初中數學知識點圓總結
在我們上學期間,不管我們學什么,都需要掌握一些知識點,知識點就是“讓別人看完能理解”或者“通過練習我能掌握”的內容。為了幫助大家掌握重要知識點,以下是小編為大家整理的初中數學知識點圓總結,僅供參考,歡迎大家閱讀。
初中數學知識點圓總結1
一、圓
1、圓的有關性質
在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內接三角形。
2、反證法
反證法的三個步驟:
①假設命題的結論不成立;
②從這個假設出發(fā),經過推理論證,得出矛盾;
、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內角和等于180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經過圓心的每一條直線都是它的`對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。
六、圓的判定性質
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角
12.①直線L和⊙O相交 d
、谥本L和⊙O相切 d=r
、壑本L和⊙O相離 dr
13.切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理 圓的切線垂直于經過切點的半徑
15.推論1 經過圓心且垂直于切線的直線必經過切點
16.推論2 經過切點且垂直于切線的直線必經過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 dR+r ②兩圓外切 d=R+r
、.兩圓相交 R-rr)
、.兩圓內切 d=R-r(Rr) ⑤兩圓內含dr)
初中數學知識點圓總結2
一.圓的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母O表示
5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
三.圓的基本性質
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉對稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四.圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以借助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
【初中數學知識點圓總結】相關文章:
初中數學圓的知識點總結04-12
初中數學圓的知識點03-01
初中數學圓的知識點總結歸納02-07
初中數學知識點總結:圓04-11
人教版初中數學圓知識點總結04-24
數學圓知識點總結11-03
初中圓的知識點總結02-17
小升初數學圓的知識點總結03-29
初中圓知識點精華總結04-11