1. <rp id="zsypk"></rp>

      2. 優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案

        時間:2022-10-21 14:55:32 教案 我要投稿

        優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案(通用12篇)

          作為一名專為他人授業(yè)解惑的人民教師,往往需要進(jìn)行教案編寫工作,教案有助于順利而有效地開展教學(xué)活動。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編收集整理的優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案,歡迎大家分享。

        優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案(通用12篇)

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇1

          教學(xué)目標(biāo)

          知識目標(biāo)等差數(shù)列定義等差數(shù)列通項公式

          能力目標(biāo)掌握等差數(shù)列定義等差數(shù)列通項公式

          情感目標(biāo)培養(yǎng)學(xué)生的觀察、推理、歸納能力

          教學(xué)重難點(diǎn)

          教學(xué)重點(diǎn)等差數(shù)列的概念的理解與掌握

          等差數(shù)列通項公式推導(dǎo)及應(yīng)用教學(xué)難點(diǎn)等差數(shù)列“等差”的理解、把握和應(yīng)用

          教學(xué)過程

          由《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義

          問題:多媒體演示,觀察————發(fā)現(xiàn)?

          一、等差數(shù)列定義:

          一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

          例1:觀察下面數(shù)列是否是等差數(shù)列:…。

          二、等差數(shù)列通項公式:

          已知等差數(shù)列{an}的首項是a1,公差是d。

          則由定義可得:

          a2—a1=d

          a3—a2=d

          a4—a3=d

          ……

          an—an—1=d

          即可得:

          an=a1+(n—1)d

          例2已知等差數(shù)列的首項a1是3,公差d是2,求它的通項公式。

          分析:知道a1,d,求an。代入通項公式

          解:∵a1=3,d=2

          ∴an=a1+(n—1)d

          =3+(n—1)×2

          =2n+1

          例3求等差數(shù)列10,8,6,4…的第20項。

          分析:根據(jù)a1=10,d=—2,先求出通項公式an,再求出a20

          解:∵a1=10,d=8—10=—2,n=20

          由an=a1+(n—1)d得

          ∴a20=a1+(n—1)d

          =10+(20—1)×(—2)

          =—28

          例4:在等差數(shù)列{an}中,已知a6=12,a18=36,求通項an。

          分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數(shù)組成方程組,可解出a1與d。

          解:由題意可得

          a1+5d=12

          a1+17d=36

          ∴d=2a1=2

          ∴an=2+(n—1)×2=2n

          練習(xí)

          1、判斷下列數(shù)列是否為等差數(shù)列:

         、23,25,26,27,28,29,30;

         、0,0,0,0,0,0,…

         、52,50,48,46,44,42,40,35;

          ④—1,—8,—15,—22,—29;

          答案:①不是②是①不是②是

          2、等差數(shù)列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()

          A、1B、—1C、—1/3D、5/11

          提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

          3、在數(shù)列{an}中a1=1,an=an+1+4,則a10=。

          提示:d=an+1—an=—4

          教師繼續(xù)提出問題

          已知數(shù)列{an}前n項和為……

          作業(yè)

          P116習(xí)題3.21,2

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇2

          一、等差數(shù)列

          1、定義

          注:“從第二項起”及

          “同一常數(shù)”用紅色粉筆標(biāo)注

          二、等差數(shù)列的通項公式

          (一)例題與練習(xí)

          通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點(diǎn),引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

         。ǘ┬抡n探究

          1、由引入自然的給出等差數(shù)列的概念:

          如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

         、 “從第二項起”滿足條件; f

         、诠頳一定是由后項減前項所得;

         、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強(qiáng)調(diào)“同一個常數(shù)” );

          在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

          an+1—an=d (n≥1) ;h4z+0"6vG

          同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

          1、 9 ,8,7,6,5,4,……;√ d=—1

          2、 0.70,0.71,0。72,0.73,0.74……;√ d=0.01

          3、 0,0,0,0,0,0,……。; √ d=0

          4、 1,2,3,2,3,4,……;×

          5、 1,0,1,0,1,……×

          其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

          由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

          2、第二個重點(diǎn)部分為等差數(shù)列的通項公式

          在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項 ,公差d,由學(xué)生研究分組討論a4 的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進(jìn)而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。

          若一等差數(shù)列{an }的首項是a1,公差是d,

          則據(jù)其定義可得:

          a2 — a1 =d 即: a2 =a1 +d

          a3 – a2 =d 即: a3 =a2 +d = a1 +2d

          a4 – a3 =d 即: a4 =a3 +d = a1 +3d

          ……

          猜想: a40 = a1 +39d

          進(jìn)而歸納出等差數(shù)列的通項公式:

          an=a1+(n—1)d

          此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:

          a2 – a1 =d

          a3 – a2 =d

          a4 – a3 =d

          ……

          an+1 – an=d

          將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)<t

          當(dāng)n=1時,(1)也成立,

          所以對一切n∈N﹡,上面的公式都成立

          因此它就是等差數(shù)列{an}的通項公式。

          在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

          利用等差數(shù)列概念啟發(fā)學(xué)生寫出n—1個等式。

          對照已歸納出的通項公式啟發(fā)學(xué)生想出將n—1個等式相加。證出通項公式。

          在這里通過該知識點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

          接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數(shù)列通項公式運(yùn)用

          同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點(diǎn)。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

          (三)應(yīng)用舉例

          這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項公式含義的理解以及對通項公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動變化的觀點(diǎn)看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。

          例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

         。2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?

          在第一問中我添加了計算第30項和第40項以加強(qiáng)鞏固等差數(shù)列通項公式;第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an

          例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

          在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固

          例3 是一個實(shí)際建模問題

          建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

          這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型——————等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認(rèn)為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實(shí)際樓梯圖以化解難點(diǎn))

          設(shè)置此題的目的:

          1、加強(qiáng)同學(xué)們對應(yīng)用題的綜合分析能力,

          2、通過數(shù)學(xué)實(shí)際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;

          3、再者通過數(shù)學(xué)實(shí)例展示了“從實(shí)際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實(shí)際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

          (四)反饋練習(xí)

          1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。

          2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

          目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。

          3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

          此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強(qiáng)化了等差數(shù)列的概念。

         。ㄎ澹w納小結(jié) (由學(xué)生總結(jié)這節(jié)課的收獲)

          1、等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

          強(qiáng)調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

          2、等差數(shù)列的通項公式 an= a1+(n—1) d會知三求一

          3、用“數(shù)學(xué)建模”思想方法解決實(shí)際問題

         。┎贾米鳂I(yè)

          必做題:課本P114 習(xí)題3.2第2,6 題

          選做題:已知等差數(shù)列{an}的首項a1= —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

          板書設(shè)計

          在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇3

          教學(xué)目標(biāo)

          1.明確等差數(shù)列的定義.

          2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

          3.培養(yǎng)學(xué)生觀察、歸納能力.

          教學(xué)重點(diǎn)

          1. 等差數(shù)列的概念;

          2. 等差數(shù)列的通項公式

          教學(xué)難點(diǎn)

          等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用

          教學(xué)方法

          啟發(fā)式數(shù)學(xué)

          教具準(zhǔn)備

          投影片1張(內(nèi)容見下面)

          教學(xué)過程

          (I)復(fù)習(xí)回顧

          師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片)

         。á颍┲v授新課

          師:看這些數(shù)列有什么共同的特點(diǎn)?

          1,2,3,4,5,6; ①

          10,8,6,4,2,…; ②

         、

          生:積極思考,找上述數(shù)列共同特點(diǎn)。

          對于數(shù)列① (1≤n≤6); (2≤n≤6)

          對于數(shù)列② -2n(n≥1)

         。╪≥2)

          對于數(shù)列③

         。╪≥1)

          (n≥2)

          共同特點(diǎn):從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

          師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。

          一、定義:

          等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

          如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

          二、等差數(shù)列的通項公式

          師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得:

          若將這n-1個等式相加,則可得:

          即:

          即:

          即:

          ……

          由此可得:

          師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項 和公差d,便可求得其通項 。

          如數(shù)列① (1≤n≤6)

          數(shù)列②: (n≥1)

          數(shù)列③:

         。╪≥1)

          由上述關(guān)系還可得:

          即:

          則: =

          如:

          三、例題講解

          例1:(1)求等差數(shù)列8,5,2…的第20項

         。2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

          解:(1)由

          n=20,得

         。2)由

          得數(shù)列通項公式為:

          由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

         。á螅┱n堂練習(xí)

          生:(口答)課本P118練習(xí)3

          (書面練習(xí))課本P117練習(xí)1

          師:組織學(xué)生自評練習(xí)(同桌討論)

         。á簦┱n時小結(jié)

          師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

          即 (n≥2)

         、诘炔顢(shù)列通項公式 (n≥1)

          推導(dǎo)出公式:

         。╒)課后作業(yè)

          一、課本P118習(xí)題3.2 1,2

          二、1.預(yù)習(xí)內(nèi)容:課本P116例2—P117例4

          2.預(yù)習(xí)提綱:①如何應(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

         、诘炔顢(shù)列有哪些性質(zhì)?

          板書設(shè)計

          課題

          一、定義

          1.(n≥2)

          一、通項公式

          2.公式推導(dǎo)過程

          例題

          教學(xué)后記

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇4

          教學(xué)目的:

          1.明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式。

          2.會解決知道中的三個,求另外一個的問題。

          教學(xué)重點(diǎn):

          等差數(shù)列的概念,等差數(shù)列的通項公式。

          教學(xué)難點(diǎn)

          等差數(shù)列的性質(zhì)

          教學(xué)過程:

          一、復(fù)習(xí)引入:(課件第一頁)

          二、講解新課:

          1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的 差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。

         。ㄕn件第二頁)

         、牛頳一定是由后項減前項所得,而不能用前項減后項來求;

         、疲畬τ跀(shù)列{ },若 - =d (與n無關(guān)的數(shù)或字母),n≥2,n∈n ,則此數(shù)列是等差數(shù)列,d 為公差。

          2.等差數(shù)列的通項公式: 【或 】等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得: 即: 即: 即: …… 由此歸納等差數(shù)列的通項公式可得: (課件第二頁) 第二通項公式 (課件第二頁)

          三、例題講解

          例1

         、徘蟮炔顢(shù)列8,5,2…的第20項(課本p111)

         、 -401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

          例2 在等差數(shù)列 中,已知 , ,求 , ,

          例3將一個等差數(shù)列的通項公式輸入計算器數(shù)列 中,設(shè)數(shù)列的第s項和第t項分別為 和 ,計算 的值,你能發(fā)現(xiàn)什么結(jié)論?并證明你的結(jié)論。

          小結(jié):

         、龠@就是第二通項公式的變形,

          ②幾何特征,直線的斜率

          例4 梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數(shù)列,計算中間各級的寬度。(課本p112例3)

          例5 已知數(shù)列{ }的通項公式 ,其中 、 是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?(課本p113例4)

          分析:由等差數(shù)列的定義,要判定 是不是等差數(shù)列,只要看 (n≥2)是不是一個與n無關(guān)的常數(shù)。

          注:

         、偃魀=0,則{ }是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…

          ②若p≠0, 則{ }是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差,直線在y軸上的截距為q。

         、蹟(shù)列{ }為等差數(shù)列的充要條件是其通項 =pn+q (p、q是常數(shù))。稱其為第3通項公式

          ④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個通項公式中的一個。

          例6.成等差數(shù)列的四個數(shù)的和為26,第二項與第三項之積為40,求這四個數(shù)。

          四、練習(xí):

          1.(1)求等差數(shù)列3,7,11,……的第4項與第10項.

          (2)求等差數(shù)列10,8,6,……的第20項.

         。3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由。

         。4)-20是不是等差數(shù)列0,-3 ,-7,……的項?如果是,是第幾項?如果不是,說明理由。

          2.在等差數(shù)列{ }中,

         。1)已知 =10, =19,求 與d;

          五、課后作業(yè):

          習(xí)題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇5

          一、知識與技能

          1.了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列;

          2.正確認(rèn)識使用等差數(shù)列的各種表示法,能靈活運(yùn)用通項公式求等差數(shù)列的首項、公差、項數(shù)、指定的項.

          二、過程與方法

          1.通過對等差數(shù)列通項公式的推導(dǎo)培養(yǎng)學(xué)生:的觀察力及歸納推理能力;

          2.通過等差數(shù)列變形公式的教學(xué)培養(yǎng)學(xué)生:思維的深刻性和靈活性.

          三、情感態(tài)度與價值觀

          通過等差數(shù)列概念的歸納概括,培養(yǎng)學(xué)生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識.

          教學(xué)過程

          導(dǎo)入新課

          師:上兩節(jié)課我們學(xué)習(xí)了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項公式、遞推公式、圖象法.這些方法從不同的角度反映數(shù)列的特點(diǎn).下面我們看這樣一些數(shù)列的例子:(課本P41頁的4個例子)

          (1)0,5,10,15,20,25,…;

          (2)48,53,58,63,…;

          (3)18,15.5,13,10.5,8,5.5…;

          (4)10 072,10 144,10 216,10 288,10 366,….

          請你們來寫出上述四個數(shù)列的第7項.

          生:第一個數(shù)列的第7項為30,第二個數(shù)列的第7項為78,第三個數(shù)列的第7項為3,第四個數(shù)列的第7項為10 510.

          師:我來問一下,你依據(jù)什么寫出了這四個數(shù)列的第7項呢?以第二個數(shù)列為例來說一說.

          生:這是由第二個數(shù)列的后一項總比前一項多5,依據(jù)這個規(guī)律性我得到了這個數(shù)列的第7項為78.

          師:說得很有道理!我再請同學(xué)們仔細(xì)觀察一下,看看以上四個數(shù)列有什么共同特征?我說的是共同特征.

          生:1每相鄰兩項的差相等,都等于同一個常數(shù).

          師:作差是否有順序,誰與誰相減?

          生:1作差的順序是后項減前項,不能顛倒.

          師:以上四個數(shù)列的共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個名字叫——等差數(shù)列.

          這就是我們這節(jié)課要研究的內(nèi)容.

          推進(jìn)新課

          等差數(shù)列的定義:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示).

          (1)公差d一定是由后項減前項所得,而不能用前項減后項來求;

         。2)對于數(shù)列{an},若an-a n-1=d(與n無關(guān)的數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差.

          師:定義中的關(guān)鍵字是什么?(學(xué)生:在學(xué)習(xí)中經(jīng)常遇到一些概念,能否抓住定義中的關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他學(xué)科的重要一環(huán).因此教師:應(yīng)該教會學(xué)生:如何深入理解一個概念,以培養(yǎng)學(xué)生:分析問題、認(rèn)識問題的能力)

          生:從“第二項起”和“同一個常數(shù)”.

          師::很好!

          師:請同學(xué)們思考:數(shù)列(1)、(2)、(3)、(4)的通項公式存在嗎?如果存在,分別是什么?

          生:數(shù)列(1)通項公式為5n-5,數(shù)列(2)通項公式為5n+43,數(shù)列(3)通項公式為2.5n-15.5,….

          師:好,這位同學(xué)用上節(jié)課學(xué)到的知識求出了這幾個數(shù)列的通項公式,實(shí)質(zhì)上這幾個通項公式有共同的特點(diǎn),無論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來共同思考.

          [合作探究]

          等差數(shù)列的通項公式

          師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得到的,若一個等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得什么?

          生:a2-a1=d,即a2=a1+d.

          師:對,繼續(xù)說下去!

          生:a3-a2=d,即a3=a2+d=a1+2d;

          a4-a3=d,即a4=a3+d=a1+3d;

          ……

          師:好!規(guī)律性的東西讓你找出來了,你能由此歸納出等差數(shù)列的通項公式嗎?

          生:由上述各式可以歸納出等差數(shù)列的通項公式是an=a1+(n-1)d.

          師:很好!這樣說來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項an了.需要說明的是:此公式只是等差數(shù)列通項公式的猜想,你能證明它嗎?

          生:前面已學(xué)過一種方法叫迭加法,我認(rèn)為可以用.證明過程是這樣的:

          因為a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d.

          師:太好了!真是活學(xué)活用啊!這樣一來我們通過證明就可以放心使用這個通項公式了.

         。劢處煟壕v]

          由上述關(guān)系還可得:am=a1+(m-1)d,

          即a1=am-(m-1)d.

          則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

          即等差數(shù)列的第二通項公式an=am+(n-m)d.(這是變通的通項公式)

          由此我們還可以得到.

          [例題剖析]

          【例1】(1)求等差數(shù)列8,5,2,…的第20項;

         。2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

          師:這個等差數(shù)列的首項和公差分別是什么?你能求出它的第20項嗎?

          生:1這題太簡單了!首項和公差分別是a1=8,d=5-8=2-5=-3.又因為n=20,所以由等差數(shù)列的通項公式,得a20=8+(20-1)×(-3)=-49.

          師:好!下面我們來看看第(2)小題怎么做.

          生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項公式為an=-5-4(n-1).

          由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個數(shù)列的第100項.

          師:剛才兩個同學(xué)將問題解決得很好,我們做本例的目的是為了熟悉公式,實(shí)質(zhì)上通項公式就是an,a1,d,n組成的方程(獨(dú)立的量有三個).

          說明:

          (1)強(qiáng)調(diào)當(dāng)數(shù)列{an}的項數(shù)n已知時,下標(biāo)應(yīng)是確切的數(shù)字;

          (2)實(shí)際上是求一個方程的正整數(shù)解的問題.這類問題學(xué)生:以前見得較少,可向?qū)W生:著重點(diǎn)出本問題的實(shí)質(zhì):要判斷-401是不是數(shù)列的項,關(guān)鍵是求出數(shù)列的通項公式an,判斷是否存在正整數(shù)n,使得an=-401成立.

          【例2】已知數(shù)列{an}的通項公式an=pn+q,其中p、q是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?

          例題分析:

          師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么?

          生:只要看差an-an-1(n≥2)是不是一個與n無關(guān)的常數(shù).

          師:說得對,請你來求解.

          生:當(dāng)n≥2時,〔取數(shù)列{an}中的任意相鄰兩項an-1與an(n≥2)〕

          an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù),

          所以我們說{an}是等差數(shù)列,首項a1=p+q,公差為p.

          師:這里要重點(diǎn)說明的是:

          (1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,….

          (2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(diǎn)(n,an)均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差p,直線在y軸上的截距為q.

          (3)數(shù)列{an}為等差數(shù)列的充要條件是其通項an=pn+q(p、q是常數(shù)),稱其為第3通項公式.課堂練習(xí)

          (1)求等差數(shù)列3,7,11,…的第4項與第10項.

          分析:根據(jù)所給數(shù)列的前3項求得首項和公差,寫出該數(shù)列的通項公式,從而求出所需.

          解:根據(jù)題意可知a1=3,d=7-3=4.∴該數(shù)列的通項公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

          評述:關(guān)鍵是求出通項公式.

          (2)求等差數(shù)列10,8,6,…的第20項.

          解:根據(jù)題意可知a1=10,d=8-10=-2.

          所以該數(shù)列的通項公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

          評述:要求學(xué)生:注意解題步驟的規(guī)范性與準(zhǔn)確性.

          (3)100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?如果不是,請說明理由.

          分析:要想判斷一個數(shù)是否為某一個數(shù)列的其中一項,其關(guān)鍵是要看是否存在一個正整數(shù)n值,使得an等于這個數(shù).

          解:根據(jù)題意可得a1=2,d=9-2=7.因而此數(shù)列通項公式為an=2+(n-1)×7=7n-5.

          令7n-5=100,解得n=15.所以100是這個數(shù)列的第15項.

          (4)-20是不是等差數(shù)列0,-7,…的項?如果是,是第幾項?如果不是,請說明理由.

          解:由題意可知a1=0,,因而此數(shù)列的通項公式為.

          令,解得.因為沒有正整數(shù)解,所以-20不是這個數(shù)列的項.

          課堂小結(jié)

          師:(1)本節(jié)課你們學(xué)了什么?

         。2)要注意什么?

         。3)在生:活中能否運(yùn)用?(讓學(xué)生:反思、歸納、總結(jié),這樣來培養(yǎng)學(xué)生:的概括能力、表達(dá)能力)

          生:通過本課時的學(xué)習(xí),首先要理解和掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式a n-a n-1=d(n≥2);其次要會推導(dǎo)等差數(shù)列的通項公式an=a1+(n-1)d(n≥1).

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇6

          [教學(xué)目標(biāo)]

          1.知識與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應(yīng)的一些問題。

          2.過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。

          3.情感態(tài)度與價值觀目標(biāo):通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時總結(jié)的好習(xí)慣。

          [教學(xué)重難點(diǎn)]

          1.教學(xué)重點(diǎn):等差數(shù)列的概念的理解,通項公式的推導(dǎo)及應(yīng)用。

          2.教學(xué)難點(diǎn):

          (1)對等差數(shù)列中“等差”兩字的把握;

          (2)等差數(shù)列通項公式的推導(dǎo)。

          [教學(xué)過程]

          一.課題引入

          創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)

          二、新課探究

          (一)等差數(shù)列的定義

          1、等差數(shù)列的定義

          如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

          (1)定義中的關(guān)健詞有哪些?

          (2)公差d是哪兩個數(shù)的差?

          (二)等差數(shù)列的通項公式

          探究1:等差數(shù)列的通項公式(求法一)

          如果等差數(shù)列首項是,公差是,那么這個等差數(shù)列如何表示?呢?

          根據(jù)等差數(shù)列的定義可得:

          因此等差數(shù)列的通項公式就是:,

          探究2:等差數(shù)列的通項公式(求法二)

          根據(jù)等差數(shù)列的定義可得:

          將以上-1個式子相加得等差數(shù)列的通項公式就是:,

          三、應(yīng)用與探索

          例1、(1)求等差數(shù)列8,5,2,…,的第20項。

          (2)等差數(shù)列-5,-9,-13,…,的第幾項是–401?

          (2)、分析:要判斷-401是不是數(shù)列的項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得成立,實(shí)質(zhì)上是要求方程的正整數(shù)解。

          例2、在等差數(shù)列中,已知=10,=31,求首項與公差d.

          解:由,得。

          在應(yīng)用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

          鞏固練習(xí)

          1.等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。

          2.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。

          四、小結(jié)

          1.等差數(shù)列的通項公式:

          公差;

          2.等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

          3.判斷一個數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

          4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題.

          五、作業(yè):

          1、必做題:課本第40頁習(xí)題2.2第1,3,5題

          2、選做題:如何以最快的速度求:1+2+3+???+100=

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇7

          一、預(yù)習(xí)問題:

          1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的 , 通常用字母 表示。

          2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,

          即 或 。

          3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。

          4、等差數(shù)列的通項公式: 。

          5、判斷正誤:

         、1,2,3,4,5是等差數(shù)列; ( )

         、1,1,2,3,4,5是等差數(shù)列; ( )

         、蹟(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )

         、軘(shù)列 是公差為 的等差數(shù)列; ( )

         、輸(shù)列 是等差數(shù)列; ( )

          ⑥若 ,則 成等差數(shù)列; ( )

          ⑦若 ,則數(shù)列 成等差數(shù)列; ( )

         、嗟炔顢(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )

         、岬炔顢(shù)列的公差是該數(shù)列中任何相鄰兩項的差。 ( )

          6、思考:如何證明一個數(shù)列是等差數(shù)列。

          二、實(shí)戰(zhàn)操作:

          例1、(1)求等差數(shù)列8,5,2,的第20項。

         。2) 是不是等差數(shù)列 中的項?如果是,是第幾項?

          (3)已知數(shù)列 的公差 則

          例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?

          例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇8

          一、教學(xué)目標(biāo)

          【知識與技能】能夠復(fù)述等差數(shù)列的概念,能夠?qū)W會等差數(shù)列的通項公式的推導(dǎo)過程及蘊(yùn)含的數(shù)學(xué)思想。

          【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,提高知識、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。

          【情感態(tài)度與價值觀】通過對等差數(shù)列的研究,具備主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

          二、教學(xué)重難點(diǎn)

          【教學(xué)重點(diǎn)】

          等差數(shù)列的概念、等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

          【教學(xué)難點(diǎn)】

          等差數(shù)列通項公式的推導(dǎo)。

          三、教學(xué)過程

          環(huán)節(jié)一:導(dǎo)入新課

          教師PPT展示幾道題目:

          1.我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5一個數(shù),可以得到數(shù)列:0,5,15,20,25 2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92。

          在澳大利亞悉尼舉行的奧運(yùn)會上,女子舉重正式列為比賽項目,該項目共設(shè)置了7個級別,其中交情的4個級別體重組成數(shù)列(單位:kg):48,53,58,63。

          教師提問學(xué)生這幾組數(shù)有什么特點(diǎn)?學(xué)生回答從第二項開始,每一項與前一項的差都等于一個常數(shù),教師引出等差數(shù)列。

          環(huán)節(jié)二:探索新知

          1.等差數(shù)列的概念

          學(xué)生閱讀教材,同桌討論,類比等比數(shù)列總結(jié)出等差數(shù)列的概念

          如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

          問題1:等差數(shù)列的概念中,我們應(yīng)該注意哪些細(xì)節(jié)呢?

          環(huán)節(jié)三:課堂練習(xí)

          搶答:下列數(shù)列是否為等差數(shù)列?

         。1)1,2,4,6,8,10,12,……

         。2)0,1,2,3,4,5,6,……

         。3)3,3,3,3,3,3,3,……

          (4)-8,-6,-4,-2,0,2,4,……

         。5)3,0,-3,-6,-9,……

          環(huán)節(jié)四:小結(jié)作業(yè)

          小結(jié):1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。

          關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。

          作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇9

          教學(xué)目標(biāo):

         。1)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;

          (2)利用等差數(shù)列的通項公式能由a1,d,n,an“知三求一”,了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;

         。3)通過作等差數(shù)列的圖像,進(jìn)一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過等差數(shù)列的通項公式應(yīng)用,滲透方程思想。

          教學(xué)重、難點(diǎn):

          等差數(shù)列的定義及等差數(shù)列的通項公式。

          知識結(jié)構(gòu):

          一般數(shù)列定義通項公式法

          遞推公式法

          等差數(shù)列表示法應(yīng)用

          圖示法

          性質(zhì)列舉法

          教學(xué)過程:

         。ㄒ唬﹦(chuàng)設(shè)情境:

          1.觀察下列數(shù)列:

          1,2,3,4,……;(軍訓(xùn)時某排同學(xué)報數(shù))①

          10000,9000,8000,7000,……;(溫州市房價平均每月每平方下跌的價位)②

          2,2,2,2,……;(坐38路公交車的車費(fèi))③

          問題:上述三個數(shù)列有什么共同特點(diǎn)?(學(xué)生會發(fā)現(xiàn)很多規(guī)律,如都是整數(shù),再舉幾個非整數(shù)等差數(shù)列例子讓學(xué)生觀察)

          規(guī)律:從第2項起,每一項與前一項的差都等于同一常數(shù)。

          引出等差數(shù)列。

         。ǘ┬抡n講解:

          1.等差數(shù)列定義:

          一般地,如果一個數(shù)列從第項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母表示。

          問題:(a)能否用數(shù)學(xué)符號語言描述等差數(shù)列的定義?

          用遞推公式表示為或.

          (b)例1:觀察下列數(shù)列是否是等差數(shù)列:

         。1)1,-1,1,-1,…

          (2)1,2,4,6,8,10,…

          意在強(qiáng)調(diào)定義中“同一個常數(shù)”

          (c)例2:求上述三個數(shù)列的公差;公差d可取哪些值?d>0,d=0,d<0時,數(shù)列有什么特點(diǎn)

         。╠有不同的分類,如按整數(shù)分?jǐn)?shù)分類,再舉幾個等差數(shù)列的例子觀察d的分類對數(shù)列的影

          響)

          說明:等差數(shù)列(通常可稱為數(shù)列)的單調(diào)性:為遞增數(shù)列,為常數(shù)列,為遞減數(shù)列。

          例3:求等差數(shù)列13,8,3,-2,…的第5項。第89項呢?

          放手讓學(xué)生利用各種方法求a89,從中找出合適的方法,如利用不完全歸納法或累加法,然

          后引出求一般等差數(shù)列的通項公式。

          2.等差數(shù)列的通項公式:已知等差數(shù)列的首項是,公差是,求.

         。1)由遞推公式利用用不完全歸納法得出

          由等差數(shù)列的定義:,,,……

          ∴,,,……

          所以,該等差數(shù)列的通項公式:.

          (驗證n=1時成立)。

          這種由特殊到一般的推導(dǎo)方法,不能代替嚴(yán)格證明。要用數(shù)學(xué)歸納法證明的。

          (2)累加法求等差數(shù)列的通項公式

          讓學(xué)生體驗推導(dǎo)過程。(驗證n=1時成立)

          3.例題及練習(xí):

          應(yīng)用等差數(shù)列的通項公式

          追問:(1)-232是否為例3等差數(shù)列中的項?若是,是第幾項?

          (2)此數(shù)列中有多少項屬于區(qū)間[-100,0]?

          法一:求出a1,d,借助等差數(shù)列的通項公式求a20。

          法二:求出d,a20=a5+15d=a12+8d

          在例4基礎(chǔ)上,啟發(fā)學(xué)生猜想證明

          練習(xí):

          梯子的最高一級寬31cm,最低一級寬119cm,中間還有3級,各級的寬度成等差數(shù)列,請計算中間各級的寬度。

          觀察圖像特征。

          思考:an是關(guān)于n的一次式,是數(shù)列{an}為等差數(shù)列的什么條件?

          課后反思:這節(jié)課的重點(diǎn)是等差數(shù)列定義和通項公式概念的理解,而不是公式的應(yīng)用,有些應(yīng)試教育的味道。有時搶學(xué)生的回答,沒有真正放手讓學(xué)生的思維發(fā)展,學(xué)生活動太少,課堂氛圍不好。學(xué)生對問題的反應(yīng)出乎設(shè)計的意料時,應(yīng)該順著學(xué)生的思維發(fā)展。

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇10

          設(shè)計思路

          數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

          教學(xué)過程:

          一、片頭

         。30秒以內(nèi))

          前面學(xué)習(xí)了數(shù)列的概念與簡單表示法,今天我們來學(xué)習(xí)一種特殊的數(shù)列-等差數(shù)列。本節(jié)微課重點(diǎn)講解等差數(shù)列的定義, 并且能初步判斷一個數(shù)列是否是等差數(shù)列。

          30秒以內(nèi)

          二、正文講解(8分鐘左右)

          第一部分內(nèi)容:由三個問題,通過判斷分析總結(jié)出等差數(shù)列的定義 60 秒

          第二部分內(nèi)容:給出等差數(shù)列的定義及其數(shù)學(xué)表達(dá)式50 秒

          第三部分內(nèi)容:哪些數(shù)列是等差數(shù)列?并且求出首項與公差。根據(jù)這個練習(xí)總結(jié)出幾個常用的結(jié)152秒

          三、結(jié)尾

          (30秒以內(nèi))授課完畢,謝謝聆聽!30秒以內(nèi)

          教學(xué)反思

          本節(jié)課通過生活中一系列的實(shí)例讓學(xué)生觀察,從而得出等差數(shù)列的概念,并在此基礎(chǔ)上學(xué)會判斷一個數(shù)列是否是等差數(shù)列,培養(yǎng)了學(xué)生觀察、分析、歸納、推理的能力。充分體現(xiàn)了學(xué)生做數(shù)學(xué)的過程,使學(xué)生對等差數(shù)列有了從感性到理性的認(rèn)識過程。

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇11

          教學(xué)目標(biāo)

          1.通過教與學(xué)的互動,使學(xué)生加深對等差數(shù)列通項公式的認(rèn)識,能參與編擬一些簡單的問題,并解決這些問題;

          2.利用通項公式求等差數(shù)列的項、項數(shù)、公差、首項,使學(xué)生進(jìn)一步體會方程思想;

          3.通過參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣.

          教學(xué)重點(diǎn),難點(diǎn)

          教學(xué)重點(diǎn)是通項公式的`認(rèn)識;教學(xué)難點(diǎn)是對公式的靈活運(yùn)用.

          教學(xué)用具

          實(shí)物投影儀,多媒體軟件,電腦.

          教學(xué)方法

          研探式.

          教學(xué)過程()

          一.復(fù)習(xí)提問

          前一節(jié)課我們學(xué)習(xí)了等差數(shù)列的概念、表示法,請同學(xué)們回憶等差數(shù)列的定義,其表示法都有哪些?

          等差數(shù)列的概念是從相鄰兩項的關(guān)系加以定義的,這個關(guān)系用遞推公式來表示比較簡單,但我們要圍繞通項公式作進(jìn)一步的理解與應(yīng)用.

          二.主體設(shè)計

          通項公式 反映了項 與項數(shù) 之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項與公差確定后,數(shù)列的每一項便確定了,可以求指定的項(即已知 求 ).找學(xué)生試舉一例如:“已知等差數(shù)列 中,首項 ,公差 ,求 .”這是通項公式的簡單應(yīng)用,由學(xué)生解答后,要求每個學(xué)生出一些運(yùn)用等差數(shù)列通項公式的題目,包括正用、反用與變用,簡單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來,分類投影在屏幕上.

          1.方程思想的運(yùn)用

         。1)已知等差數(shù)列 中,首項 ,公差 ,則-397是該數(shù)列的第______項.

          (2)已知等差數(shù)列 中,首項 , 則公差

         。3)已知等差數(shù)列 中,公差 , 則首項

          這一類問題先由學(xué)生解決,之后教師點(diǎn)評,四個量 , 在一個等式中,運(yùn)用方程的思想方法,已知其中三個量的值,可以求得第四個量.

          2.基本量方法的使用

         。1)已知等差數(shù)列 中, ,求 的值.

          (2)已知等差數(shù)列 中, , 求 .

          若學(xué)生的題目只有這兩種類型,教師可以小結(jié)(最好請出題者、解題者概括):因為已知條件可以化為關(guān)于 和 的二元方程組,所以這些等差數(shù)列是確定的,由 和 寫出通項公式,便可歸結(jié)為前一類問題.解決這類問題只需把兩個條件(等式)化為關(guān)于 和 的二元方程組,以求得 和 , 和 稱作基本量.

          教師提出新的問題,已知等差數(shù)列的一個條件(等式),能否確定一個等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個條件可得到關(guān)于 和 的二元方程,這是一個 和 的制約關(guān)系,從這個關(guān)系可以得到什么結(jié)論?舉例說明(例題可由學(xué)生或教師給出,視具體情況而定).

          如:已知等差數(shù)列 中, …

          由條件可得 即 ,可知 ,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項的值么?能否與兩項有關(guān)?多項有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問題

         。3)已知等差數(shù)列 中, 求 ; ; ; ;….

          類似的還有

         。4)已知等差數(shù)列 中, 求 的值.

          以上屬于對數(shù)列的項進(jìn)行定量的研究,有無定性的判斷?引出

          3.研究等差數(shù)列的單調(diào)性,考察 隨項數(shù) 的變化規(guī)律.著重考慮 的情況. 此時 是 的一次函數(shù),其單調(diào)性取決于 的符號,由學(xué)生敘述結(jié)果.這個結(jié)果與考察相鄰兩項的差所得結(jié)果是一致的.

          4.研究項的符號

          這是為研究等差數(shù)列前 項和的最值所做的準(zhǔn)備工作.可配備的題目如

         。1)已知數(shù)列 的通項公式為 ,問數(shù)列從第幾項開始小于0?

          (2)等差數(shù)列 從第________項起以后每項均為負(fù)數(shù).

          三.小結(jié)

          1. 用方程思想認(rèn)識等差數(shù)列通項公式;

          2. 用函數(shù)思想解決等差數(shù)列問題.

          優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案 篇12

          【教學(xué)目標(biāo)】

          一、知識與技能

          1.掌握等差數(shù)列前n項和公式;

          2.體會等差數(shù)列前n項和公式的推導(dǎo)過程;

          3.會簡單運(yùn)用等差數(shù)列前n項和公式。

          二、過程與方法

          1. 通過對等差數(shù)列前n項和公式的推導(dǎo),體會倒序相加求和的思想方法;

          2. 通過公式的運(yùn)用體會方程的思想。

          三、情感態(tài)度與價值觀

          結(jié)合具體模型,將教材知識和實(shí)際生活聯(lián)系起來,使學(xué)生感受數(shù)學(xué)的實(shí)用性,有效激發(fā)學(xué)習(xí)興趣,并通過對等差數(shù)列求和歷史的了解,滲透數(shù)學(xué)史和數(shù)學(xué)文化。

          【教學(xué)重點(diǎn)】

          等差數(shù)列前n項和公式的推導(dǎo)和應(yīng)用。

          【教學(xué)難點(diǎn)】

          在等差數(shù)列前n項和公式的推導(dǎo)過程中體會倒序相加的思想方法。

          【重點(diǎn)、難點(diǎn)解決策略】

          本課在設(shè)計上采用了由特殊到一般、從具體到抽象的教學(xué)策略。利用數(shù)形結(jié)合、類比歸納的思想,層層深入,通過學(xué)生自主探究、分析、整理出推導(dǎo)公式的思路,同時,借助多媒體的直觀演示,幫助學(xué)生理解,師生互動、講練結(jié)合,從而突出重點(diǎn)、突破教學(xué)難點(diǎn)。

          【教學(xué)用具】

          多媒體軟件,電腦

          【教學(xué)過程】

          一、明確數(shù)列前n項和的定義,確定本節(jié)課中心任務(wù):

          本節(jié)課我們來學(xué)習(xí)《等差數(shù)列的前n項和》,那么什么叫數(shù)列的前n項和呢,對于數(shù)列{an}:a1,a2,a3,…,an,…我們稱a1+a2+a3+…+an為數(shù)列{an}的前n項和,用sn表示,記sn=a1+a2+a3+…+an,

          如S1 =a1, S7 =a1+a2+a3+……+a7,下面我們來共同探究如何求等差數(shù)列的前n項和。

          二、問題牽引,探究發(fā)現(xiàn)

          問題1:(播放媒體資料情景引入)印度泰姬陵世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見圖),奢靡之程度,可見一斑。你知道這個圖案一共花了多少圓寶石嗎?

          即: S100=1+2+3+······+100=?

          著名數(shù)學(xué)家高斯小時候就會算,聞名于世;那么小高斯是如何快速地得出答案的呢?請同學(xué)們思考高斯方法的特點(diǎn),適合類型和方法本質(zhì)。

          特點(diǎn): 首項與末項的和:   1+100=101,

          第2項與倒數(shù)第2項的和: 2+99 =101,

          第3項與倒數(shù)第3項的和: 3+98 =101,

          · · · · · ·

          第50項與倒數(shù)第50項的和: 50+51=101,

          于是所求的和是: 101×50=5050。

          1+2+3+ ······ +100= 101×50 = 5050

          同學(xué)們討論后總結(jié)發(fā)言:等差數(shù)列項數(shù)為偶數(shù)相加時首尾配對,變不同數(shù)的加法運(yùn)算為相同數(shù)的乘法運(yùn)算大大提高效率。高斯的方法很妙,如果等差數(shù)列的項數(shù)為奇數(shù)時怎么辦呢?

          探索與發(fā)現(xiàn)1:假如讓你計算從第一層到第21層的珠寶數(shù),高斯的首尾配對法行嗎?

          即計算S21=1+2+3+ ······ +21的值,在這個過程中讓學(xué)生發(fā)現(xiàn)當(dāng)項數(shù)為奇數(shù)時,首尾配對出現(xiàn)了問題,通過動畫演示引導(dǎo)幫助學(xué)生思考解決問題的辦法,為引出倒序相加法做鋪墊。

          把“全等三角形”倒置,與原圖構(gòu)成平行四邊形。平行四邊形中的每行寶石的個數(shù)均為21個,共21行。有什么啟發(fā)?

          1+ 2 + 3 + …… +20 +21

          21 + 20 + 19 + …… + 2 +1

          S21=1+2+3+…+21=(21+1)×21÷2=231

          這個方法也很好,那么項數(shù)為偶數(shù)這個方法還行嗎?

          探索與發(fā)現(xiàn)2:第5層到12層一共有多少顆圓寶石?

          學(xué)生探究的同時通過動畫演示幫助學(xué)生思考剛才的方法是否同樣可行?請同學(xué)們自主探究一下(老師演示動畫幫助學(xué)生)

          S8=5+6+7+8+9+10+11+12=

          【設(shè)計意圖】進(jìn)一步引導(dǎo)學(xué)生探究項數(shù)為偶數(shù)的等差數(shù)列求和時倒序相加是否可行。從而得出倒序相加法適合任意項數(shù)的等差數(shù)列求和,最終確立倒序相加的思想和方法!

          好,這樣我們就找到了一個好方法——倒序相加法!現(xiàn)在來試一試如何求下面這個等差數(shù)列的前n項和?

          問題2:等差數(shù)列1,2,3,…,n, … 的前n項和怎么求呢?

          解:(根據(jù)前面的學(xué)習(xí),請學(xué)生自主思考獨(dú)立完成)

          【設(shè)計意圖】強(qiáng)化倒序相加法的理解和運(yùn)用,為更一般的等差數(shù)列求和打下基礎(chǔ)。

          至此同學(xué)們已經(jīng)掌握了倒序相加法,相信大家可以推導(dǎo)更一般的等差數(shù)列前n項和公式了。

          問題3:對于一般的等差數(shù)列{an}首項為a1,公差為d,如何推導(dǎo)它的前n項和sn公式呢?

          即求 =a1+a2+a3+……+an=

          ∴(1)+(2)可得:2

          ∴

          公式變形:將代入可得:

          【設(shè)計意圖】學(xué)生在前面的探究基礎(chǔ)上水到渠成順理成章很快就可以推導(dǎo)出一般等差數(shù)列的前n項和公式,從而完成本節(jié)課的中心任務(wù)。在這個過程中放手讓學(xué)生自主推導(dǎo),同時也復(fù)習(xí)等差數(shù)列的通項公式和基本性質(zhì)。

          三、公式的認(rèn)識與理解:

          1、根據(jù)前面的推導(dǎo)可知等差數(shù)列求和的兩個公式為:

         。ü揭唬

         。ü蕉

          探究: 1、(1)相同點(diǎn): 都需知道a1與n;

         。2)不同點(diǎn): 第一個還需知道an ,第二個還需知道d;

          (3)明確若a1,d,n,an中已知三個量就可求Sn。

          2、兩個公式共涉及a1, d, n, an,Sn五個量,“知三”可“求二”。

          2、探索與發(fā)現(xiàn)3:等差數(shù)列前n項和公式與梯形面積公式有什么聯(lián)系?

          用梯形面積公式記憶等差數(shù)列前 n 項和公式,這里對圖形進(jìn)行了割、補(bǔ)兩種處理,對應(yīng)著等差數(shù)列 n 項和的兩個公式.,請學(xué)生聯(lián)想思考總結(jié)來有助于記憶。

          【設(shè)計意圖】幫助學(xué)生類比聯(lián)想,拓展思維,增加興趣,強(qiáng)化記憶

          四、公式應(yīng)用、講練結(jié)合

          1、練一練:

          有了兩個公式,請同學(xué)們來練一練,看誰做的快做的對!

          根據(jù)下列各題中的條件,求相應(yīng)的等差數(shù)列{an}的Sn :

         。1)a1=5,an=95,n=10

          解:500

          (2)a1=100,d=-2,n=50

          解:

          【設(shè)計意圖】熟悉并強(qiáng)化公式的理解和應(yīng)用,進(jìn)一步鞏固“知三求二”。

          下面我們來看兩個例題:

          2、例題1:

          2000年11月14日教育部下發(fā)了<<關(guān)于在中小學(xué)實(shí)施“校校通”工程的通知>>.某市據(jù)此提出了實(shí)施“校校通”工程的總目標(biāo):從2001年起用10年時間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng).  據(jù)測算,2001年該市用于“校校通”工程的經(jīng)費(fèi)為500萬元.為了保證工程的順利實(shí)施,計劃每年投入的資金都比上一年增加50萬元.那么從2001年起的未來10年內(nèi),該市在“校校通”工程中的總投入是多少?

          解:設(shè)從2001年起第n年投入的資金為an,根據(jù)題意,數(shù)列{an}是一個等差數(shù)列,其中 a1=500, d=50

          那么,到2010年(n=10),投入的資金總額為

          答: 從2001年起的未來10年內(nèi),該市在“校校通”工程中的總投入是7250萬元。

          【設(shè)計意圖】讓學(xué)生體會數(shù)列知識在生活中的應(yīng)用及簡單的數(shù)學(xué)建模思想方法。

          3、例題2:

          已知一個等差數(shù)列{an}的前10項的和是310,前20項的和是1220,由這些條件可以確定這個等差數(shù)列的前n項和的公式嗎?

          解:

          法1:由題意知

          ,

          代入公式得:

          解得,

          法2:由題意知

          ,

          代入公式得:

          ,

          即,

         、冖俚茫

          由得故

          【設(shè)計意圖】掌握并能靈活應(yīng)用公式并體會方程的思想方法。

          4、反饋達(dá)標(biāo):

          練習(xí)一:在等差數(shù)列{an}中,a1=20, an=54,sn =999,求n.

          解:由解n=27

          練習(xí)2: 已知{an}為等差數(shù)列,,求公差。

          解:由公式得

          即d=2

          【設(shè)計意圖】進(jìn)一強(qiáng)化求和公式的靈活應(yīng)用及化歸的思想(化歸到首項和公差這兩個基本元)。

          五、歸納總結(jié) 分享收獲:(活躍課堂氣氛,鼓勵學(xué)生大膽發(fā)言,培養(yǎng)總結(jié)和表達(dá)能力)

          1、倒序相加法求和的思想及應(yīng)用;

          2、等差數(shù)列前n項和公式的推導(dǎo)過程;

          3、掌握等差數(shù)列的兩個求和公式,;

          4、前n項和公式的靈活應(yīng)用及方程的思想。

          …………

          六、作業(yè)布置:

          (一)書面作業(yè):

          1.已知等差數(shù)列{an},其中d=2,n=15, an =-10,求a1及sn。

          2.在a,b之間插入10個數(shù),使它們同這兩個數(shù)成等差數(shù)列,求這10個數(shù)的和。

         。ǘ┱n后思考:

          思考:等差數(shù)列的前n項和公式的推導(dǎo)方法除了倒序相加法還有沒有其它方法呢?

          【設(shè)計意圖】通過布置書面作業(yè)鞏固所學(xué)知識及方法,同時通過布置課后思考題來延伸知識拓展思維。

          附:板書設(shè)計

          等差數(shù)列的前n項和

          1、數(shù)列前n項和的定義:

          2、等差數(shù)列前n項和公式的推導(dǎo):

          3、公式的認(rèn)識與理解:

          公式一:

          公式二:

          四:例題及解答:

          議練活動:

        【優(yōu)秀高一數(shù)學(xué)等差數(shù)列教案】相關(guān)文章:

        精選數(shù)學(xué)等差數(shù)列教案優(yōu)秀范文08-16

        數(shù)學(xué)等差數(shù)列教案07-12

        人教版高一數(shù)學(xué)《等差數(shù)列》說課稿優(yōu)秀模板01-17

        高一數(shù)學(xué)等差數(shù)列說課稿07-28

        高一數(shù)學(xué)《等差數(shù)列》說課稿02-12

        高一數(shù)學(xué)優(yōu)秀教案10-11

        高一數(shù)學(xué)等差數(shù)列的教學(xué)設(shè)計方案06-14

        新高一數(shù)學(xué)優(yōu)秀教案09-27

        高三數(shù)學(xué)等差數(shù)列教案設(shè)計10-21

        99热这里只有精品国产7_欧美色欲色综合色欲久久_中文字幕无码精品亚洲资源网久久_91热久久免费频精品无码
          1. <rp id="zsypk"></rp>