(diǎn)總結(jié)06-23

        [精華]函數(shù)知識(shí)點(diǎn)總結(jié)08-28

        函數(shù)知識(shí)點(diǎn)總結(jié)(精)08-21

        (精品)函數(shù)知識(shí)點(diǎn)總結(jié)08-22

        (精)函數(shù)知識(shí)點(diǎn)總結(jié)08-25

        (精)函數(shù)知識(shí)點(diǎn)總結(jié)08-25

        函數(shù)知識(shí)點(diǎn)總結(jié)【熱門】08-21

        [精選]函數(shù)知識(shí)點(diǎn)03-01

        函數(shù)知識(shí)點(diǎn)03-01

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>