1. <rp id="zsypk"></rp>

      2. 高一數學課本下冊知識點歸納

        時間:2021-08-03 12:44:39 總結 我要投稿

        高一數學課本下冊知識點歸納

        高一數學課本下冊知識點歸納1

          集合的運算

        高一數學課本下冊知識點歸納

          1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

          記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

          2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

          3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

          A∪φ=A,A∪B=B∪A.

          4、全集與補集

          (1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

          記作:CSA即CSA={x?x?S且x?A}

          (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

          (3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U

        高一數學課本下冊知識點歸納2

          定義:

          x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。

          范圍:

          傾斜角的取值范圍是0°≤α<180°。

          理解:

          (1)注意“兩個方向”:直線向上的方向、x軸的正方向;

          (2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。

          意義:

         、僦本的傾斜角,體現了直線對x軸正向的傾斜程度;

         、谠谄矫嬷苯亲鴺讼抵,每一條直線都有一個確定的傾斜角;

         、蹆A斜角相同,未必表示同一條直線。

          公式:

          k=tanα

          k>0時α∈(0°,90°)

          k<0時α∈(90°,180°)

          k=0時α=0°

          當α=90°時k不存在

          ax+by+c=0(a≠0)傾斜角為A,

          則tanA=-a/b,

          A=arctan(-a/b)

          當a≠0時,

          傾斜角為90度,即與X軸垂直

          高一數學課本下冊知識點歸納

        高一數學課本下冊知識點歸納3

          函數圖象知識歸納

          (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的函數C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.

          (2)畫法

          A、描點法:

          B、圖象變換法

          常用變換方法有三種

          1)平移變換

          2)伸縮變換

          3)對稱變換

          4.高中數學函數區(qū)間的概念

          (1)函數區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

          (2)無窮區(qū)間

          5.映射

          一般地,設A、B是兩個非空的函數,如果按某一個確定的對應法則f,使對于函數A中的任意一個元素x,在函數B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數A到函數B的一個映射。記作“f(對應關系):A(原象)B(象)”

          對于映射f:A→B來說,則應滿足:

          (1)函數A中的每一個元素,在函數B中都有象,并且象是的;

          (2)函數A中不同的元素,在函數B中對應的象可以是同一個;

          (3)不要求函數B中的每一個元素在函數A中都有原象。

          6.高中數學函數之分段函數

          (1)在定義域的不同部分上有不同的解析表達式的函數。

          (2)各部分的自變量的取值情況.

          (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

          補充:復合函數

          如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。

        高一數學課本下冊知識點歸納4

          復數定義

          我們把形如a+bi(a,b均為實數)的數稱為復數,其中a稱為實部,b稱為虛部,i稱為虛數單位。當虛部等于零時,這個復數可以視為實數;當z的虛部不等于零時,實部等于零時,常稱z為純虛數。復數域是實數域的代數閉包,也即任何復系數多項式在復數域中總有根。

          復數表達式

          虛數是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:

          a=a+ia為實部,i為虛部

          復數運算法則

          加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

          減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

          乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

          除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

          例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結果還是0,也就在數字中沒有復數的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數。

          復數與幾何

         、賻缀涡问

          復數z=a+bi被復平面上的'點z(a,b)確定。這種形式使復數的問題可以借助圖形來研究。也可反過來用復數的理論解決一些幾何問題。

         、谙蛄啃问

          復數z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數四則運算得到恰當的幾何解釋。

         、廴切问

          復數z=a+bi化為三角形式

        高一數學課本下冊知識點歸納5

          對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

          排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

          排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;

          排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

          總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;

          如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

          在x大于0時,函數的值域總是大于0的實數。

          在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。

          而只有a為正數,0才進入函數的值域。

          由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

          可以看到:

          (1)所有的圖形都通過(1,1)這點。

          (2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。

          (3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。

          (4)當a小于0時,a越小,圖形傾斜程度越大。

          (5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。

          (6)顯然冪函數無界。

        【高一數學課本下冊知識點歸納】相關文章:

        《雨巷》高一語文課本知識點歸納12-27

        高一數學學習方法歸納08-03

        《觀潮》知識點歸納09-01

        高一語文課本作文10-05

        高一數學學習方法歸納9篇01-05

        高一數學學習方法歸納7篇12-31

        高一數學學習方法歸納(9篇)01-05

        高一數學知識點總結07-20

        《觀滄!分R點歸納11-07

        采薇知識點歸納09-02

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>