1. <rp id="zsypk"></rp>

      2. 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        時(shí)間:2021-12-08 11:35:20 總結(jié) 我要投稿

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦15篇

          總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),不妨坐下來好好寫寫總結(jié)吧。總結(jié)你想好怎么寫了嗎?下面是小編整理的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦15篇

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

          一、函數(shù)的概念與表示

          1、映射

          (1)映射:設(shè)A、B是兩個(gè)集合,如果按照某種映射法則f,對(duì)于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對(duì)應(yīng),則這樣的對(duì)應(yīng)(包括集合A、B以及A到B的對(duì)應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

          注意點(diǎn):(1)對(duì)映射定義的理解。(2)判斷一個(gè)對(duì)應(yīng)是映射的方法。一對(duì)多不是映射,多對(duì)一是映射

          2、函數(shù)

          構(gòu)成函數(shù)概念的三要素

         、俣x域②對(duì)應(yīng)法則③值域

          兩個(gè)函數(shù)是同一個(gè)函數(shù)的條件:三要素有兩個(gè)相同

          二、函數(shù)的解析式與定義域

          1、求函數(shù)定義域的主要依據(jù):

          (1)分式的分母不為零;

          (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

          (3)對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

          (4)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

          三、函數(shù)的值域

          1求函數(shù)值域的方法

         、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

         、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

         、叟袆e式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

          ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫圖);

         、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

          ⑥圖象法:二次函數(shù)必畫草圖求其值域;

         、呃脤(duì)號(hào)函數(shù)

         、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對(duì)值函數(shù)

          四.函數(shù)的奇偶性

          1.定義:設(shè)y=f(x),x∈A,如果對(duì)于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

          如果對(duì)于任意∈A,都有,則稱y=f(x)為奇

          函數(shù)。

          2.性質(zhì):

          ①y=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對(duì)稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,

         、谌艉瘮(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(0)=0

         、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對(duì)稱]

          3.奇偶性的判斷

         、倏炊x域是否關(guān)于原點(diǎn)對(duì)稱②看f(x)與f(-x)的關(guān)系

          五、函數(shù)的單調(diào)性

          1、函數(shù)單調(diào)性的定義:

          2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

          函數(shù)圖象知識(shí)歸納

          (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

          (2)畫法

          A、描點(diǎn)法:

          B、圖象變換法

          常用變換方法有三種

          1)平移變換

          2)伸縮變換

          3)對(duì)稱變換

          4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

          (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

          (2)無窮區(qū)間

          5.映射

          一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

          對(duì)于映射f:A→B來說,則應(yīng)滿足:

          (1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

          (2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

          (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

          6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

          (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

          (2)各部分的自變量的取值情況.

          (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

          補(bǔ)充:復(fù)合函數(shù)

          如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

          歸納1

          1、“包含”關(guān)系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同”

          結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

         、偃魏我粋(gè)集合是它本身的子集。AíA

         、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

         、廴绻鸄íB,BíC,那么AíC

         、苋绻鸄íB同時(shí)BíA那么A=B

          3、不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          歸納2

          形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

          反比例函數(shù)圖像性質(zhì):

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

          上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。

          當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

          當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

          知識(shí)點(diǎn):

          1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

          2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

          歸納3

          方程的根與函數(shù)的零點(diǎn)

          1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

          2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。

          3、函數(shù)零點(diǎn)的求法:

          (1)(代數(shù)法)求方程的實(shí)數(shù)根;

          (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn)。

          4、二次函數(shù)的零點(diǎn):

         。1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

         。2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

         。3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn)。

          歸納3

          形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的一切實(shí)數(shù)。

          反比例函數(shù)圖像性質(zhì):

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

          如圖,上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。

          當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

          當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

          知識(shí)點(diǎn):

          1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

          2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)

          歸納4

          冪函數(shù)的性質(zhì):

          對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

          排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

          排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

          排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

          總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

          如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

          在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

          在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

          而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

          由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況、

          可以看到:

         。1)所有的圖形都通過(1,1)這點(diǎn)。

         。2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

          (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

         。4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

         。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

         。6)顯然冪函數(shù)無界。

          解題方法:換元法

          解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。

          換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把?fù)雜的計(jì)算和推證簡化。

          它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

          集合集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論?低校–antor,G。F。P。,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的創(chuàng)始者,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯合在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡稱為元)。集合與集合之間的關(guān)系某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作A B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A屬于B。中學(xué)教材課本里將符號(hào)下加了一個(gè)不等于符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

          1、集合的概念

          集合是集合論中的不定義的原始概念,教材中對(duì)集合的概念進(jìn)行了描述性說明:“一般地,把一些能夠確定的不同的對(duì)象看成一個(gè)整體,就說這個(gè)整體是由這些對(duì)象的全體構(gòu)成的集合(或集)”。理解這句話,應(yīng)該把握4個(gè)關(guān)鍵詞:對(duì)象、確定的、不同的、整體。

          對(duì)象――即集合中的元素。集合是由它的元素確定的。

          整體――集合不是研究某一單一對(duì)象的,它關(guān)注的是這些對(duì)象的全體。

          確定的――集合元素的確定性――元素與集合的“從屬”關(guān)系。

          不同的――集合元素的互異性。

          2、有限集、無限集、空集的意義

          有限集和無限集是針對(duì)非空集合來說的。我們理解起來并不困難。

          我們把不含有任何元素的集合叫做空集,記做Φ。理解它時(shí)不妨思考一下“0與Φ”及“Φ與{Φ}”的關(guān)系。

          幾個(gè)常用數(shù)集N、N_N+、Z、Q、R要記牢。

          3、集合的表示方法

          (1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學(xué)們需要知道能用列舉法表示的三種集合:

         、僭夭惶嗟挠邢藜,如{0,1,8}

          ②元素較多但呈現(xiàn)一定的規(guī)律的有限集,如{1,2,3,…,100}

         、鄢尸F(xiàn)一定規(guī)律的無限集,如{1,2,3,…,n,…}

          ●注意a與{a}的區(qū)別

          ●注意用列舉法表示集合時(shí),集合元素的“無序性”。

          (2)特征性質(zhì)描述法的關(guān)鍵是把所研究的集合的“特征性質(zhì)”找準(zhǔn),然后適當(dāng)?shù)乇硎境鰜砭托辛。但關(guān)鍵點(diǎn)也是難點(diǎn)。學(xué)習(xí)時(shí)多加練習(xí)就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個(gè)不同的集合。

          4、集合之間的關(guān)系

          ●注意區(qū)分“從屬”關(guān)系與“包含”關(guān)系

          “從屬”關(guān)系是元素與集合之間的關(guān)系。

          “包含”關(guān)系是集合與集合之間的關(guān)系。掌握子集、真子集的概念,掌握集合相等的概念,學(xué)會(huì)正確使用“”等符號(hào),會(huì)用Venn圖描述集合之間的關(guān)系是基本要求。

          ●注意辨清Φ與{Φ}兩種關(guān)系。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

          冪函數(shù)定義:

          形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

          定義域和值域:

          當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

          性質(zhì):

          對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

          首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

          排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

          排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

          排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

          總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

          如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

          如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

          在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

          在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

          而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

          由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

          可以看到:

          (1)所有的圖形都通過(1,1)這點(diǎn)。

          (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

          (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

          (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

          (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

          (6)顯然冪函數(shù)。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

          一、集合有關(guān)概念

          1.集合的含義

          2.集合的中元素的三個(gè)特性:

          (1)元素的確定性如:世界上的山

          (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

          3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

          (1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

          (2)集合的表示方法:列舉法與描述法。

          注意:常用數(shù)集及其記法:

          非負(fù)整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集:N_或N+

          整數(shù)集:Z

          有理數(shù)集:Q

          實(shí)數(shù)集:R

          1)列舉法:{a,b,c……}

          2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合{xR|x-3>2},{x|x-3>2}

          3)語言描述法:例:{不是直角三角形的三角形}

          4)Venn圖:

          4、集合的分類:

          (1)有限集含有有限個(gè)元素的集合

          (2)無限集含有無限個(gè)元素的集合

          (3)空集不含任何元素的集合例:{x|x2=-5}

          二、集合間的基本關(guān)系

          1.“包含”關(guān)系—子集

          注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

          即:①任何一個(gè)集合是它本身的子集。AíA

          ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

          ③如果AíB,BíC,那么AíC

         、苋绻鸄íB同時(shí)BíA那么A=B

          3.不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          4.子集個(gè)數(shù):

          有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

          三、集合的運(yùn)算

          運(yùn)算類型交集并集補(bǔ)集

          定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

          由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

          【基本初等函數(shù)】

          一、指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運(yùn)算

          1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

          當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

          當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

          2.分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

          3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

          2、指數(shù)函數(shù)的圖象和性質(zhì)

          【函數(shù)的應(yīng)用】

          1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

          2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

          方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

          3、函數(shù)零點(diǎn)的求法:

          求函數(shù)的零點(diǎn):

          1(代數(shù)法)求方程的實(shí)數(shù)根;

          2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

          4、二次函數(shù)的零點(diǎn):

          二次函數(shù).

          1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

          2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

          3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

          棱錐

          棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

          棱錐的的性質(zhì):

          (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

          (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

          正棱錐

          正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

          正棱錐的性質(zhì):

          (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

          (3)多個(gè)特殊的直角三角形

          esp:

          a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

          b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

          集合與元素

          一個(gè)東西是集合還是元素并不是絕對(duì)的,很多情況下是相對(duì)的,集合是由元素組成的集合,元素是組成集合的元素。

          例如:你所在的班級(jí)是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對(duì)于這個(gè)班級(jí)集合來說,是它的一個(gè)元素;

          而整個(gè)學(xué)校又是由許許多多個(gè)班級(jí)組成的集合,你所在的班級(jí)只是其中的一分子,是一個(gè)元素。

          班級(jí)相對(duì)于你是集合,相對(duì)于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對(duì)的。

          .解集合問題的關(guān)鍵

          解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對(duì)時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

          圓錐曲線性質(zhì):

          一、圓錐曲線的`定義

          1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(定長大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

          2.雙曲線:到兩個(gè)定點(diǎn)的距離的差的絕對(duì)值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線.即.

          3.圓錐曲線的統(tǒng)一定義:到定點(diǎn)的距離與到定直線的距離的比e是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線.當(dāng)01時(shí)為雙曲線.

          二、圓錐曲線的方程

          1.橢圓:+ =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2)

          2.雙曲線:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2)

          3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

          三、圓錐曲線的性質(zhì)

          1.橢圓:+ =1(a>b>0)

          (1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(0,1)(5)準(zhǔn)線:x=±

          2.雙曲線:- =1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e= ∈(1,+∞)(5)準(zhǔn)線:x=± (6)漸近線:y=± x

          3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):( ,0)(4)離心率:e=1(5)準(zhǔn)線:x=-

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

          集合間的基本關(guān)系

          1.“包含”關(guān)系—子集

          注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

          2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

          實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

          結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

          A?① 任何一個(gè)集合是它本身的子集。A

          B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

          C?C ,那么 A?B, B?③如果 A

          A 那么A=B?B 同時(shí) B?④ 如果A

          3. 不含任何元素的集合叫做空集,記為Φ

          規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

          集合的運(yùn)算

          1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

          記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

          2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

          3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

          4、全集與補(bǔ)集

          (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

          A}?S且 x? x?記作: CSA 即 CSA ={x

          (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

          (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

          直線和平面垂直

          直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

          直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

          直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)

          直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

          直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

          直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

          多面體

          1、棱柱

          棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

          棱柱的性質(zhì)

          (1)側(cè)棱都相等,側(cè)面是平行四邊形

          (2)兩個(gè)底面與平行于底面的截面是全等的多邊形

          (3)過不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形

          2、棱錐

          棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

          棱錐的性質(zhì):

          (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

          (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

          3、正棱錐

          正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

          正棱錐的性質(zhì):

          (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

          (3)多個(gè)特殊的直角三角形

          a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

          b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

          一、直線與方程

          (1)直線的傾斜角

          定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

          (2)直線的斜率

         、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

         、谶^兩點(diǎn)的直線的斜率公式:

          注意下面四點(diǎn):

          (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90

          (2)k與P1、P2的順序無關(guān);

          (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

          (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

          (3)直線方程

         、冱c(diǎn)斜式:直線斜率k,且過點(diǎn)

          注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

          ②斜截式:,直線斜率為k,直線在y軸上的截距為b

         、蹆牲c(diǎn)式:()直線兩點(diǎn),

         、芙鼐厥剑浩渲兄本與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

         、菀话闶剑(A,B不全為0)

         、菀话闶剑(A,B不全為0)

          注意:○1各式的適用范圍

          ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

          (4)直線系方程:即具有某一共同性質(zhì)的直線

          (一)平行直線系

          平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

          (二)過定點(diǎn)的直線系

          (ⅰ)斜率為k的直線系:直線過定點(diǎn);

          (ⅱ)過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。

          (5)兩直線平行與垂直;

          注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

          (6)兩條直線的交點(diǎn)

          相交:交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合

          (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

          (8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

          (9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

          本節(jié)內(nèi)容主要是空間點(diǎn)、直線、平面之間的位置關(guān)系,在認(rèn)識(shí)過程中,可以進(jìn)一步提高同學(xué)們的空間想象能力,發(fā)展推理能力.通過對(duì)實(shí)際模型的認(rèn)識(shí),學(xué)會(huì)將文字語言轉(zhuǎn)化為圖形語言和符號(hào)語言,以具體的長方體中的點(diǎn)、線、面之間的關(guān)系作為載體,使同學(xué)們在直觀感知的基礎(chǔ)上,認(rèn)識(shí)空間中點(diǎn)、線、面之間的位置關(guān)系,點(diǎn)、線、面的位置關(guān)系是立體幾何的主要研究對(duì)象,同時(shí)也是空間圖形最基本的幾何元素.

          重難點(diǎn)知識(shí)歸納

          1、平面

          (1)平面概念的理解

          直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

          抽象的理解:平面是平的,平面是無限延展的,平面沒有厚薄.

          (2)平面的表示法

         、賵D形表示法:通常用平行四邊形來表示平面,有時(shí)根據(jù)實(shí)際需要,也用其他的平面圖形來表示平面.

         、谧帜副硎荆撼S玫认ED字母表示平面.

          (3)涉及本部分內(nèi)容的符號(hào)表示有:

         、冱c(diǎn)A在直線l內(nèi),記作; ②點(diǎn)A不在直線l內(nèi),記作;

         、埸c(diǎn)A在平面內(nèi),記作; ④點(diǎn)A不在平面內(nèi),記作;

         、葜本l在平面內(nèi),記作; ⑥直線l不在平面內(nèi),記作;

          注意:符號(hào)的使用與集合中這四個(gè)符號(hào)的使用的區(qū)別與聯(lián)系.

          (4)平面的基本性質(zhì)

          公理1:如果一條直線的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有點(diǎn)都在這個(gè)平面內(nèi).

          符號(hào)表示為:.

          注意:如果直線上所有的點(diǎn)都在一個(gè)平面內(nèi),我們也說這條直線在這個(gè)平面內(nèi),或者稱平面經(jīng)過這條直線.

          公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面.

          符號(hào)表示為:直線AB存在唯一的平面,使得.

          注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點(diǎn)確定一個(gè)平面.

          公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線.

          符號(hào)表示為:.

          注意:兩個(gè)平面有一條公共直線,我們說這兩個(gè)平面相交,這條公共直線就叫作兩個(gè)平面的交線.若平面、平面相交于直線l,記作.

          公理的推論:

          推論1:經(jīng)過一條直線和直線外的一點(diǎn)有且只有一個(gè)平面.

          推論2:經(jīng)過兩條相交直線有且只有一個(gè)平面.

          推論3:經(jīng)過兩條平行直線有且只有一個(gè)平面.

          2.空間直線

          (1)空間兩條直線的位置關(guān)系

         、傧嘟恢本:有且僅有一個(gè)公共點(diǎn),可表示為;

         、谄叫兄本:在同一個(gè)平面內(nèi),沒有公共點(diǎn),可表示為a//b;

         、郛惷嬷本:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

          (2)平行直線

          公理4:平行于同一條直線的兩條直線互相平行.

          符號(hào)表示為:設(shè)a、b、c是三條直線,.

          定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等.

          (3)兩條異面直線所成的角

          注意:

         、賰蓷l異面直線a,b所成的角的范圍是(0°,90°].

         、趦蓷l異面直線所成的角與點(diǎn)O的選擇位置無關(guān),這可由前面所講過的“等角定理”直接得出.

         、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法:

          (i)在空間任取一點(diǎn),這個(gè)點(diǎn)通常是線段的中點(diǎn)或端點(diǎn).

          (ii)分別作兩條異面直線的平行線,這個(gè)過程通常采用平移的方法來實(shí)現(xiàn).

          (iii)指出哪一個(gè)角為兩條異面直線所成的角,這時(shí)我們要注意兩條異面直線所成的角的范圍.

          3.空間直線與平面

          直線與平面位置關(guān)系有且只有三種:

          (1)直線在平面內(nèi):有無數(shù)個(gè)公共點(diǎn);

          (2)直線與平面相交:有且只有一個(gè)公共點(diǎn);

          (3)直線與平面平行:沒有公共點(diǎn).

          4.平面與平面

          兩個(gè)平面之間的位置關(guān)系有且只有以下兩種:

          (1)兩個(gè)平面平行:沒有公共點(diǎn);

          (2)兩個(gè)平面相交:有一條公共直線.

        高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

          【基本初等函數(shù)】

          一、指數(shù)函數(shù)

         。ㄒ唬┲笖(shù)與指數(shù)冪的運(yùn)算

          1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

          當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

          當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

          2、分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

          3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

          2、指數(shù)函數(shù)的圖象和性質(zhì)

        【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)集錦15篇】相關(guān)文章:

        1.高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        2.高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

        3.高一政治知識(shí)點(diǎn)總結(jié)

        4.高一物理知識(shí)點(diǎn)總結(jié)

        5.高一歷史知識(shí)點(diǎn)總結(jié)

        6.高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

        7.高一政治必修一知識(shí)點(diǎn)總結(jié)

        8.高一物理必修一知識(shí)點(diǎn)總結(jié)

        9.高一生物知識(shí)點(diǎn)總結(jié)

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>